The present invention relates generally to power tools and more particularly to a pull-push table saw.
A table saw can be used for cutting a workpiece, e.g., a board. The table saw includes a saw unit that includes a circular blade that is coupled to a saw motor. Two types of table saws are known. In the first known type, the saw unit is stationary and an operator of the table saw slides the workpiece toward the circular blade to cut the workpiece, followed by pulling the workpiece away from the circular blade after the workpiece is cut. In the second known type (a pull-push table saw), the workpiece is stationary and the operator pulls the saw unit toward the workpiece to cut the workpiece, followed by pushing the saw unit away from the workpiece once the workpiece is cut. A typical construction in the latter type of table saw includes an undercarriage that is configured to slide on a rail system for the purpose of pulling, and then pushing the saw unit. The undercarriage is typically spring-loaded and is biased to return to a home position away from the workpiece. To reduce friction between the undercarriage and the rail system, provisions have been provided in the known pull-push table saws. Among these provisions are rollers and bearing surfaces that interface the undercarriage with the rail system. However, the roller-bearing provision may be susceptible to malfunctioning, e.g., sticking, when debris, produced during a cutting operation, is introduced between the rollers and the bearing surface.
Therefore, there is a need to provide an improved interface between the undercarriage of a table saw and the rail system. There is further a need to provide a low friction or essentially frictionless interface between the undercarriage of a table saw and an associated rail system. There is yet an additional need to provide an interface between the undercarriage of a table saw and the associated rail system that is less susceptible to malfunctioning due to debris produced during a cutting operation.
According to one embodiment of the present disclosure, a saw assembly is disclosed. The saw assembly includes a base, a support arrangement which includes (i) a first rail assembly attached to said base and having a first rail magnet, (ii) a carriage having a first carriage magnet that is positioned to magnetically interact with said first rail magnet, and a saw mechanism supported by said carriage.
According to another embodiment of the present disclosure a saw assembly is disclosed. The saw assembly includes a base defining an internal space, and having a sidewall defining an opening, a table top structure supported by said base and defining a blade slot, a support arrangement including (i) a first rail assembly attached to said base and having a first rail magnet, (ii) a carriage located within said internal space and having a first carriage magnet that is positioned to magnetically interact with said first rail magnet, a saw mechanism supported by said carriage and including a motor and a saw blade rotatably coupled to said motor, said saw blade extending through said blade slot, and an actuator having (i) a first end portion attached to said carriage, (ii) a second end portion spaced apart from said internal space, and (iii) an intermediate portion extending through said opening, wherein movement of said second end portion of said actuator causes movement of said carriage in relation to said first rail assembly.
The above described features and advantages, as well as others, will become more readily apparent to those of ordinary skill in the art by reference to the following detailed description and accompanying drawings.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and described in the following written specification. It is understood that no limitation to the scope of the invention is thereby intended. It is further understood that the present invention includes any alterations and modifications to the illustrated embodiments and includes further applications of the principles of the invention as would normally occur to one skilled in the art to which this invention pertains.
The combination of side, front and rear support walls 12, 14, 16, 18, 20, and 22 provide a structural frame for the sliding table saw 10, and particularly for the table top 50. The table top 50 fastens to a top surface of the side, front and rear support walls 12, 14, 16, 18, 20, and 22. Rails 104 and 106 are received by rail brackets 24, 26, 28, and 30 to support the rails 104 and 106. The rail brackets (24, 26, 28, and 30) support the rails 102 and 104, and the rails 104 and 106 support the magnetic slide system 100. Also, while rail brackets 24, 26, 28, and 30 are depicted in
While two rails 104 and 106 are depicted in
The magnetic slide system 100 and the rails 104 and 106, define three (3) magnetic support interfaces 200, as shown in
Since the longitudinal faces of the first and second magnetic strips 204 and 206 that face each other have the same pole, these strips generate a magnetic field that tends to push the first and second magnetic strips 204 and 206 apart from each other. Therefore, the interface between the first and second magnetic strips 204 and 206, and the weight of the undercarriage 102 and other components coupled thereto, generates a net repulsion force which results in an air gap, shown in
Similarly, since the longitudinal faces of the third and fourth magnetic strips 208 and 210 that face each other have the same pole, these strips oppose each other and thereby generate a magnetic field that tends to push the third and fourth magnetic strips 208 and 210 apart from each other to generate an air gap CC. The repulsion force between the third and fourth magnetic strips 208 and 210 is in an opposite direction than the repulsion force of the first and second magnetic strips 204 and 206. Therefore, the weight of the undercarriage and the components coupled thereto, and the repulsion force between the third and fourth magnetic strips 208 and 210 cooperate to oppose the repulsion force generate by the interface between the first and second magnetic strips 204 and 206. Also, upward forces generated during a cutting operations of the saw mechanism 36 on the workpiece W, cooperate with the repulsion force generated by the interface between the first and second magnetic strips 204 and 206 to oppose the repulsion force generated by the magnetic interaction between the third and fourth magnetic strips 208 and 210. These repulsion forces, the weight of the undercarriage and components coupled thereto as well as the upward forces generated during the cutting operation cause the top and bottom magnetic support members 114 and 115 to levitate above the rail 104 to provide a vertically stable sliding system.
Although the above described forces are in a vertical direction, because of the geometric configuration of the top and bottom magnetic support members 114 and 115 and the rail 104, the repulsion force generated between the first and second magnetic strips 204 and 206, and between the third and fourth magnetic strips 208 and 210 have components that lie in both a horizontal direction, X axis shown in
An operator of the sliding table saw 10 places the workpiece W on the table top 50 which is supported by the side, front and rear support walls 12, 14, 16, 18, 20, and 22. The operator raises the saw blade 40 through the slot 52 of the table top 50 in a manner known in the art, e.g., by using a cam and rollers, to an appropriate height for cutting the workpiece W. Similarly, the operator tilts the saw blade 40 to an appropriate bevel angle, in a manner known in the art. The operator grips the handle 34 and slides the undercarriage 102 of the magnetic slide system 100 toward and away from the workpiece W. The magnetic interactions between the magnetic strips 204, 206, 208, and 210 result in a smooth sliding action of the undercarriage 102 and the saw mechanism 36 mounted thereto.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same should be considered as illustrative and not restrictive in character. It is understood that only the preferred embodiments have been presented and that all changes, modifications and further applications that come within the spirit of the invention are desired to be protected.