(NOT APPLICABLE)
The invention relates to a sliding window assembly and, more particularly, to a sliding window assembly with a pivot handle that facilitates opening, sliding and flush closing.
Sliding window assemblies are used in land and marine environments to provide for easily opening and closing a section of a window. Sliding windows are used for rear cab windows, side cab windows, bus driver windows, etc. In a flush slider assembly, with the window in a closed position, the window panes (or the window and frame) are substantially flush defining a planar surface. The planar/flush closed window provides a much cleaner and desirable appearance.
In a typical flush slider assembly, the window panel is usually cooperable with a jogged track or pathway to be displaced across and forward into the flush configuration. The configurations using a jogged track, however, are typically expensive to manufacture and are susceptible to design defects that make it more difficult to close the window.
The devices described above, however, have some limitations or drawbacks. In particular, the known devices are constrained to use mobile elements of reduced thickness, typically between 2 and 6 millimeters, because greater thicknesses would lead to excessive encumbrance of the mobile element during translation in the curvilinear section, such as to prevent its complete entry inside the frame opening.
The sliding window assembly of the described embodiments can be used in a multitude of land and marine environments. When closed, the sliding portion of the glass may be flush with the frame or with an adjacent fixed portion of the window, giving the entire system a much cleaner appearance. The displacement and articulation of the glass also provides a tight seal between the frame and the slide portion of the glass. As a result, there can be a reduction in noise external to the vehicle, and water infiltration can be prevented. Additionally, the described embodiments can accommodate mobile elements of greater thicknesses, typically between 2 and 18 millimeters or more.
In an exemplary embodiment, a sliding window assembly includes a frame including a track, and a sliding window portion disposed in the frame and displaceable in the track between a closed position and an open position. The sliding window portion includes a leading end and a trailing end with a handle pivotally coupled with the leading end that is pivotable between a lock position and a slide position. A first guide pin is disposed on the trailing end and engaging the frame, and a driving pin coupled with the handle and engaging the track defines a pivot axis for the handle. A locking assembly is coupled with the handle and includes a second guide pin displaceable in a forward transition region. The second guide pin is spaced from the driving pin, and the second guide pin is selectively engageable with the track via the forward transition region when the handle is pivoted from the lock position to the slide position.
The sliding window portion may also include a rearward transition region integral with the frame adjacent the trailing end of the sliding window portion, where the first guide pin engages the rearward transition region when the sliding window portion is in the closed position. The rearward transition region may include a transition track that extends from an inline position retracted from the track to a track-aligned position in alignment with the track. In this context, the transition track may be substantially S-shaped. The sliding window portion may also include a trailing end washer bearing positioned between the trailing end and the transition track, where the first guide pin extends through the trailing end washer bearing.
The forward transition region may include a channel with a first leg substantially perpendicular to the track and a second leg aligned with the track. With the sliding window portion in the closed position and the handle in the lock position, the driving pin and the second guide pin may be disposed in the first leg, and when the handle is pivoted to the slide position, the driving pin and the second guide pin may be displaced into the second leg in alignment with the track.
With the sliding window portion in the closed position and the handle in the lock position, the driving pin and the second guide pin may be aligned and substantially perpendicular to the track. When the handle is pivoted to the slide position, the driving pin and the second guide pin may be aligned and in alignment with the track.
The sliding window portion may also include a leading end washer bearing positioned between the handle and the forward transition region, where the driving pin and the second guide pin extend through the leading end washer bearing.
In another exemplary embodiment, a sliding window assembly includes a frame with a track, and a sliding window portion disposed in the frame and displaceable in the track between a closed position and an open position. The sliding window portion includes a leading end and a trailing end and is provided with a handle pivotally coupled with the leading end that is pivotable between a lock position and a slide position. A driving pin coupled with the handle and engaging the track defines a pivot axis for the handle. A guide pin spaced from the driving pin is selectively engageable with the track when the handle is pivoted from the lock position to the slide position.
These and other aspects and advantages will be described in detail with reference to the accompanying drawings, in which:
The sliding window portion 12 is displaceable in the track 16 between the closed position (
The second guide pin 32 is selectively engageable with the track 16 via the forward transition region 34 when the handle 22 is pivoted on the driving pin 28 from the locked position to the slide position.
With reference to
The locking assembly 30 may further include a leading end washer bearing 38 positioned between the handle 22 and the forward transition region 34. The driving pin 28 and the second guide pin 32 extend through the leading end washer bearing 38. The leading end washer bearing 38 is dimensioned larger than a width of the track 16 and as such rides on top of the track 16 when the sliding window portion 12 is displaced to its open position. The larger dimension of the end washer bearing 38 prevents it from falling into the track 16, which prevents binding of the sliding window portion 12. The washer bearing has a shoulder that applies leverage to the interior of the track 16 during rotation of the handle 22 at a transition state between locked and sliding positions. The leading end washer bearing 38 may be made of a material that facilitates sliding between the leading end washer bearing 38 and the track 16. For example, the leading end washer bearing 38 may be made of semi-crystalline thermoplastics like Acetals, nylons or polypropylenes.
The driving pin 28 may form part of a handle connector 40 or the like that is secured directly to the handle 22. Additionally, the second guide pin 32 may form part of a guide pin housing 42 cooperable with the connector 40. In other embodiments, the driving pin 28 and second guide pin 32 may be integrated with the sliding window portion 12 more directly or by other suitable methods.
The rearward transition region 26 may be formed or molded monolithically with the track 16.
The first guide pin 24 may form part of a pin housing 46 that is securable in a corresponding channel 48 adjacent the trailing end 20. In other embodiments, the first guide pin 24 may be integrated with the sliding window portion 12 more directly or by other suitable methods. A trailing end washer bearing 50 may be positioned between the trailing end 20 and the transition track 44, where the first guide pin 24 extends through the trailing end washer bearing 50. The trailing end washer bearing 50 is configured to glide on the rearward transition region 26 and on top of the track 16. Like the leading end washer bearing 38, the trailing end washer bearing 50 is dimensioned larger than the track 16 to maintain the level of the sliding window portion 12 during displacement between the closed and open positions, and also prevents trailing end washer bearing 50 from falling into the track 16 and creating binding of the sliding window portion 12.
The forward transition region 34 also includes a rear channel 36c in alignment with the second leg 36b of the L-shaped channel 36. The rear channel 36c provides a continuous path for the first guide pin 24 to pass over/through the forward transition region 34 when the sliding window portion 12 is displaced to its open position. In the closed position, the driving pin 28 applies pressure in the forward transition region 34 on a recessed surface 36d between the second leg 36b and the rear channel 36c (see also
As noted, with reference to
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 62/874,091, filed Jul. 15, 2019, the entire content of which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4691474 | Rokicki | Sep 1987 | A |
4726145 | Rokicki | Feb 1988 | A |
5799444 | Freimark et al. | Sep 1998 | A |
7464501 | Arimoto et al. | Dec 2008 | B2 |
7568312 | Dufour et al. | Aug 2009 | B2 |
8469437 | Zanetti et al. | Jun 2013 | B2 |
8578654 | Rao et al. | Nov 2013 | B2 |
9487065 | Bender | Nov 2016 | B2 |
9931911 | Hick | Apr 2018 | B2 |
20060032140 | Arimoto | Feb 2006 | A1 |
20060260205 | Dufour | Nov 2006 | A1 |
20080100093 | Seiple | May 2008 | A1 |
20090038228 | Lee | Feb 2009 | A1 |
20100107505 | Schreiner et al. | May 2010 | A1 |
20110173893 | Zanetti | Jul 2011 | A1 |
20120167469 | Maltaverne et al. | Jul 2012 | A1 |
20160114655 | Hick | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
1 719 651 | Nov 2006 | EP |
2 453 090 | May 2012 | EP |
2 833 209 | Jun 2003 | FR |
2 298 445 | Sep 1996 | GB |
2 556 360 | May 2018 | GB |
Entry |
---|
International Search Report and Written Opinion dated Oct. 26, 2020 issued in PCT International Patent Application No. PCT/IB2020/056664, 13 pp. |
Number | Date | Country | |
---|---|---|---|
20210017792 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
62874091 | Jul 2019 | US |