Slim compact lens optical image stabilization

Information

  • Patent Grant
  • 12328505
  • Patent Number
    12,328,505
  • Date Filed
    Tuesday, March 14, 2023
    2 years ago
  • Date Issued
    Tuesday, June 10, 2025
    a day ago
Abstract
Optical image stabilization (OIS) mechanisms, comprising a moving frame including a first groove, a static frame including a second groove, an OIS actuator, and first, second and third bearings that define an OIS plane, wherein the first ball bearing is located in a rail formed by the first groove and the second groove, wherein the ball-bearings are positioned between the moving frame and the static frame and allow a first movement and a second movement of the moving frame relative to the static frame, wherein the first movement is a rotational movement performed around a rotation axis that coincides with the position of the first ball bearing and is perpendicular to the OIS plane, and wherein the second movement is a linear movement along the rail.
Description
FIELD

The present disclosure relates in general to digital cameras, and in particular to digital cameras with optical image stabilization (OIS).


BACKGROUND

Camera modules of modern mobile devices such as smartphones and tablet computers typically need to have a low thickness or height, i.e. be “slim” in order to fit into the casing of the mobile devices.


For improving a camera's image quality, modern camera modules usually include OIS. OIS cancels (or reduces) an undesired motion of an image at the image sensor plane during the image sensor's exposure. Without cancellation of the OIS, the undesired motion would cause a blurring of the image. Such undesired motion is for example caused by a user who unintentionally moves or shakes a mobile device during capturing of an image (“hand motion” or “hand-shake”).


In most current smartphones, OIS corrects for hand-shake around two of the three rotation axes of the device. Explicitly, OIS corrects for hand-shake around the two rotation axes which are perpendicular to a normal of an image sensor included in the camera, or in other words, perpendicular to lens optical axis of a lens included in the camera. For achieving this, movements of the lens (relative to the image sensor), of the image sensor (relative to the lens), or of the entire camera (relative to the mobile device), are performed linearly in two directions that are perpendicular to the camera optical axis. These movements are performed so that they counteract (or mitigate) a hand-shake, such that an image on the image sensor plane does not (or does only slightly) move with respect to the image sensor, i.e. the image is stabilized. If the lens is moved relative to the image sensor (and relative to the smartphone including the camera), one refers to “lens-shift OIS”.


An OIS module (or “OIS assembly”) includes all the mechanical components that are required for performing this movement. An OIS module for performing lens-shift OIS is referred to as lens-shift OIS module.



FIG. 1A shows in a top view a schematic of lens-shift OIS module for moving a lens 102 as known in the art. An image sensor (not shown) may be oriented parallel to the shown x-y plane. An optical axis (not shown) of lens 102 is oriented perpendicular to the shown x-y plane. For mitigating a user's hand-shake (i.e. for OIS), lens 102 is moved from an initial position characterized by lens 102's initial center position (“XI”) 104 to a final center position (“XF”) 106. For performing this movement of lens 102, lens 102 is linearly moved in the x-direction as indicated by arrow 112, and, in addition, lens 102 is linearly moved in the y-direction as indicated by arrow 114. The two movements may be performed simultaneously.



FIG. 1B shows in a side view and schematically a camera 150 that includes a lens 152 having a lens optical axis 154, an image sensor 156 and a lens-shift OIS module 160 as known in the art. Lens-shift OIS module 160 has an OIS module height HM and an OIS module width WM and is operational to perform lens-shift OIS as described in FIG. 1A. Lens-shift OIS module 160 includes a first OIS frame 162 having a first OIS frame height (“H1”) and a first OIS frame width (“W1”), a second OIS frame 164 having a second OIS frame height (“H2”) and a second OIS frame width (“W2”) and a third OIS frame 166 having a third OIS frame height (“H3”) and a third OIS frame width (“W3”). Here, HM=H1+H2+H3 and WM=W3. It is noted that a larger number of OIS frames results in a larger module height HM.


In the x-y plane (i.e. radially with respect to optical axis 154), lens 152 does not move relative to first OIS frame 162. Thus, any movement in the x-y plane which is imposed on first OIS frame 162, in particular any movement in the x-y plane for performing OIS, causes the lens to follow the movement of first OIS frame 162. In the z-direction (i.e. axially with respect to optical axis 154), the lens may move with respect to first OIS frame 162 and image sensor 156 for focusing. Third OIS frame 166 is static, meaning it does not move relative to image sensor 156. Image sensor 156 does not move relative to a mobile device including camera 150. H1, H2 and H3 may be in the range of 0.25-2.5 mm. HM may be in the range 0.5-10 mm. W1, W2 and W3 may be in the range 5-50 mm. In particular, Wi+1=Wi+0.5-5 mm (where i=1, 2, 3, etc.), i.e. given a same W1, a larger number of OIS frames results in a larger module width WM.


Lens-shift OIS in a first direction perpendicular to optical axis 154 is performed by (1) linearly moving second OIS frame 164 with respect to third OIS frame 166 in a first direction, while (2) not moving first OIS frame 162 relative to second OIS frame 164. In other words, for lens-shift OIS in the first direction, first OIS frame 162 “rides” on (or is carried by) second OIS frame 164. Since lens 152 does not move relative to first OIS frame 162 in the x-y plane, this leads to a linear movement of lens 152 in the first direction. Lens-shift OIS in a second direction perpendicular to both the first direction and to the optical axis 154 is performed by (1) linearly moving first OIS frame 162 with respect to second OIS frame 164 in the second direction while (2) not moving second OIS frame 164 relative to third OIS frame 166. This leads to a linear movement of lens 152 in the second direction.


In some examples, e.g. such as shown in co-owned international patent application PCT/IB2022/052194, which is incorporated herein by reference in its entirety, actuation for lens-shift OIS in a first direction is transmitted by a “ball-bearing” mechanism as known in the art. For transmitting this actuation, one or more balls of the ball-bearings are enclosed in and move in a linear rail formed in an interspace by two grooves, each groove being included in a different component (or part). An example of a ball-bearing mechanism is pin-groove mechanism 310 (FIG. 3B).


OIS actuation may for example be provided by a voice coil motor (VCM). For transmitting actuation for lens-shift OIS in the first direction, second OIS frame 164 includes one or more grooves that are oriented parallel to the first direction, and third OIS frame 166 includes one or more grooves that face the one or more grooves included in second OIS frame 164. One or more moving balls are enclosed (or confined) in one or more rails formed by the grooves included in second OIS frame 164 and in third OIS frame 166. Transmission of an actuation for lens-shift OIS in the second direction may be performed in a same manner.


The motion required for OIS in the x-y plane is fully defined within a certain OIS range, i.e. within the OIS range lens 152 can be moved from any XI to any XF, given that XI and XF are included in the OIS range. We note that lens-shift OIS in the first linear direction and lens-shift OIS in the second linear direction cannot be transmitted using two OIS frames only. Therefore, three OIS frames are used, which add additional height and width (i.e. cause a height and width “penalty”).


A slim and compact lens-shift OIS module, i.e. an OIS lens-shift module having a low HM and a low WM is beneficial for achieving a slim and compact camera module. Therefore, there is need and it would be beneficial to have a slim and compact OIS module.


SUMMARY

In various exemplary embodiments, there are provided OIS mechanisms comprising a moving frame including a first groove; a static frame including a second groove; an OIS actuator; and first, second and third ball-bearings defining an OIS plane and positioned between the moving frame and the static frame to allow a first movement and a second movement of the moving frame relative to the static frame, wherein the first ball bearing is located in a rail formed by the first groove and the second groove, wherein the first movement is a rotational movement of the moving frame around a rotation axis that coincides with the position of the first ball bearing and is perpendicular to the OIS plane, and wherein the second movement is a linear movement of the moving frame along the rail.


In some examples, the moving frame includes a first pool and a third pool, wherein the static frame includes a second pool and a fourth pool, wherein the second ball bearing is located in a volume formed by the first pool the second pool, and wherein the third ball bearing is located in a volume formed by the third pool and the fourth pool.


In some examples, the OIS mechanism is operational to provide OIS along two OIS directions.


In some examples, the OIS actuator is a regular voice coil motor (VCM). In some examples, the regular VCM includes at least one magnet fixedly coupled to the static frame. In some examples, the regular VCM includes at least one magnet fixedly coupled to the moving frame.


In some examples, the OIS actuator is a push-pull VCM. In some examples, the push-pull VCM includes at least one magnet fixedly coupled to the static frame. In some examples, the push-pull VCM includes at least one magnet fixedly coupled to the moving frame.


In some examples, the OIS mechanism is operational to provide OIS in an OIS range of less than 2 mm in the direction of the first movement and less than 2 mm in the direction of the second movement.


In some examples, the moving frame has a moving frame height HMF and the static frame has a static frame height HSF, wherein HMF is in the range of 0.25 mm to 1.5 mm and wherein HSF is in the range of 0.25 mm to 1.5 mm.


In some examples, the moving frame has a moving frame width WMF and the static frame has a static frame width WSF, wherein WMF is in the range of 10 mm to 40 mm and wherein WSF is in the range of 10 mm to 40 mm.


In some examples, the OIS mechanism is included in an OIS module, and wherein the OIS module has an OIS module height HM in the range of 0.5 mm to 5 mm.


In some examples, the OIS mechanism is included in an OIS module, and wherein the OIS module has an OIS module width WM in the range of 10 mm to 40 mm.


In some examples, an OIS mechanism is included in a digital camera that comprises a lens, and the lens moves together with the moving frame for the OIS. In some examples, the lens moves relative to the moving frame for focusing. In some examples, the digital camera includes an image sensor and the position of the first ball bearing is located at a center position of the image sensor. In some examples, the digital camera is a pop-out camera. In some examples, the digital camera is included in a smartphone.


In various exemplary embodiments, there is provided, in a mobile device comprising a digital camera that includes a lens and an image sensor, a method comprising: providing in the digital camera a lens-shift OIS module that includes only a first, moving frame, and a second, static frame; and actuating the moving frame to move the lens relative to the image sensor in a first, rotational movement, and in a second, linear movement to provide OIS, wherein the lens has an effective focal length (EFL) in the range of 2.5 mm to 50 mm.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A shows in a top view a schematic of a known art lens-shift OIS (optical image stabilization) moving a lens;



FIG. 1B shows in a side view and schematically a camera that includes a lens having a, an image sensor and a lens-shift OIS module as known in the art;



FIG. 2A shows a schematic of a lens-shift OIS moving a lens as disclosed herein in a top view;



FIG. 2B shows schematically a camera including a lens, an image sensor and a lens-shift OIS module as disclosed herein in a side view;



FIG. 3A shows parts of a camera module that includes a lens-shift OIS module as disclosed herein in a perspective view;



FIG. 3B shows parts of the camera module of FIG. 3A in another perspective view;



FIG. 3C shows parts of the camera module of FIGS. 3A-B in a side view;



FIG. 4A shows parts of the camera module of FIGS. 3A-B in another side view;



FIG. 4B shows parts of another camera module disclosed herein in the same side view as shown in FIG. 4A;



FIG. 5A shows schematically a camera including a lens and another lens-shift OIS module as disclosed herein in a top view;



FIG. 5B shows schematically a camera including a lens and a yet another lens-shift OIS module as disclosed herein in a top view.





DETAILED DESCRIPTION


FIG. 2A shows a schematic of a lens-shift OIS moving a lens 202 as disclosed herein in a top view. An image sensor (not shown) may be oriented parallel to the shown x-y plane. An optical axis (not shown) of lens 202 is oriented perpendicular to the shown x-y plane. For OIS, lens 202 is moved from an initial position characterized by lens 202's initial center position (“XI”) 204 to its final center position (“XF”) 206. For performing that movement of lens 202, lens 202 may be rotationally moved around an axis (FIGS. 3A-B) substantially parallel to the optical axis of lens 202 and as indicated by an arc 212, and, in addition, lens 202 may be linearly moved in the y-direction as indicated by an arrow 214.



FIG. 2B shows schematically an embodiment of a camera numbered 250 that includes a lens 252 having a lens optical axis 254, an image sensor 256 and a lens-shift OIS module 260 as disclosed herein in a side view. Lens-shift OIS module 260 has an OIS module height HM, an OIS module width WM and is operational to perform lens-shift OIS as described in FIG. 2A. Lens-shift OIS module 260 includes a first OIS frame 262 having a first OIS frame height H1 and a first OIS frame width W1 and a second OIS frame 264 having a second OIS frame height H2 and a second OIS frame width W2. Here, HM=H1+H2 and WM=W2. In comparison with known OIS module 160, in OIS module 260 there is no need for a third OIS frame, and therefore an additional height penalty and width penalty associated with a third OIS frame is avoided. This allows a slim and compact OIS module, i.e. an OIS module having a low HM and a small WM, which is beneficial for use in a camera included in a mobile device such as a smartphone. To clarify, all embodiments disclosed herein are beneficial for use in a camera included in a mobile device such as a smartphone. The camera may include a lens having a lens optical axis, an effective focal length (“EFL”) in the range of 2.5 mm-50 mm, and preferably in the range of 5 mm-20 mm. The camera may as well include an image sensor having an image sensor diagonal (“SD”) in the range of in the range of 5 mm-30 mm, and preferably in the range of 7.5 mm-25 mm. In some examples, such a camera may be a sub-camera which, together with other sub-cameras forms a multi-camera (such as a dual-camera) of a mobile device, as known in the art.


In the x-y plane, lens 252 does not move relative to first OIS frame 262. Thus, any movement in the x-y plane imposed on first OIS frame 262, in particular any movement in the x-y plane for performing OIS, causes lens 252 to follow the movement of first OIS frame 262. Therefore, first OIS frame 262 is also referred to as “moving frame”. In the z-direction, lens 252 may move with respect to first OIS frame 262 and image sensor 256 for focusing. Second OIS frame 264 is static and does not move relative to image sensor 256. Therefore, second OIS frame 264 is also referred to as “static frame”. Image sensor 256 does not move relative to a mobile device including camera 250. This is valid for all embodiments disclosed herein. In the following and when referring to an OIS component that does not move (or is static) relative to a mobile device including an OIS mechanism disclosed herein, we state that “the OIS component does not move with respect to the image sensor”. WM is determined by W2, i.e. WM=W2. In particular, Wi+1=Wi+0.5-5 mm, i.e. given a same W1, a smaller number of OIS frames results in a smaller module width WM, which is beneficial for use in a camera included in a mobile device such as a smartphone. In some embodiments, lens-shift OIS modules disclosed herein may be beneficial for use in a “pop-out camera”, such as e.g. disclosed in the international patent application PCT/IB2020/058697, which is incorporated herein by reference in its entirety.


Lens-shift OIS in the x-y plane, i.e. perpendicular to the optical axis 254, is performed by (1) rotationally moving first OIS frame 262 with respect to second OIS frame 264 in a rotation direction as indicated by arc 212 while (2) in addition linearly moving first OIS frame 262 relative to second OIS frame 264 as indicated by arrow 214. Since lens 252 does not move relative to first OIS frame 262 in the x-y plane, this leads to a superposition of a rotational and a linear movement of lens 252 in the x-y plane. It is noted that these two movements can be performed sequentially or simultaneously. An example for actuation and transmission of this actuation for lens-shift OIS is described in FIGS. 3A-C, FIGS. 4A-B and FIGS. 5A-B.


The motion required for OIS within a certain OIS range in the x-y plane is fully defined, i.e. within the OIS range lens 252 can be moved from any XI to any XF, given that XI and XF are included in the OIS range. We note that lens-shift OIS in the entire OIS range in the x-y plane can be performed using two OIS frames. Therefore, a height and width penalty associated with a third OIS frames is prevented. Typically, an OIS range covers an area of less than 10 mm×10 mm. Often, it may cover an area of less than 2 mm×2 mm or even less than 1 mm×1 mm.



FIG. 3A shows parts of an embodiment of a camera module numbered 350 which includes a lens-shift OIS module 360 as disclosed herein in a perspective view. An image sensor (not visible) may be oriented parallel to the shown x-y plane. Camera module 350 includes a lens carrier 351 that includes a lens (not shown) having a lens optical axis 354. Lens optical axis 354 is oriented perpendicular to the x-y plane, i.e. parallel to the z-axis. In the x-y plane, the lens does not move relative to lens carrier 351, so that an x-y movement imposed on lens carrier 351 causes the lens to follow the movement of lens carrier 351. In particular, any movement imposed on lens carrier 351 for OIS is performed also by the lens.


Lens-shift OIS module 360 has an OIS module height HM, an OIS module width WM and an OIS module length LM. Lens-shift OIS module 360 includes a first OIS frame 362 having a first OIS frame height (H1, see FIG. 3C) and a first OIS frame width (W1, see FIG. 3C) and a second OIS frame 364 having a second OIS frame height (H2, see FIG. 3C) and a second OIS frame width (W2, see FIG. 3C). H1 and H2 may be in the range H1, H2,=0.1-5 mm, preferably H1 and H2 may be in the range H1, H2=0.25-1.5 mm. HM is determined by H1 and H2, i.e. HM=H1+H2. HM may be in the range HM=0.25-10 mm, preferably HM may be in the range HM=0.5-5 mm. WM and LM are to a large extent defined by a size, i.e. a width and a height (such as HS), of image sensor 358. LM=WM±50%. W1 and W2 may be in the range W1, W2=5-75 mm, preferably W1 and W2 may be in the range W1, W2=10-40 mm. WM is determined by W2, i.e. WM=W2. In particular, W2=W1+0.5-5 mm, i.e. given a same W1, a smaller number of OIS frames results in a smaller module width WM, which is beneficial for use in a camera included in a mobile device such as a smartphone. External dimensions of OIS module 360 in the x-y plane may be such that OIS module 360 may fit in a circle (i.e. may be encircled by a circle) having a diameter between 5 and 75 mm. Lens-shift OIS module 360 includes a linear pin-groove mechanism 310, a first pin-pool mechanism 320, a second pin-pool mechanism 330, a first OIS VCM and a second OIS VCM as described below. The first OIS VCM and the second OIS VCM act as OIS actuator, i.e. the role (or function) of the first OIS VCM and the second OIS VCM in lens-shift OIS module 360 is to actuate an OIS motion in two directions. For two-directional (or two-dimensional) OIS motion, the first OIS VCM actuates an OIS motion in a first direction and the second OIS VCM actuates an OIS motion in a second direction. The role of linear pin-groove mechanism 310, first pin-pool mechanism 320 and second pin-pool mechanism 330 is to transmit and direct the OIS motion.


Lens carrier 351 is fixedly coupled to first OIS frame 362. First OIS frame 362 is a moving frame. Second OIS frame 364 is a static frame and does not move relative to image sensor 358 (see FIG. 3B). For OIS, first OIS frame 362 is rotationally moved relative to second OIS frame 364 as indicated by arc 372. The rotational movement is around a rotation axis 356 which is substantially parallel to the lens optical axis 354. A distance between lens optical axis 354 and rotation axis 356 is marked “DL-R”. DL-R may be in the range of DL-R=½ HS+0 mm-10 mm, wherein HS is a height of image sensor 358. There is a trade-off for a size of DL-R: A large DL-R is beneficial for performing a rotational movement having a large radius of curvature, because a large radius of curvature more resembles a linear movement and which is beneficial for simple actuation control. On the other hand, a small DL-R is beneficial for a compact lens-shift OIS module, i.e. a lens-shift OIS module having a small WM. In addition, first OIS frame 362 is linearly moved in the x-y plane as indicated by arrow 374.



FIG. 3B shows parts of camera module 350 of FIG. 3A in another perspective view. FIG. 3C shows parts of camera module 350 of FIGS. 3A-B in a side view. Camera module 350 includes an image sensor 358, a linear pin-groove mechanism 310 (“first ball-bearing”), a first pin-pool mechanism 320 (“second ball-bearing”) and a second pin-pool mechanism 330 (“third ball-bearing”) for performing the rotational OIS motion and the linear OIS motion described above and as indicated by arc 372 and by arrow 374 respectively. Included in a mobile device, lens-shift OIS module 360 provides OIS along two directions, i.e. it corrects for hand-shake around two rotation axes. Specifically, lens-shift OIS module 360 corrects for hand-shake around the two rotation axes which are perpendicular to a normal of image sensor 358, or in other words, perpendicular to lens optical axis 354. This is valid for all lens-shift OIS modules disclosed herein. The OIS is provided by moving two frames relative to each other, wherein the relative movement is a rotational movement and a linear movement.


Linear pin-groove mechanism 310 includes a first groove 312 that is included in first OIS frame 362, a second groove 314 that is included in second OIS frame 364, and a ball of a ball-bearing (or “bearing ball” or simply “ball”) 316. First OIS VCM includes a coil 346, a magnet 348 and a position sensor 349 (e.g. a magnetic flux measuring device (“MFMD”) such as a Hall sensor) and actuates the linear motion of first OIS frame 362 relative to second OIS frame 364. Magnet 348 is fixedly coupled to first OIS frame 362. Coil 346 and position sensor 349 are fixedly coupled to second OIS frame 364. The linear motion is transmitted via linear pin-groove mechanism 310, i.e. by ball 316 which is enclosed in a rail formed by first groove 312 and second groove 314. First pin-pool mechanism 320 includes a first pool 322 (or “recess” or “notch”) that is included in first OIS frame 362, a second pool 324 that is included in second OIS frame 364 and a ball 326. Second pin-pool mechanism 330 includes a first pool 332 that is included in first OIS frame 332, a second pool 334 that is included in second OIS frame 364, and a ball 336. Second OIS VCM includes a coil 342, a magnet 344 and a position sensor 345 (e.g. a Hall sensor) and actuates the rotational motion of first OIS frame 362 around rotation axis 356 relative to second OIS frame 364. Magnet 344 is fixedly coupled to first OIS frame 362. Coil 342 and position sensor 345 are fixedly coupled to second OIS frame 364. The rotational motion is transmitted via first pin-pool mechanism 320 and second pin-pool mechanism 330, i.e. ball 326 and ball 336 which are enclosed in a volume (or space) formed by first pool 322 and second pool 324 and first pool 332 and second pool 334 respectively. Rotation axis 356 coincides with the position of ball 316, i.e. ball 316 forms a pivot point for rotation.


In lens-shift OIS module 360 and with respect to the y-axis, the pivot point is located at a center position of image sensor 358. The center position defines a symmetry axis of image sensor 358. In other embodiments and with respect to the y-axis, linear pin-groove mechanism 310 (and the pivot point) may be located at another location. That is, the pivot point may not be located at a symmetry axis of image sensor 358. In other embodiments, springs as known in the art instead of the ball-bearings may transmit and direct the OIS motion.



FIG. 4A shows parts of camera module 350 of FIGS. 3A-C in another side view. All components and dimensions are identical to the parts of a camera module 350 shown in FIG. 3C. In particular, the parts of a camera module 350 include lens-shift OIS module 360 as described above. First OIS VCM including coil 346, magnet 348 and position sensor 349 are visible. A VCM actuator for focusing a lens (“focus actuator”) included in lens carrier 351 may include a coil, a position sensor and a magnet. The coil and the position sensor of the focus actuator may be fixedly coupled to lens carrier 351, a position (or location) of the coil and the position sensor is marked 402. In particular, this means that there is an electrical connection between a mobile device including the parts of a camera module 350 and lens carrier 351. The electrical connection is operational to supply power and control signals (and receive position signals) to the coil and to the position sensor of the focus actuator.



FIG. 4B shows parts of another embodiment of a camera module numbered 400 disclosed herein in the same side view as shown in FIG. 4A. Camera module 400 may be identical with camera module 350 in terms of functionality and dimensions. All components included in the parts of camera module 400 as well as the dimensions (W1, WM, W2 etc.) of the parts of camera module 400 respectively are identical to the components included in the parts of camera module 350 as well as the dimensions of the parts of camera module 350 respectively. However, the parts of camera module 400 include another lens-shift OIS module 410. Lens-shift OIS module 410 differs from lens-shift OIS module 360 (see FIG. 4A) by the location (or position) of components included in the respective OIS actuator. The OIS actuator in lens-shift OIS module 410 includes a third VCM and a fourth VCM. All components of the first and second OIS VCMs in lens-shift OIS module 360 are also included in the third and fourth OIS VCMs of lens-shift OIS module 410. However, the inclusion of the components is inverse: all components of the first OIS VCM and the second OIS VCM respectively included in second OIS frame 364 in the third OIS VCM and the fourth OIS VCM respectively, are here included in first OIS frame 362 and vice versa. Explicitly, this means that magnet 348 is fixedly coupled to second OIS frame 364, and coil 346 and position sensor 349 are fixedly coupled to first OIS frame 362, as shown. Magnet 344 is fixedly coupled to second OIS frame 364, and coil 342 and position sensor 345 are fixedly coupled to first OIS frame 362 (not shown). In camera module 350, magnet 348 is farther from image sensor 358 than position sensor 349. In camera module 400, magnet 348 is closer to image sensor 358 than position sensor 349.


In some examples, an electrical connection to coil 342 and position sensor 345 as well as to coil 346 and position sensor 349 may be provided by the very same electrical connection between a mobile device including camera module 400 and lens carrier 351 (which is fixedly coupled to second OIS frame 364) as described above.


For controlled motion, a VCM performs position sensing as well as actuation. Some advantages of lens-shift OIS module 410 over lens-shift OIS module 360 may include (1) a simpler position sensing, (2) a simpler actuation control, and/or (3) a faster actuation, as detailed below. It is noted that magnet 344 and magnet 348 respectively are used both for OIS actuation (due to interaction with coil 342 and coil 346 respectively) and for position sensing (due to interaction with position sensor 345 and position sensor 349 respectively), whereas position sensor 345 and position sensor 349 are used for position sensing only.


(1) Simpler Position Sensing

A symmetry axis for position sensing is defined by a relative orientation between magnet 344 and image sensor 358 and between magnet 348 and image sensor 358 respectively. When performing OIS with lens-shift OIS module 360, both magnet 344 and magnet 348 move rotationally with respect to image sensor 358. This means that a symmetry axis for position sensing rotates with respect to image sensor 358. When performing OIS with lens-shift OIS module 410, both magnet 344 and magnet 348 do not move with respect to image sensor 358. This means that a symmetry axis for position sensing does not rotate with respect to image sensor 358, which is beneficial for sensing OIS movements.


(2) Simpler Actuation Control

A symmetry axis of magnet 344 and magnet 348 respectively determines a direction of the respective VCM's actuation force. When performing OIS with lens-shift OIS module 410, both magnet 344 and magnet 348 do not move with respect to image sensor 358. This means that a direction of the VCM's actuation force does not rotate with respect to image sensor 358, which is beneficial for controlling OIS actuation.


(3) Faster Actuation

In lens-shift OIS module 410, magnet 344 and magnet 348 respectively do not move with respect to image sensor 358, i.e. magnet 344 and magnet 348 respectively are not actuated for performing OIS. In other words, magnet 344 and magnet 348 are not included in the “moving mass” of OIS module 410. In general, a magnet makes up a relatively large share (or portion) of a weight of a VCM. This means that compared to lens-shift OIS module 360, lens-shift OIS module 410, has a relatively small moving mass, what is beneficial in terms of fast (or low-power) actuation.



FIG. 5A shows schematically an embodiment of another camera module numbered 550 that includes a lens 552 having a lens optical axis 554 and a lens-shift OIS module 560 as disclosed herein. Lens-shift OIS module 560 includes a first OIS frame 562 having a first OIS frame width W1 and a second OIS frame 564 having a second OIS frame width W2. OIS module width WM is determined by second OIS frame 564, i.e. WM=W2. All details of the movement of first OIS frame 562 and second OIS frame 564 as well as lens 552 are identical as described above for OIS module 260, OIS module 360, etc.


Camera module 550 may be identical with camera module 350 and camera module 400 in terms of functionality and dimensions. Lens-shift OIS module 560 may be identical with lens-shift OIS module 360 or it may be identical with lens-shift OIS module 410 in terms of OIS functionality and dimensions, except that lens-shift OIS module 560 includes a different OIS actuator. The OIS actuators included in lens-shift OIS module 360 and in lens-shift OIS module 410 are characterized by the fact that during an operation of a VCM included in the OIS actuator, a distance between a coil (or a position sensor such as a magnetic flux measuring device (“MFMD”) included in the VCM and a magnet included in the VCM does not change. In other words, a first plane oriented parallel to the coil and a second plane oriented parallel to the magnet's movement are parallel to each other and, in addition, a distance between the first plane and the second plane does not change. In the following, we refer to these VCMs as “regular VCM”. The OIS actuators included in lens-shift OIS module 360 and in lens-shift OIS module 410 are regular VCMs. In contrast, lens-shift OIS module 560's OIS actuator includes a different type of VCM, which we refer to as “push-pull VCM”. Specifically, lens-shift OIS module 560 includes a first push-pull VCM 570 and a second push-pull VCM 580. A direction of a force that is exercised (or generated) by first push-pull VCM 570 and second push-pull VCM 580 respectively is indicated by arrow F570 (parallel to the y-axis) and F580 (parallel to the x-axis) respectively. A force of first push-pull VCM 570 and second push-pull VCM 580 respectively is transmitted into an OIS movement as detailed above, e.g. based on ball-bearings. First push-pull VCM 570 includes a coil 576, a magnet 578 and a position sensor 579. Second push-pull VCM 580 includes a coil 586, a magnet 588 and a position sensor 589. As shown, magnet 578 and magnet 588 are fixedly coupled to first OIS frame 562. First OIS frame 562 is a moving frame. Coil 576 and position sensor 579 as well as coil 576 and position sensor 579 are fixedly coupled to second OIS frame 564. Second OIS frame 562 is a static frame.



FIG. 5B shows schematically an embodiment of another camera module numbered 590 that includes a lens-shift OIS module 592 as disclosed herein. Camera module 590 may be identical with camera module 350, camera module 400 and camera module 55 in terms of functionality and dimensions. The OIS actuator of lens-shift OIS module 592 includes a third push-pull VCM and a fourth push-pull VCM. All components of lens-shift OIS module 560's first push-pull VCM and second push-pull VCM are included in lens-shift OIS module 592's third push-pull VCM and fourth push-pull VCM as well. However, the inclusion of the components is inverse: in camera module 590, magnet 578 and magnet 588 are fixedly coupled to second OIS frame 564, and coil 576 and position sensor 579 as well as coil 576 and position sensor 579 are fixedly coupled to first OIS frame 562. The advantages of such an embodiment are identical to advantages of lens-shift OIS module 410 over lens-shift OIS module 360 as discussed above.


For the sake of clarity, the term “substantially” is used herein to imply the possibility of variations in values within an acceptable range. According to one example, the term “substantially” used herein should be interpreted to imply possible variation of up to 10% over or under any specified value. According to another example, the term “substantially” used herein should be interpreted to imply possible variation of up to 5% over or under any specified value. According to a further example, the term “substantially” used herein should be interpreted to imply possible variation of up to 2.5% over or under any specified value.


It is to be noted that the various features described in the various embodiments can be combined according to all possible technical combinations.


It is to be understood that the disclosure is not limited in its application to the details set forth in the description contained herein or illustrated in the drawings. The disclosure is capable of other embodiments and of being practiced and carried out in various ways. Hence, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. As such, those skilled in the art will appreciate that the conception upon which this disclosure is based can readily be utilized as a basis for designing other structures, methods, and systems for carrying out the several purposes of the presently disclosed subject matter.


Those skilled in the art will readily appreciate that various modifications and changes can be applied to the embodiments of the disclosure as hereinbefore described without departing from its scope, defined in and by the appended claims.

Claims
  • 1. An optical image stabilization (OIS) mechanism, comprising: a moving frame including a first groove;a static frame including a second groove;an OIS actuator; andfirst, second and third ball-bearings defining an OIS plane and positioned between the moving frame and the static frame to allow a first movement and a second movement of the moving frame relative to the static frame,wherein the first ball bearing is located in a rail formed by the first groove and the second groove,wherein the first movement is a rotational movement of the moving frame around a rotation axis that coincides with the position of the first ball bearing and is perpendicular to the OIS plane, andwherein the second movement is a linear movement of the moving frame along the rail.
  • 2. The OIS mechanism of claim 1, wherein the moving frame includes a first pool and a third pool, wherein the static frame includes a second pool and a fourth pool, wherein the second ball bearing is located in a volume formed by the first pool the second pool, and wherein the third ball bearing is located in a volume formed by the third pool and the fourth pool.
  • 3. The OIS mechanism of claim 1, wherein the OIS mechanism is operational to provide OIS along two OIS directions.
  • 4. The OIS mechanism of claim 1, wherein the OIS actuator is a regular voice coil motor (VCM).
  • 5. The OIS mechanism of claim 4, wherein the regular VCM includes at least one magnet fixedly coupled to the static frame.
  • 6. The OIS mechanism of claim 4, wherein the regular VCM includes at least one magnet fixedly coupled to the moving frame.
  • 7. The OIS mechanism of claim 1, wherein the OIS actuator is a push-pull voice coil motor (VCM).
  • 8. The OIS mechanism of claim 7, wherein the push-pull VCM includes at least one magnet fixedly coupled to the static frame.
  • 9. The OIS mechanism of claim 7, wherein the push-pull VCM includes at least one magnet fixedly coupled to the moving frame.
  • 10. The OIS mechanism of claim 1, wherein the OIS mechanism is operational to provide OIS in an OIS range of less than 2 mm in the direction of the first movement and less than 2 mm in the direction of the second movement.
  • 11. The OIS mechanism of claim 1, wherein the moving frame has a moving frame height HMF and the static frame has a static frame height HSF, wherein HMF is in the range of 0.25 mm to 1.5 mm and wherein HSF is in the range of 0.25 mm to 1.5 mm.
  • 12. The OIS mechanism of claim 1, wherein the moving frame has a moving frame width WMF and the static frame has a static frame width WSF, wherein WMF is in the range of 10 mm to 40 mm and wherein WSF is in the range of 10 mm to 40 mm.
  • 13. The OIS mechanism of claim 1, wherein the OIS mechanism is included in an OIS module that has an OIS module height HM in the range of 0.5 mm to 5 mm.
  • 14. The OIS mechanism of claim 1, wherein the OIS mechanism is included in an OIS module that has an OIS module width WM in the range of 10 mm to 40 mm.
  • 15. The OIS mechanism of claim 1, included in a digital camera that comprises a lens, and wherein the lens moves together with the moving frame for the OIS.
  • 16. The OIS mechanism of claim 15, wherein the lens moves relative to the moving frame for focusing.
  • 17. The OIS mechanism of claim 15, wherein the digital camera includes an image sensor and wherein the position of the first ball bearing is located at a center position of the image sensor.
  • 18. The OIS mechanism of claim 15, wherein the digital camera is a pop-out camera.
  • 19. The OIS mechanism of claim 15, wherein the digital camera is included in a smartphone.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of priority from U.S. provisional patent applications Nos. 63/323,271 filed Mar. 24, 2022, 63/327,954 filed Apr. 6, 2022 and 63/408,642 filed Sep. 21, 2022, all of which are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/IB2023/052461 3/14/2023 WO
Publishing Document Publishing Date Country Kind
WO2023/180871 9/28/2023 WO A
US Referenced Citations (425)
Number Name Date Kind
3085354 Rasmussen et al. Apr 1963 A
3584513 Gates Jun 1971 A
3941001 LaSarge Mar 1976 A
4199785 McCullough et al. Apr 1980 A
4792822 Akiyama et al. Dec 1988 A
5005083 Grage et al. Apr 1991 A
5032917 Aschwanden Jul 1991 A
5041852 Misawa et al. Aug 1991 A
5051830 von Hoessle Sep 1991 A
5099263 Matsumoto et al. Mar 1992 A
5248971 Mandl Sep 1993 A
5287093 Amano et al. Feb 1994 A
5331465 Miyano Jul 1994 A
5394520 Hall Feb 1995 A
5436660 Sakamoto Jul 1995 A
5444478 Lelong et al. Aug 1995 A
5459520 Sasaki Oct 1995 A
5502537 Utagawa Mar 1996 A
5657402 Bender et al. Aug 1997 A
5682198 Katayama et al. Oct 1997 A
5768443 Michael et al. Jun 1998 A
5892855 Kakinami et al. Apr 1999 A
5926190 Turkowski et al. Jul 1999 A
5940641 McIntyre et al. Aug 1999 A
5982951 Katayama et al. Nov 1999 A
6101334 Fantone Aug 2000 A
6128416 Oura Oct 2000 A
6148120 Sussman Nov 2000 A
6201533 Rosenberg et al. Mar 2001 B1
6208765 Bergen Mar 2001 B1
6211668 Duesler et al. Apr 2001 B1
6215299 Reynolds et al. Apr 2001 B1
6222359 Duesler et al. Apr 2001 B1
6268611 Pettersson et al. Jul 2001 B1
6320610 Gant et al. Nov 2001 B1
6341901 Iwasa et al. Jan 2002 B1
6520643 Holman et al. Feb 2003 B1
6549215 Jouppi Apr 2003 B2
6611289 Yu et al. Aug 2003 B1
6643416 Daniels et al. Nov 2003 B1
6650368 Doron Nov 2003 B1
6680748 Monti Jan 2004 B1
6714665 Hanna et al. Mar 2004 B1
6724421 Glatt Apr 2004 B1
6738073 Park et al. May 2004 B2
6741250 Furlan et al. May 2004 B1
6750903 Miyatake et al. Jun 2004 B1
6778207 Lee et al. Aug 2004 B1
7002583 Rabb, III Feb 2006 B2
7015954 Foote et al. Mar 2006 B1
7038716 Klein et al. May 2006 B2
7199348 Olsen et al. Apr 2007 B2
7206136 Labaziewicz et al. Apr 2007 B2
7248294 Slatter Jul 2007 B2
7256944 Labaziewicz et al. Aug 2007 B2
7305180 Labaziewicz et al. Dec 2007 B2
7339621 Fortier Mar 2008 B2
7346217 Gold, Jr. Mar 2008 B1
7365793 Cheatle et al. Apr 2008 B2
7411610 Doyle Aug 2008 B2
7424218 Baudisch et al. Sep 2008 B2
7509041 Hosono Mar 2009 B2
7533819 Barkan et al. May 2009 B2
7619683 Davis Nov 2009 B2
7738016 Toyofuku Jun 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7809256 Kuroda et al. Oct 2010 B2
7880776 LeGall et al. Feb 2011 B2
7918398 Li et al. Apr 2011 B2
7964835 Olsen et al. Jun 2011 B2
7978239 Deever et al. Jul 2011 B2
8115825 Culbert et al. Feb 2012 B2
8149327 Lin et al. Apr 2012 B2
8154610 Jo et al. Apr 2012 B2
8238695 Davey et al. Aug 2012 B1
8274552 Dahi et al. Sep 2012 B2
8390729 Long et al. Mar 2013 B2
8391697 Cho et al. Mar 2013 B2
8400555 Georgiev et al. Mar 2013 B1
8439265 Ferren et al. May 2013 B2
8446484 Muukki et al. May 2013 B2
8483452 Ueda et al. Jul 2013 B2
8514491 Duparre Aug 2013 B2
8547389 Hoppe et al. Oct 2013 B2
8553106 Scarff Oct 2013 B2
8587691 Takane Nov 2013 B2
8619148 Watts et al. Dec 2013 B1
8752969 Kane et al. Jun 2014 B1
8803990 Smith Aug 2014 B2
8896655 Mauchly et al. Nov 2014 B2
8976255 Matsuoto et al. Mar 2015 B2
9019387 Nakano Apr 2015 B2
9025073 Attar et al. May 2015 B2
9025077 Attar et al. May 2015 B2
9041835 Honda May 2015 B2
9137447 Shibuno Sep 2015 B2
9185291 Shabtay et al. Nov 2015 B1
9215377 Sokeila et al. Dec 2015 B2
9215385 Luo Dec 2015 B2
9270875 Brisedoux et al. Feb 2016 B2
9286680 Jiang et al. Mar 2016 B1
9304305 Paul et al. Apr 2016 B1
9344626 Silverstein et al. May 2016 B2
9360671 Zhou Jun 2016 B1
9369621 Malone et al. Jun 2016 B2
9413930 Geerds Aug 2016 B2
9413984 Attar et al. Aug 2016 B2
9420180 Jin Aug 2016 B2
9438792 Nakada et al. Sep 2016 B2
9485432 Medasani et al. Nov 2016 B1
9578257 Attar et al. Feb 2017 B2
9618748 Munger et al. Apr 2017 B2
9681057 Attar et al. Jun 2017 B2
9723220 Sugie Aug 2017 B2
9736365 Laroia Aug 2017 B2
9736391 Du et al. Aug 2017 B2
9768310 Ahn et al. Sep 2017 B2
9800798 Ravirala et al. Oct 2017 B2
9851803 Fisher et al. Dec 2017 B2
9894287 Qian et al. Feb 2018 B2
9900522 Lu Feb 2018 B2
9927600 Goldenberg et al. Mar 2018 B2
20020005902 Yuen Jan 2002 A1
20020030163 Zhang Mar 2002 A1
20020054214 Yoshikawa May 2002 A1
20020063711 Park et al. May 2002 A1
20020075258 Park et al. Jun 2002 A1
20020122113 Foote Sep 2002 A1
20020136554 Nomura et al. Sep 2002 A1
20020167741 Koiwai et al. Nov 2002 A1
20030030729 Prentice et al. Feb 2003 A1
20030093805 Gin May 2003 A1
20030156751 Lee et al. Aug 2003 A1
20030160886 Misawa et al. Aug 2003 A1
20030162564 Kimura et al. Aug 2003 A1
20030202113 Yoshikawa Oct 2003 A1
20040008773 Itokawa Jan 2004 A1
20040012683 Yamasaki et al. Jan 2004 A1
20040017386 Liu et al. Jan 2004 A1
20040027367 Pilu Feb 2004 A1
20040061788 Bateman Apr 2004 A1
20040141065 Hara et al. Jul 2004 A1
20040141086 Mihara Jul 2004 A1
20040169772 Matsui et al. Sep 2004 A1
20040189849 Hofer et al. Sep 2004 A1
20040227838 Atarashi et al. Nov 2004 A1
20040239313 Godkin Dec 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20050013509 Samadani Jan 2005 A1
20050046740 Davis Mar 2005 A1
20050134697 Mikkonen et al. Jun 2005 A1
20050141390 Lee et al. Jun 2005 A1
20050157184 Nakanishi et al. Jul 2005 A1
20050168834 Matsumoto et al. Aug 2005 A1
20050185049 Iwai et al. Aug 2005 A1
20050200718 Lee Sep 2005 A1
20050248667 Schweng et al. Nov 2005 A1
20060054782 Olsen et al. Mar 2006 A1
20060056056 Ahiska et al. Mar 2006 A1
20060067672 Washisu et al. Mar 2006 A1
20060102907 Lee et al. May 2006 A1
20060125937 LeGall et al. Jun 2006 A1
20060126737 Boice et al. Jun 2006 A1
20060170793 Pasquarette et al. Aug 2006 A1
20060175549 Miller et al. Aug 2006 A1
20060181619 Liow et al. Aug 2006 A1
20060187310 Janson et al. Aug 2006 A1
20060187322 Janson et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060227236 Pak Oct 2006 A1
20070024737 Nakamura et al. Feb 2007 A1
20070035631 Ueda Feb 2007 A1
20070077057 Chang Apr 2007 A1
20070114990 Godkin May 2007 A1
20070126911 Nanjo Jun 2007 A1
20070127040 Davidovici Jun 2007 A1
20070159344 Kisacanin Jul 2007 A1
20070177025 Kopet et al. Aug 2007 A1
20070188653 Pollock et al. Aug 2007 A1
20070189386 Imagawa et al. Aug 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070285550 Son Dec 2007 A1
20080017557 Witdouck Jan 2008 A1
20080024614 Li et al. Jan 2008 A1
20080025634 Border et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030611 Jenkins Feb 2008 A1
20080084484 Ochi et al. Apr 2008 A1
20080088942 Seo Apr 2008 A1
20080106629 Kurtz et al. May 2008 A1
20080117316 Orimoto May 2008 A1
20080129831 Cho et al. Jun 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20090086074 Li et al. Apr 2009 A1
20090102948 Scherling Apr 2009 A1
20090109556 Shimizu et al. Apr 2009 A1
20090122195 Van Baar et al. May 2009 A1
20090122406 Rouvinen et al. May 2009 A1
20090128644 Camp et al. May 2009 A1
20090168135 Yu et al. Jul 2009 A1
20090190909 Mise et al. Jul 2009 A1
20090200451 Conners Aug 2009 A1
20090219547 Kauhanen et al. Sep 2009 A1
20090234542 Orlewski Sep 2009 A1
20090252484 Hasuda et al. Oct 2009 A1
20090295949 Ojala Dec 2009 A1
20090295986 Topliss et al. Dec 2009 A1
20090324135 Kondo et al. Dec 2009 A1
20100013906 Border et al. Jan 2010 A1
20100020221 Tupman et al. Jan 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100097444 Lablans Apr 2010 A1
20100103194 Chen et al. Apr 2010 A1
20100134621 Namkoong et al. Jun 2010 A1
20100165131 Makimoto et al. Jul 2010 A1
20100196001 Ryynänen et al. Aug 2010 A1
20100202068 Ito Aug 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100246024 Aoki et al. Sep 2010 A1
20100259836 Kang et al. Oct 2010 A1
20100265331 Tanaka Oct 2010 A1
20100283842 Guissin et al. Nov 2010 A1
20100321494 Peterson et al. Dec 2010 A1
20110058320 Kim et al. Mar 2011 A1
20110063417 Peters et al. Mar 2011 A1
20110063446 McMordie et al. Mar 2011 A1
20110064327 Dagher et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110121666 Park et al. May 2011 A1
20110128288 Petrou et al. Jun 2011 A1
20110164172 Shintani et al. Jul 2011 A1
20110221599 Högasten Sep 2011 A1
20110229054 Weston et al. Sep 2011 A1
20110234798 Chou Sep 2011 A1
20110234853 Hayashi et al. Sep 2011 A1
20110234881 Wakabayashi et al. Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110285714 Swic et al. Nov 2011 A1
20110298966 Kirschstein et al. Dec 2011 A1
20110310219 Kim et al. Dec 2011 A1
20120014682 David et al. Jan 2012 A1
20120026366 Golan et al. Feb 2012 A1
20120044372 Cote et al. Feb 2012 A1
20120062780 Morihisa Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120075489 Nishihara Mar 2012 A1
20120098927 Sablak et al. Apr 2012 A1
20120105579 Jeon et al. May 2012 A1
20120124525 Kang May 2012 A1
20120154547 Aizawa Jun 2012 A1
20120154614 Moriya et al. Jun 2012 A1
20120196648 Havens et al. Aug 2012 A1
20120229663 Nelson et al. Sep 2012 A1
20120249815 Bohn et al. Oct 2012 A1
20120287315 Huang et al. Nov 2012 A1
20120320467 Baik et al. Dec 2012 A1
20130002928 Imai Jan 2013 A1
20130016427 Sugawara Jan 2013 A1
20130063629 Webster et al. Mar 2013 A1
20130076922 Shihoh et al. Mar 2013 A1
20130093842 Yahata Apr 2013 A1
20130094126 Rappoport et al. Apr 2013 A1
20130113894 Mirlay May 2013 A1
20130135445 Dahi et al. May 2013 A1
20130148215 Mori et al. Jun 2013 A1
20130148854 Wang et al. Jun 2013 A1
20130155176 Paripally et al. Jun 2013 A1
20130163085 Lim et al. Jun 2013 A1
20130182150 Asakura Jul 2013 A1
20130201360 Song Aug 2013 A1
20130202273 Ouedraogo et al. Aug 2013 A1
20130229544 Bando Sep 2013 A1
20130235224 Park et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130258044 Betts-Lacroix Oct 2013 A1
20130258048 Wang et al. Oct 2013 A1
20130270419 Singh et al. Oct 2013 A1
20130278785 Nomura et al. Oct 2013 A1
20130286221 Shechtman et al. Oct 2013 A1
20130321668 Kamath Dec 2013 A1
20140009631 Topliss Jan 2014 A1
20140049615 Uwagawa Feb 2014 A1
20140118584 Lee et al. May 2014 A1
20140160311 Hwang et al. Jun 2014 A1
20140192224 Laroia Jul 2014 A1
20140192238 Attar et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140218587 Shah Aug 2014 A1
20140313316 Olsson et al. Oct 2014 A1
20140362242 Takizawa Dec 2014 A1
20140376090 Terajima Dec 2014 A1
20140379103 Ishikawa et al. Dec 2014 A1
20150002683 Hu et al. Jan 2015 A1
20150002684 Kuchiki Jan 2015 A1
20150042870 Chan et al. Feb 2015 A1
20150070781 Cheng et al. Mar 2015 A1
20150086127 Camilus et al. Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150103147 Ho et al. Apr 2015 A1
20150110345 Weichselbaum Apr 2015 A1
20150124059 Georgiev et al. May 2015 A1
20150138381 Ahn May 2015 A1
20150145965 Livyatan et al. May 2015 A1
20150154776 Zhang et al. Jun 2015 A1
20150162048 Hirata et al. Jun 2015 A1
20150181115 Mashiah Jun 2015 A1
20150195458 Nakayama et al. Jul 2015 A1
20150198464 El Alami Jul 2015 A1
20150215516 Dolgin Jul 2015 A1
20150237280 Choi et al. Aug 2015 A1
20150242994 Shen Aug 2015 A1
20150244906 Wu et al. Aug 2015 A1
20150253543 Mercado Sep 2015 A1
20150253647 Mercado Sep 2015 A1
20150261299 Wajs Sep 2015 A1
20150271471 Hsieh et al. Sep 2015 A1
20150281678 Park et al. Oct 2015 A1
20150286033 Osborne Oct 2015 A1
20150288865 Osborne Oct 2015 A1
20150296112 Park et al. Oct 2015 A1
20150316744 Chen Nov 2015 A1
20150334309 Peng et al. Nov 2015 A1
20160028949 Lee et al. Jan 2016 A1
20160044250 Shabtay et al. Feb 2016 A1
20160070088 Koguchi Mar 2016 A1
20160154066 Hioka et al. Jun 2016 A1
20160154202 Wippermann et al. Jun 2016 A1
20160154204 Lim et al. Jun 2016 A1
20160212358 Shikata Jul 2016 A1
20160212418 Demirdjian et al. Jul 2016 A1
20160238834 Erlich et al. Aug 2016 A1
20160241751 Park Aug 2016 A1
20160245669 Nomura Aug 2016 A1
20160291295 Shabtay et al. Oct 2016 A1
20160295112 Georgiev et al. Oct 2016 A1
20160301840 Du et al. Oct 2016 A1
20160301868 Acharya et al. Oct 2016 A1
20160342095 Bieling et al. Nov 2016 A1
20160353008 Osborne Dec 2016 A1
20160353012 Kao et al. Dec 2016 A1
20160381289 Kim et al. Dec 2016 A1
20170001577 Seagraves et al. Jan 2017 A1
20170019616 Zhu et al. Jan 2017 A1
20170070731 Darling et al. Mar 2017 A1
20170094187 Sharma et al. Mar 2017 A1
20170115466 Murakami et al. Apr 2017 A1
20170124987 Kim et al. May 2017 A1
20170150061 Shabtay et al. May 2017 A1
20170176711 Iwasaki et al. Jun 2017 A1
20170187962 Lee et al. Jun 2017 A1
20170214846 Du et al. Jul 2017 A1
20170214866 Zhu et al. Jul 2017 A1
20170219749 Hou et al. Aug 2017 A1
20170230552 Eromaki et al. Aug 2017 A1
20170242225 Fiske Aug 2017 A1
20170276954 Bajorins et al. Sep 2017 A1
20170289458 Song et al. Oct 2017 A1
20170294002 Jia et al. Oct 2017 A1
20170329111 Hu et al. Nov 2017 A1
20170363882 Konishi Dec 2017 A1
20180003925 Shmunk Jan 2018 A1
20180013944 Evans, V et al. Jan 2018 A1
20180017844 Yu et al. Jan 2018 A1
20180024329 Goldenberg Jan 2018 A1
20180059379 Chou Mar 2018 A1
20180109660 Yoon et al. Apr 2018 A1
20180109710 Lee et al. Apr 2018 A1
20180120674 Avivi et al. May 2018 A1
20180150973 Tang et al. May 2018 A1
20180176426 Wei et al. Jun 2018 A1
20180183982 Lee et al. Jun 2018 A1
20180184010 Cohen et al. Jun 2018 A1
20180198897 Tang et al. Jul 2018 A1
20180216925 Yasuda et al. Aug 2018 A1
20180239161 Seol Aug 2018 A1
20180241922 Baldwin et al. Aug 2018 A1
20180249090 Nakagawa et al. Aug 2018 A1
20180295292 Lee et al. Oct 2018 A1
20180300901 Wakai et al. Oct 2018 A1
20180307005 Price et al. Oct 2018 A1
20180329281 Ye Nov 2018 A1
20180368656 Austin et al. Dec 2018 A1
20190089941 Bigioi et al. Mar 2019 A1
20190096047 Ogasawara Mar 2019 A1
20190100156 Chung et al. Apr 2019 A1
20190104258 Cohen Apr 2019 A1
20190121103 Bachar et al. Apr 2019 A1
20190121216 Shabtay et al. Apr 2019 A1
20190130822 Jung et al. May 2019 A1
20190154466 Fletcher May 2019 A1
20190187486 Goldenberg Jun 2019 A1
20190213712 Lashdan et al. Jul 2019 A1
20190215440 Rivard et al. Jul 2019 A1
20190222758 Goldenberg et al. Jul 2019 A1
20190227338 Bachar et al. Jul 2019 A1
20190228562 Song Jul 2019 A1
20190297238 Klosterman Sep 2019 A1
20190320119 Miyoshi Oct 2019 A1
20190377155 Bachar et al. Dec 2019 A1
20200014912 Kytsun et al. Jan 2020 A1
20200092486 Guo et al. Mar 2020 A1
20200103726 Shabtay et al. Apr 2020 A1
20200104034 Lee et al. Apr 2020 A1
20200118287 Hsieh et al. Apr 2020 A1
20200134848 El-Khamy et al. Apr 2020 A1
20200162682 Cheng et al. May 2020 A1
20200220956 Fujisaki et al. Jul 2020 A1
20200221026 Fridman et al. Jul 2020 A1
20200264403 Bachar et al. Aug 2020 A1
20200314224 Yang Oct 2020 A1
20200389580 Kodama et al. Dec 2020 A1
20210003842 Gross Jan 2021 A1
20210180989 Fukumura et al. Jun 2021 A1
20210208415 Goldenberg et al. Jul 2021 A1
20210333521 Yedid et al. Oct 2021 A9
20210368104 Bian et al. Nov 2021 A1
20220003957 Brown et al. Jan 2022 A1
20220146910 Li et al. May 2022 A1
20220252963 Shabtay et al. Aug 2022 A1
20220368814 Topliss et al. Nov 2022 A1
20230022701 Li et al. Jan 2023 A1
Foreign Referenced Citations (83)
Number Date Country
101276415 Oct 2008 CN
201514511 Jun 2010 CN
102130567 Jul 2011 CN
102215373 Oct 2011 CN
102739949 Oct 2012 CN
102982518 Mar 2013 CN
103024272 Apr 2013 CN
203406908 Jan 2014 CN
203482298 Mar 2014 CN
103841404 Jun 2014 CN
204422947 Jun 2015 CN
205301703 Jun 2016 CN
105827903 Aug 2016 CN
105847662 Aug 2016 CN
105872325 Aug 2016 CN
107608052 Jan 2018 CN
107682489 Feb 2018 CN
208060910 Nov 2018 CN
109729266 May 2019 CN
111988454 Nov 2020 CN
1536633 Jun 2005 EP
1780567 May 2007 EP
2523450 Nov 2012 EP
S59191146 Oct 1984 JP
04211230 Aug 1992 JP
H07318864 Dec 1995 JP
08271976 Oct 1996 JP
2002010276 Jan 2002 JP
2003298920 Oct 2003 JP
2003304024 Oct 2003 JP
2004056779 Feb 2004 JP
2004133054 Apr 2004 JP
2004245982 Sep 2004 JP
2005099265 Apr 2005 JP
2005122084 May 2005 JP
2005321592 Nov 2005 JP
2006038891 Feb 2006 JP
2006191411 Jul 2006 JP
2006237914 Sep 2006 JP
2006238325 Sep 2006 JP
2008083377 Sep 2006 JP
2007086808 Apr 2007 JP
2007228006 Sep 2007 JP
2007306282 Nov 2007 JP
2008076485 Apr 2008 JP
2008245142 Oct 2008 JP
2008271026 Nov 2008 JP
2010204341 Sep 2010 JP
2011055246 Mar 2011 JP
2011085666 Apr 2011 JP
2011138407 Jul 2011 JP
2011203283 Oct 2011 JP
2012132739 Jul 2012 JP
2013101213 May 2013 JP
2013106289 May 2013 JP
2016105577 Jun 2016 JP
2017146440 Aug 2017 JP
2018022123 Feb 2018 JP
2019126179 Jul 2019 JP
20070005946 Jan 2007 KR
20090058229 Jun 2009 KR
20100008936 Jan 2010 KR
20110080590 Jul 2011 KR
20110082494 Jul 2011 KR
20130104764 Sep 2013 KR
1020130135805 Nov 2013 KR
20140014787 Feb 2014 KR
101428042 Aug 2014 KR
101477178 Dec 2014 KR
20140144126 Dec 2014 KR
20150118012 Oct 2015 KR
20170105236 Sep 2017 KR
20180120894 Nov 2018 KR
20130085116 Jun 2019 KR
I407177 Sep 2013 TW
2000027131 May 2000 WO
2004084542 Sep 2004 WO
2006008805 Jan 2006 WO
2010122841 Oct 2010 WO
2014072818 May 2014 WO
2017025822 Feb 2017 WO
2017037688 Mar 2017 WO
2018130898 Jul 2018 WO
Non-Patent Literature Citations (21)
Entry
International Search Report and Written Opinion in related PCT application PCT/IB2023/052461, dated Aug. 10, 2023.
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages.
A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11um CMOS, Fife et al., Stanford University, 2008, 3 pages.
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages.
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages.
Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages.
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages.
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages.
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages.
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages.
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages.
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages.
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM SIGGRAPH, 2007, 9 pages.
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages.
Viewfinder Alignment, Adams et al., Publisher: Eurographics, 2008, 10 pages.
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages.
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages.
Zitova Bet Al: “Image Registration Methods: A Survey”, Image and Vision Computing, Elsevier, Guildford, GB, vol. 21, No. 11, Oct. 1, 2003 (Oct. 1, 2003), pp. 977-1000, XP00i 189327, ISSN: 0262-8856, DOI: i0_i0i6/ S0262-8856(03)00137-9.
Itay Yedid: “The Evolution of Zoom Camera Technologies in Smartphones”, Corephotonics White Paper, Aug. 1, 2017 (Aug. 1, 2017), XP055980796.
George B Arfken: “Mathematical Methods for Physicists: A Comprehensive Guide” In: “Mathematical Methods for Physicists: A Comprehensive Guide”, Jan. 1, 2013 (Jan. 1, 2013), Elsevier, XP093159030, ISBN: 978-0-12-384654-9 pp. 195-196.
Office Action in related CN patent application 202380027480.8, dated Feb. 7, 2025.
Related Publications (1)
Number Date Country
20250113105 A1 Apr 2025 US
Provisional Applications (3)
Number Date Country
63408642 Sep 2022 US
63327954 Apr 2022 US
63323271 Mar 2022 US