Slim pop-out wide camera lenses

Information

  • Patent Grant
  • 12170832
  • Patent Number
    12,170,832
  • Date Filed
    Thursday, February 8, 2024
    10 months ago
  • Date Issued
    Tuesday, December 17, 2024
    5 days ago
  • CPC
  • Field of Search
    • US
    • 359 691-694
    • 359 676000
    • 359 713000
    • 359 745000
    • 359 754000
    • 359 756000
    • 359 684000
    • CPC
    • G02B15/1421
    • G02B15/143
    • G02B15/1425
    • G02B15/142
    • G02B15/14
    • G02B13/009
    • G02B13/0045
    • G02B13/02
    • G02B13/04
    • G02B13/0065
    • H04N23/57
    • H04N23/55
  • International Classifications
    • H04N23/57
    • G02B13/00
    • G02B15/14
    • H04N23/55
    • Disclaimer
      This patent is subject to a terminal disclaimer.
      Term Extension
      0
Abstract
Pop-out lens systems for compact digital cameras, comprising an image sensor and a lens with a field of view FOV>60 deg and having i lens elements L1-Li starting with L1 from an object side toward an image side, each lens element Li having a respective focal length fi, the lens elements divided into two lens groups G1 and G2 separated by a big gap (BG), the lens having a pop-out total track length TTL<20 mm in a pop-out state and a collapsed total track length c-TTL in a collapsed state, wherein BG>0.25×TTL, wherein either G1 can move relative to G2 and to the image sensor for focusing or G1 and G2 can move together relative to the image sensor for focusing, and wherein a ratio c-TTL/TTL<0.7.
Description
FIELD

The present disclosure relates in general to digital cameras, and more particularly to digital cameras with pop-out mechanisms and lenses.


Definitions

In this application and for optical and other properties mentioned throughout the description and figures, the following symbols and abbreviations are used, all for terms known in the art:


Total track length (TTL): the maximal distance, measured along an axis parallel to the optical axis of a lens, between a point of the front surface S1 of a first lens element L1 and an image sensor, when the system is focused to an infinity object distance.


Back focal length (BFL): the minimal distance, measured along an axis parallel to the optical axis of a lens, between a point of the rear surface S2N of the last lens element LN and an image sensor, when the system is focused to an infinity object distance.


Effective focal length (EFL): in a lens (assembly of lens elements L1 to LN), the distance between a rear principal point P′ and a rear focal point F′ of the lens.


f-number (f/#): the ratio of the EFL to an entrance pupil diameter.


BACKGROUND

Multi-aperture digital cameras (or multi-cameras) are standard in today's mobile handheld electronic devices (or in short “mobile devices”, e.g. smartphones, tablets, etc.). In general, a Wide camera having a Wide camera field-of-view (FOVW) of 70-90 degrees acts as the mobile device's main (or “primary”) camera.


A main challenge is the design of Wide cameras that support ever higher image quality (IQ) and still fit into thin mobile devices with device heights of e.g. <10 mm. One promising path for improving the Wide camera's IQ is the incorporation of larger image sensors.



FIG. 1A illustrates schematically the definition of various camera entities such as TTL, EFL and BFL. In most miniature lenses which are used in multi-cameras incorporated in mobile devices, the TTL is larger than the EFL, as shown in FIG. 1A e.g. for a Wide lens.



FIG. 1B shows an exemplary camera having a lens with a field of view (FOV), an EFL and an image sensor with a sensor width S. For fixed width/height ratios and a (rectangular) image sensor, the sensor diagonal (SD) is proportional to the sensor width and height. For example, a 1/1.2″ sensor has a SD of 14.3 mm. The horizontal FOV relates to EFL and sensor width S as follows:







tan



(

FOV
2

)



=



s
/
2
/
EFL






This shows that a larger EFL is required for realizing a camera with a larger image sensor, but similar FOV. Incorporating larger image sensors in Wide cameras is desirable for improving the Wide camera's IQ, but it requires larger EFL for maintaining the same (Wide camera) FOV, resulting in larger TTL, which is undesirable as it impedes the integration of the Wide camera in a mobile device.


Pop-out cameras resolve this conflict. They combine the advantages of a large TTL when the camera is in use (“pop-out state”), and a slim design by collapsing the TTL to a collapsed TTL (“c-TTL”) when the camera is not in use (“collapsed state”). The c-TTL is compatible with the height dimensions of modern mobile devices. Only in the pop-out state, the pop-out camera is operational as a camera. Pop-out cameras are described for example in co-owned international patent application PCT/IB2020/058697.


It would be beneficial to have Wide camera lens designs that support pop-out Wide cameras including large image sensors such as 1/1.2″ or larger, i.e. having a SD≥14.3 mm.


SUMMARY

In various examples there are provided lens systems for a compact digital camera, comprising an image sensor having a sensor diagonal SD and a lens with a field of view FOV>60 deg and having N≥6 lens elements L1-LN starting with L1 from an object side toward an image side, each lens element Li having a respective focal length fi, with a magnitude |fi|, the lens elements divided into two lens groups G1 and G2 separated by a big gap (BG), the lens having a pop-out total track length TTL<20 mm in a pop-out state and a collapsed total track length (c-TTL) in a collapsed state, wherein the lens system is configured to switch from a pop-out state to a collapsed state by collapsing BG to a collapsed BG (and vice versa), wherein BG>0.25×TTL, wherein SD≥12 mm, and wherein a ratio c-TTL/SD<0.7.


In some examples, G1 may include five or more lens elements and G2 may include 1 or 2 lens elements.


In some examples, the ratio c-TTL/TTL<0.7. In some examples, the ratio c-TTL/TTL<0.65.


In some examples, BG>0.3×TTL. In some examples, BG>0.35×TTL.


In some examples, a thickness TG1 of G1 fulfills 0.35×TTL<TG1<0.47×TTL.


In some examples, a power PG1 of G1 fulfills PG1>0 and a power PG2 of G2 fulfills PG2<0. In some examples, −1.81≤PG1/PG2≤−0.9.


In some examples, i=6 and a sequence of lens powers P1 to P6 of lens elements L1 to L6 may be plus-minus-plus-minus-plus-minus.


In some examples, i=7 and a sequence of lens powers P1 to P7 of lens elements L1 to L7 may be plus-minus-minus-plus-minus-plus-minus, or plus-minus-plus-minus-minus-plus-minus, or plus-plus-minus-plus-minus-plus-minus, or plus-minus-plus-plus-minus-plus-minus.


In some examples, i=8 and a sequence of lens powers P1 to P8 of lens elements L1 to L8 may be plus-plus-minus-plus-minus-plus-plus-minus, or plus-minus-minus-plus-minus-plus-plus-minus.


In some examples, the last two lens elements in G1 may have together an Abbe number 50<V<120 and an effective focal length EFL of 13 mm<EFL<50 mm.


In some examples, the focal length magnitude |f1| of L1 and the focal length magnitude |f6| of L6 may vary by <25%, and both |f1| and |f6| may be less than 45% of each of the magnitudes of focal lengths |f2|, |f3|, |f4| and |f5| of, respectively, L2, L3, L4 and L5.


In some examples, L1, L2, L3 and L4 have a meniscus shape with respect to the object side and L5 and L6 have a meniscus shape with respect to the image side.


In some examples, the focal length magnitude |f4| of L4 may vary by more than 50% of each of the focal length magnitudes |f1|, |f2|, |f3|, |f5|, |f6| of, respectively, L1, L2, L3, L5 and L6.


In some examples, the focal length magnitude |f6| of L6 may vary by more than 100% of each of the magnitudes of focal lengths |f1|, |f2|, |f3|, |f4|, |f5|.


In some examples, PG1/P3 does not vary by more than 10% from 1. In some examples, PG1/P6 does not vary by more than 10% from 1. In some examples, PG1/P3 and PG1/P6 do not vary by more than 20% from 1. In some examples, PG1/P6 and PG1/P7 do not vary by more than 20% from 1. In some examples, PG1/P1 does not vary by more than 20% from 1. In some examples, PG1/P1, PG1/P5 and PG1/P7 do not vary by more than 20% from 1. In some examples, PG1/P6 and PG1/P8 do not vary by more than 20% from 1. In some examples, PG1/P3, PG1/P6 and PG1/P8 do not vary by more than 10% from 1.


In some examples, one or more lens elements may be made of glass and the refractive index n of each of the one or more lens elements may be >1.7.


In some examples, L4 is made of glass and has a refractive index n>1.7.


In some examples, L2, L4, L6 are made of glass and have each a refractive index n>1.7.


In some examples, L4 and L6 are made of glass and have each a refractive index n>1.7.


In some examples, a deflection point at the front surface of L1 is located at a distance d-f measured from an optical axis of the lens, wherein 1.5 mm<d-f<3.5 mm.


In some examples, a deflection point at the rear surface of L1 is located at a distance d-r measured from an optical axis of the lens, wherein 1.5 mm<d-r<3.5 mm.


In some examples, a lens system as above or below may be included in a pop-out camera having a sensor with a sensor diagonal SD in the range of 10-30 mm.


In some examples, a lens system as above or below may be included in a pop-out camera having a sensor with a sensor diagonal SD in the range of 14-22 mm.


In some examples, a lens system as above or below may be included in a pop-out camera that is included in a smartphone.


In various examples there are provided lens systems for a lens system for a compact digital camera, comprising an image sensor having a sensor diagonal SD, and a lens with a field of view FOV>60 deg, having a f number (f/#), a lens thickness (“TLens”) a back focal length (BFL) and an effective focal length (EFL), and having N≥6 lens elements L1-LN starting with L1 from an object side toward an image side each lens element Li having a respective focal length fi, with a magnitude |fi|, wherein the lens system is configured to switch from a pop-out state to a collapsed state by collapsing BFL to a collapsed BFL (and vice versa), wherein SD≥12 mm, wherein BFL>0.15×TTL, and wherein a ratio c-TTL/SD<0.65.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting examples of examples disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. Identical structures, elements or parts that appear in more than one figure are generally labeled with a same numeral in all the figures in which they appear. If identical elements are shown but numbered in only one figure, it is assumed that they have the same number in all figures in which they appear. The drawings and descriptions are meant to illuminate and clarify examples disclosed herein and should not be considered limiting in any way. In the drawings:



FIG. 1A illustrates schematically the definition of various entities such as TTL and EFL;



FIG. 1B shows definitions of FOV, EFL and S for a thin lens approximation or equivalence;



FIG. 2A shows schematically a pop-out optical lens system disclosed herein in a pop-out state focused to infinity;



FIG. 2B shows schematically the pop-out system of FIG. 2A in a collapsed state;



FIG. 2C shows schematically another pop-out optical lens system disclosed herein in a pop-out state;



FIG. 2D shows schematically the pop-out system of FIG. 2C in a collapsed state;



FIG. 3A shows the pop-out system of FIG. 2A focused to a closer (e.g. 50 cm) distance by focusing according to a first method;



FIG. 3B shows the pop-out system of FIG. 2A focused to a closer (e.g. 50 cm) distance by focusing according to a second method;



FIG. 4 shows an example of a pop-out optical lens system disclosed herein;



FIG. 5 shows another example of a pop-out optical lens system disclosed herein;



FIG. 6 shows yet another example of a pop-out optical lens system disclosed herein;



FIG. 7 shows yet another example of a pop-out optical lens system disclosed herein;



FIG. 8 shows yet another example of a pop-out optical lens system disclosed herein;



FIG. 9 shows yet another example of a pop-out optical lens system disclosed herein;



FIG. 10 shows yet another example of a pop-out optical lens system disclosed herein;



FIG. 11 shows yet another example of a pop-out optical lens system disclosed herein;



FIG. 12 shows yet another example of a pop-out optical lens system disclosed herein;



FIG. 13 shows yet another example of a pop-out optical lens system disclosed herein;



FIG. 14 shows yet another example of a pop-out optical lens system disclosed herein;



FIGS. 15, 16, 17 and 18 show yet other examples of pop-out optical lens systems disclosed herein.





DETAILED DESCRIPTION


FIG. 2A shows an example of a “2-group” (or “2G”) pop-out optical lens system 200 that comprises a pop-out lens 202 and an image sensor 204 disclosed herein. Pop-out optical lens system 200 is shown in a pop-out or extended state (i.e. focused to infinity). Pop-out lens 202 is divided into two lens groups which are separated by a big gap (BG), a first, object-sided lens group (“G1”) and a second, sensor-sided lens group (“G2”). The thickness of G1 is indicated by TG1. Lens 202 includes a plurality of N lens elements Li (wherein “i” is an integer between 1 and N and wherein N may be for example between 5 and 9). L1 is the lens element closest to the object side and LN is the lens element closest to the image side, i.e. the side where the image sensor is located. This order holds for all lenses and lens elements disclosed herein. Each lens element Li comprises a respective front surface S2i−1 (the index “2i−1” being the number of the front surface) and a respective rear surface S2i (the index “2i” being the number of the rear surface). This numbering convention is used throughout the description. Alternatively, as done throughout this description, lens surfaces are marked as “Sk”, with k running from 1 to 2N. The front surface and the rear surface may be in some cases aspherical. This is however not limiting.


As used herein the term “front surface” of each lens element refers to the surface of a lens element located closer to the entrance of the camera (camera object side) and the term “rear surface” refers to the surface of a lens element located closer to the image sensor (camera image side).


Each lens group includes one or more lens elements Li. G1 may include ≥5 elements and G2 may include 1-2 elements. G2 may act as a field lens as known in the art.



FIG. 2B shows 2G pop-out optical lens system 200 in a collapsed state. Big gap BG is collapsed to a collapsed BG (marked “c-BG”), i.e. a distance between G1 and G2 is reduced, resulting in a collapsed TTL (“c-TTL”). c-BG may be in the range 0.2 mm-5 mm. Only BG changes. No other distances in pop-out optical lens system 200, such as distances between lens elements included in G1 and G2 respectively, change.



FIG. 2C shows an example of a “1-group” (or “1G”) pop-out optical lens system 250 that comprises a pop-out lens 252 having a thickness TLens and an image sensor 254 disclosed herein. Pop-out optical lens system 250 is shown in a pop-out state. Pop-out lens 252 is not divided into two lens groups. FIG. 2D shows 1G pop-out optical lens system 250 in a collapsed state. BFL is collapsed to a collapsed BFL (marked “c-BFL”), i.e. the distance between lens 252 and image sensor 254 is reduced, resulting in a c-TTL. c-BFL may be in the range 0-3 mm. Only BFL changes. No other distances in pop-out optical lens system 250, such as distances between lens elements of lens 252, change.


2G pop-out optical lens system 200 and 1G pop-out optical lens system 250 can be included in a pop-out camera. For performing optical image stabilization (OIS), the pop-out camera may use several methods known in the art. Such methods may be “lens shift OIS”, wherein the lens is moved relative to the image sensor and a camera hosting mobile device for OIS, or “sensor shift OIS”, wherein the image sensor is moved relative to the lens and to a camera hosting mobile device for OIS.


All pop-out optical lens systems disclosed herein can be used in the pop-out camera examples described in co-owned PCT patent application PCT/IB2020/058697.


Wherein FIG. 2A shows 2G pop-out optical lens system 200 focused to infinity, FIG. 3A shows 2G pop-out optical lens system 200 focused to a closer object, e.g. focused to 1 m according to a first focusing method referred to as “G1-G2 focusing”. For G1-G2 focusing, G1 and G2 move by a focus stroke ΔfG1-G2=TFocus−BG from a thickness given by BG to a thickness given by TFocus with respect to each other. BFL does not change, but BG changes. Values for BG and TFocus are given in Table 1 for all 2G lens systems disclosed herein. #BG indicates the surface that changes for G1-G2 focusing.



FIG. 3B shows 2G pop-out optical lens system 200 focused to a closer object, e.g. focused to 1 m according to a second focusing method referred to as “lens focusing”. For lens focusing, G1 and G2 move together as one lens by ΔfLens with respect to the image sensor. BG does not change, but BFL changes. Lens focusing is the standard method used in state of the art digital cameras in mobile electronic devices.


All 2G pop-out optical lens systems disclosed below can be both focused by G1-G2 focusing as well as by lens focusing. All 1G pop-out optical lens systems disclosed below are focused by lens focusing.


All pop-out optical lens systems disclosed below are shown in a pop-out state, where a pop-out camera including the optical lens system is operational


In a collapsed state, all 2G pop-out optical lens system examples have a c-BG of 0.2 mm-4.4 mm. In a collapsed state, all 1G pop-out optical lens systems examples have a c-BFL of 1.0 mm-2.5 mm. A small c-BG and c-BFL respectively is beneficial for achieving a slim camera module that can be integrated in a slim mobile device such as a smartphone. To clarify, all lens systems disclosed herein may beneficially be included or incorporated in smartphones.


Table 1 shows the values and ranges that are included in lens system examples 400-1800 disclosed below (SD, TTL, c-TTL, BG, c-BG, EFL, TG1, TFocus, dL1-L2, TLens, fLS, fN-1 given in mm; Half-field-of-view (“HFOV”) and 35 mm equivalent focal length (“35 mm EqFL”) are given in degrees, Abbe number v, #LS and f number (“f/#”) are given without units, and powers are given in inverse meter [1/m]. c-TTLMIN and c-TTLMAX respectively refer to a minimum and maximum c-TTL that can be achieved in the respective example. In general, in Table 1, “MIN” and “MAX” refer respectively to minimum and maximum values in a range.


“#LS” represents the number of the strongest lens element in a lens, i.e. the lens element with the smallest, positive focal length f. “fLS” represents the f of the strongest lens element in a lens. “fN-1” represents the f of the N−1th (i.e. the second to last) lens element in a lens. dL1-L2 represents a distance (or air gap) between L1 and L2.


For 2G type lens systems, LM refers to the last lens element in G1. The index “LM-1+LM” refers to properties of the two last lens elements in G1 together. For example, in example 400 LM-1+LM refers to properties of L5 and L6 together, in example 1500 LM-1+LM refers to properties of L6 and L7 together, etc. For performing G1-G2 focusing, BG represents the thickness of surface “#BG” when focused to infinity. “TFocus” represents the thickness of surface “#BG” when focused to 1 m and 0.5 m respectively. The power of the entire G1 group is marked PG1, the power of the entire G2 group is marked PG2 and powers of individual lens elements are marked by the element number, i.e. the power of L1 is marked P1, the power of L2 is marked P2, etc. TG1 gives the thickness of G1.























TABLE 1







Example
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
MIN
MAX





Type
2G
2G
2G
2G
2G
2G
2G
2G
2G
2G
2G
2G




SD
14.3
14.3
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
14.30
21.50


TTL
10.83
11.07
16.79
16.82
14.99
13.80
15.90
14.01
14.00
16.39
14.66
16.72
10.83
16.82


c-TTLMIN
6.49
6.50
9.01
9.00
9.01
9.00
9.00
9.00
9.00
8.80
8.80
8.81
6.49
9.01


c-TTLMAX
10.50
10.50
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
12.00
10.50
12.00


BG
4.54
4.78
7.98
8.01
6.18
5.00
7.10
5.20
5.20
7.79
6.07
8.12
4.54
8.12


#BG
13
13
13
13
13
11
13
13
13
13
13
15
11
15


TFocus
4.6073
4.848
8.309



7.237
5.321
5.313
8.071


4.607
8.309


(1 m)
















TFocus



8.332
6.435
5.375




6.318
8.396
5.375
8.396


(0.5 m)
















c-BGMIN
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20


c-BGMAX
4.21
4.20
3.19
3.20
3.19
3.20
3.20
3.20
3.20
3.40
3.40
3.39
3.19
4.21


EFL
9.09
9.15
13.36
13.41
12.12
12.23
13.14
12.11
12.10
12.58
12.70
13.19
9.09
13.41


TG1
4.55
4.71
5.94
6.34
6.27
6.35
6.32
6.40
6.18
6.17
5.73
5.84
4.55
6.40


PG1
0.12
0.12
0.08
0.08
0.09
0.09
0.08
0.09
0.10
0.08
0.09
0.08
0.08
0.12


PG2
−0.10
−0.07
−0.04
−0.05
−0.08
−0.07
−0.07
−0.10
−0.11
−0.07
−0.08
−0.08
−0.11
−0.04


vLM-1+LM
75.80
76.39
71.87
79.38
80.34
75.35
75.80
75.80
93.91
56.87
109.10
76.28
56.87
109.10


EFLLM-1+LM
13.93
35.70
17.51
49.75
33.06
45.84
20.27
26.20
15.81
12.50
16.65
27.55
12.50
49.75


f/#
2.00
2.00
2.00
2.00
2.00
2.50
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.50


HFOV
38.00
38.00
38.70
38.60
41.30
41.10
39.10
41.20
41.20
39.30
39.80
39.40
38.00
41.30


35 mm
27.59
27.77
26.97
27.06
24.47
24.69
26.53
24.44
24.43
25.40
25.64
26.62
24.43
27.77


EqFL
















BG/TTL
0.42
0.43
0.48
0.48
0.41
0.36
0.45
0.37
0.37
0.48
0.41
0.49
0.36
0.49


c-
0.60
0.59
0.54
0.54
0.60
0.65
0.57
0.64
0.64
0.54
0.60
0.53
0.53
0.65


TTLMIN/
















TTL
















c-
0.97
0.95
0.71
0.71
0.80
0.87
0.75
0.86
0.86
0.73
0.82
0.72
0.71
0.97


TTLMAX/
















TTL
















TG1/TTL
0.42
0.43
0.35
0.38
0.42
0.46
0.40
0.46
0.44
0.38
0.39
0.35
0.35
0.46


TTL/EFL
1.19
1.21
1.26
1.25
1.24
1.13
1.21
1.16
1.16
1.30
1.15
1.27
1.13
1.30


TTL/SD
0.76
0.77
0.78
0.78
0.70
0.64
0.74
0.65
0.65
0.76
0.68
0.78
0.64
0.78


c-TTL/SD
0.45
0.45
0.42
0.42
0.42
0.42
0.42
0.42
0.42
0.41
0.41
0.41
0.41
0.45


PG1/PG2
−1.20
−1.71
−2.00
−1.60
−1.13
−1.29
−1.14
−0.90
−0.91
−1.14
−1.13
−1.00
−2.00
−0.90


c-TTLMIN/
0.45
0.45
0.42
0.42
0.42
0.42
0.42
0.42
0.42
0.41
0.41
0.41
0.41
0.45


SD
















c-TTLMAX/
0.73
0.73
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.73


SD















Example
1600
1700
1800
MIN
MAX





Type
1G
1G
1G




SD
16
16
16
16.00
16.00


TTL
10.01
9.37
10.38
9.37
10.45


C-TTLMIN
8.18
8.75
8.90
8.18
9.42


C-TTLMAX
9.61
8.97
9.98
8.97
10.05


BFL
2.81
1.62
2.48
1.62
2.81


C-BFLMIN
1.00
1.00
1.00
1.00
1.00


c-BFLMAX
2.41
1.22
2.08
1.22
2.41


dL1−L2
0.017
0.086
0.074
0.02
0.09


#LS
1
2
3
1
3


fLS
7.02
7.03
5.99
5.99
7.03


fN-1
7.45
13.20
8.62
7.45
13.20


EFL
9.37
8.76
8.78
8.76
9.37


TLens
7.20
7.75
7.90
7.18
8.42


f/#
1.84
1.86
1.68
1.68
1.86


HFOV
40.00
41.98
41.93
40.00
41.98


35 mm
25.42
23.77
23.83
23.77
25.42


EqFL







BFL/TTL
0.28
0.17
0.24
0.17
0.28


TTL/EFL
1.07
1.07
1.18
1.07
1.19


c-TTLMIN/
0.82
0.93
0.86
0.82
0.93


TTL







c-TTLMAX/
0.96
0.96
0.96
0.96
0.96


TTL







c-BFLMIN/
0.36
0.62
0.40
0.36
0.62


BFL







c-BFLMAX/
0.86
0.75
0.84
0.75
0.86


BFL







c-BFLMIN/
0.10
0.11
0.10
0.10
0.11


TTL







c-BFLMAX/
0.24
0.13
0.20
0.13
0.24


TTL







dL1−L2/TLens
0.24
1.11
0.93
0.24
1.11


[%]







fLS/EFL
0.75
0.80
0.68
0.68
0.80


fN−1/EFL
0.79
1.51
0.98
0.79
1.51


c-TTLMIN/
0.51
0.55
0.56
0.51
0.56


SD







c-TTLMAX/
0.60
0.56
0.62
0.56
0.62


SD







TTL/SD
0.63
0.59
0.65
0.59
0.65









In all the 2G lens system examples 400-1500 disclosed below, ratios of TTL to EFL are in the range of TTL/EFL=1.13-1.3, ratios of TTL to SD are in the range of TTL/SD=0.64-0.78 and ratios of c-TTL to SD are in the range of c-TTL/SD=0.41-0.73.


In all the 1G lens system examples 1600-1800 disclosed below, ratios of TTL to EFL are in the range of TTL/EFL=1.05-1.3, ratios of TTL to SD are in the range of TTL/SD=0.59-0.65 and ratios of c-TTL to SD are in the range of c-TTL/SD=0.50-0.65.



FIG. 4 shows an example of a 2G pop-out optical lens system disclosed herein and numbered 400. Lens system 400 comprises a pop-out lens 402 divided into two lens groups G1 and G2, an image sensor 404 and, optionally, an optical element 406. Optical element 406 may be for example infra-red (IR) filter, and/or a glass image sensor dust cover. Image sensor 404 may have a SD of 14.3 mm. G1 includes 6 lens elements and G2 includes one lens element. Optical rays pass through lens 402 and form an image on image sensor 404. FIG. 4 shows 3 fields with 3 rays for each: the upper marginal-ray, the lower marginal-ray and the chief-ray. All further figures show these 3 rays as well.


Detailed optical data and surface data for pop-out lens 402 are given in Tables 2-3. Table 2 provides surface types and Table 3 provides aspheric coefficients. The surface types are:

    • a) Plano: flat surfaces, no curvature.
    • b) Q type 1 (QT1) surface sag formula:










z

(
r
)

=



c


r
2



1
+


1
-


(

1
+
k

)



c
2



r
2






+


D

c

o

n


(
u
)






(

Eq
.

1

)











D

c

o

n


(
u
)

=


u
4








n
=
0

N



A
n





Q
n

c

o

n


(

u
2

)









u
=

r

r

n

o

r

m




,

x
=

u
2










Q
0

c

o

n


(
x
)

=
1







Q
1

c

o

n


=

-

(

5
-

6

x


)









Q
2

c

o

n


=


1

5

-

1

4


x

(

3
-

2

x


)










Q
3

c

o

n


=

-

{


3

5

-

1

2


x
[


1

4

-

x

(


2

1

-

1

0

x


)


]



}









Q
4

c

o

n


=


7

0

-

3

x


{


1

6

8

-

5


x
[


8

4

-

1

1


x

(

8
-

3

x


)



]



}










Q
5

c

o

n


=

-

[


1

2

6

-

x

(


1

2

6

0

-

1

1

x


{


4

2

0

-

x
[


7

2

0

-

1

3


x

(


4

5

-

1

4

x


)



]


}



)


]








    • c) Even Asphere (ASP) surface sag formula:













z

(
r
)

=



c


r
2



1
+


1
-


(

1
+
k

)



c
2



r
2






+


α
1



r
2


+


α
2



r
4


+


α
3



r
6


+


α
4



r
8


+


α
5



r

1

0



+


α
6



r

1

2



+


α
7



r

1

4



+


α
8



r

1

6








(

Eq
.

2

)








where {z, r} are the standard cylindrical polar coordinates, c is the paraxial curvature of the surface, k is the conic parameter, rnorm is generally one half of the surface's clear aperture (CA), and An are the aspheric coefficients shown in lens data tables. The Z axis is positive towards the image side. Values for CA are given as a clear aperture radius, i.e. D/2. The reference wavelength is 555.0 nm. Units are in mm except for refractive index (“Index”) and Abbe #. Each lens element Li has a respective focal length fi, given in Table 2. The FOV is given as half FOV (HFOV). The definitions for surface types. Z axis. CA values, reference wavelength, units, focal length and HFOV are valid for all following Tables.









TABLE 2







EFL = 9.1 mm, F number = 2.0, HFOV = 38.0 deg.
















Surface


Curvature

Aperture


Abbe
Focal


#
Comment
Type
Radius
Thickness
Radius (D/2)
Material
Index
#
Length



















 1
A.S.
Plano
Infinity
−0.763
2.277






 2
Lens 1
QTYP
3.675
1.002
2.277
Glass
1.58
59.45
9.1


 3


10.668
0.267
2.172






 4
Lens 2
QTYP
−17.802
0.33
2.142
Plastic
1.65
21.78
−27.6 


 5


−1173.735
0.139
2.053






 6
Lens 3
QTYP
7.245
0.352
2
Plastic
1.64
23.37
−54.94 


 7


5.901
0.284
1.933






 8
Lens 4
QTYP
5.005
0.335
1.896
Glass
1.75
27.71
44.59


 9


5.712
0.486
2.039






10
Lens 5
QTYP
−4.956
0.336
2.168
Plastic
1.64
23.37
−13.53 


11


−11.77
0.146
2.408






12
Lens 6
QTYP
−14.425
0.876
2.572
Glass
1.75
52.43
 7.46


13


−4.165
See Table 1
2.724






14
Lens 7
QTYP
−10.03
0.793
5.449
Plastic
1.54
55.99
−9.95


15


12.229
0.125
6.043






16
Filter
Plano
Infinity
0.11

Glass
1.52
64.17



17


Infinity
0.71







18
Image
Plano
Infinity























TABLE 3








Aspheric Coefficients












Surface #
Conic
NR
A0
A1
A2





 2
0
2.342E+00
1.992E−02
7.027E−03
4.692E−04


 3
0
2.281E+00
−5.697E−02  
1.462E−03
2.110E−03


 4
0
2.248E+00
1.843E−01
−4.516E−02  
1.827E−02


 5
0
2.171E+00
1.687E−01
−7.279E−02  
2.341E−02


 6
0
2.119E+00
−1.877E−01  
7.502E−03
3.492E−04


 7
0
2.052E+00
−2.883E−01  
4.267E−02
−1.419E−02  


 8
0
2.030E+00
−5.376E−01  
−3.317E−02  
5.467E−03


 9
0
2.021E+00
−1.957E−01  
−2.922E−02  
3.914E−03


10
0
2.080E+00
2.800E−01
−1.450E−03  
−1.028E−02  


11
0
2.368E+00
9.984E−02
4.665E−03
−3.114E−03  


12
0
2.764E+00
1.094E−01
4.434E−02
−1.455E−02  


13
0
3.011E+00
5.529E−01
1.249E−01
−1.748E−02  


14
0
5.429E+00
−9.400E−01  
5.873E−01
−8.047E−02  


15
0
6.558E+00
−4.270E+00  
9.092E−01
1.250E−01












Aspheric Coefficients (Continued)











Surface #
A3
A4
A5
A6





 2
−5.328E−04  
−3.61E−04  
−1.36E−04  
−2.96E−05  


 3
−3.989E−04  
7.90E−04
2.83E−04
6.35E−05


 4
−1.692E−03  
2.38E−03
4.36E−05
7.68E−05


 5
−1.542E−03  
2.54E−03
−1.49E−04  
2.04E−04


 6
−5.703E−04  
1.31E−03
3.76E−04
2.21E−04


 7
−3.759E−03  
−8.29E−04  
9.62E−05
6.19E−05


 8
−2.216E−03  
−5.26E−04  
7.02E−06
1.22E−04


 9
−1.573E−03  
1.52E−04
9.63E−06
1.36E−05


10
−1.068E−03  
6.86E−04
−2.64E−04  
−5.41E−05  


11
−3.039E−03  
−3.31E−04  
−6.04E−04  
1.17E−04


12
−1.017E−02  
−1.53E−03  
−4.08E−04  
2.72E−04


13
−1.869E−02  
−1.79E−03  
1.68E−03
5.66E−04


14
1.904E−02
−1.05E−02  
2.40E−03
−4.93E−05  


15
1.202E−01
−1.51E−02  
5.10E−03
−3.73E−03  









The deflection point of L1 is located at a distance of 1.884 mm measured from the optical axis (“OA”) at the rear surface. The magnitudes of the focal lengths of L1 (|f1|) and of L6 (|f6|) are similar, i.e. their magnitude may differ by <30%. The magnitudes |f1| and |f6| are pairwise much smaller than the magnitudes of all the focal lengths of the single lens elements L2, L3, L4 and L5, i.e. |f1|, |f6|<<|f2|, |f3|, |f4|, |f5|.| For example |f2|, |f3|, |f4|, |f5| may be greater than |f1|, |f6| by more than 45%. The ratio between the power of L1 (P1) and PG1 fulfills P1/PG1=0.89. Specifically, Table 4 shows ratios |fi/f1| and |fi/f6| and ratios between each Pi and PG1.













TABLE 4






Lens element Li
|fi/f1|
|fi/f6|
Pi/PG1




















1
1.00
1.22
0.89



2
3.03
3.70
−0.29



3
6.04
7.36
−0.15



4
4.90
5.97
0.18



5
1.49
1.81
−0.60



6
0.82
1.00
1.09



7


−0.82










FIG. 5 shows another example of a 2G pop-out optical lens system disclosed herein and numbered 500. Lens system 500 comprises a pop-out lens 502 divided into two lens groups G1 and G2, an image sensor 504 and, optionally, an optical element 506. Image sensor 504 may have a SD of 14.3 mm (“1/1.2” sensor”). Table 5 provides surface types and Table 6 provides aspheric coefficients.









TABLE 5







EFL = 9.15 mm, F number = 2.0, HFOV = 38.0 deg.





















Aperture






Surface


Curvature

Radius


Abbe
Focal


#
Comment
Type
Radius
Thickness
(D/2)
Material
Index
#
Length



















 1
A.S.
Plano
Infinity
−0.313
2.292






 2
Lens 1
QTYP
4.701
0.599
2.292
Plastic
1.55
56.02
17.87


 3

QTYP
8.623
0.093
2.291






 4
Lens 2
QTYP
10.955
0.33
2.283
Plastic
1.67
19.44
−65.6 


 5

QTYP
8.676
0.115
2.296






 6
Lens 3
QTYP
11.464
0.33
2.306
Plastic
1.59
28.3 
−8.38


 7

QTYP
3.421
0.091
2.226






 8
Lens 4
QTYP
3.71
0.77
2.22
Glass
1.88
40.78
 5.02


 9

QTYP
19.987
1.166
2.121






10
Lens 5
QTYP
−2.38
0.466
2.133
Plastic
1.66
20.37
−15.07  


11

QTYP
−3.364
0.089
2.422






12
Lens 6
QTYP
−39.543
0.658
2.512
Plastic
1.55
56.02
11.83


13

QTYP
−5.606
See Table 1
2.724






14
Lens 7
QTYP
−8.385
0.712
5.287
Plastic
1.53
56.16
−13.35  


15

QTYP
49.689
0.058
5.914






16
Filter
Plano
Infinity
0.11

Glass
1.52
64.17



17

Plano
Infinity
0.71







18
Image
Plano
Infinity























TABLE 6








Aspheric Coefficients













Surface #
Conic
NR
A0
A1
A2
A3





 2
0
2.312E+00
−2.228E−01  
−2.048E−02  
−7.882E−05  
−1.050E−05  


 3
0
2.310E+00
−1.717E−01  
−4.906E−02  
9.485E−03
−1.358E−03  


 4
0
2.302E+00
−8.608E−02  
−7.006E−02  
1.927E−02
−2.466E−03  


 5
0
2.322E+00
2.442E−02
−9.880E−02  
2.945E−02
−2.683E−03  


 6
0
2.344E+00
3.409E−01
−2.368E−02  
1.068E−02
−1.336E−03  


 7
0
2.308E+00
−3.385E−01  
5.580E−02
−2.051E−02  
−4.065E−03  


 8
0
2.253E+00
−1.273E−01  
2.876E−02
−1.878E−03  
−4.929E−04  


 9
0
2.150E+00
1.016E−01
5.743E−03
1.365E−03
2.982E−04


10
0
2.112E+00
4.558E−01
2.672E−02
8.358E−03
7.761E−04


11
0
2.379E+00
3.537E−01
2.741E−02
−6.241E−04  
−3.601E−04  


12
0
2.487E+00
−4.523E−01  
8.071E−03
−5.215E−03  
1.521E−03


13
0
2.642E+00
−2.108E−01  
8.015E−03
9.941E−03
3.511E−03


14
0
5.429E+00
−7.379E−01  
4.538E−01
−1.127E−02  
1.093E−02


15
0
6.558E+00
−2.956E+00  
7.554E−01
2.869E−01
1.268E−01












Aspheric Coefficients (Continued)










Surface #
A4
A5
A6





 2
−9.895E−06  
3.323E−05
6.008E−06


 3
8.433E−04
−4.676E−04  
1.264E−04


 4
1.023E−03
−4.285E−04  
6.084E−05


 5
−5.068E−04  
7.937E−05
−7.299E−05  


 6
−8.614E−04  
2.075E−04
−3.049E−04  


 7
−6.339E−04  
−5.556E−05  
−4.174E−04  


 8
−3.378E−04  
−7.682E−05  
−7.572E−05  


 9
−1.878E−04  
−1.123E−04  
−3.653E−05  


10
4.735E−04
−2.554E−05  
5.436E−05


11
−5.909E−04  
−1.719E−04  
2.542E−05


12
−1.550E−03  
−4.599E−04  
−2.452E−04  


13
2.021E−04
−2.512E−04  
−1.698E−04  


14
−6.463E−03  
−1.341E−03  
4.945E−04


15
2.273E−02
3.099E−03
7.579E−04









The power sequence for lens element from L1 to L7 is as follows: +−−+−+− (plus-minus-minus-plus-minus-plus-minus). Specifically, lens powers Pi for lens element from L1 to L7 are given in Table 7. L1, L2 and L4 are each formed meniscus with respect to the object side. L5 and L6 are each formed meniscus with respect to the image side. |f4| is much smaller than the |f| of all the focal lengths of the single lens elements L1, L2, and L3. That is, |f4|<<|f1|, |f2|, |f3|. For example, |f1|, |f2|, |f3| may be greater than |f4| by more than 50%. L4 is made of glass, with a refractive index n>1.7. PG1 and P3 are similar, i.e. PG1/P3 does not vary by more than 10% from 1. Specifically, Table 7 shows powers Pi, ratios |f/f4|, and ratios between each Pi and PG1













TABLE 7






Lens element Li
Pi
|f/f4|
Pi/PG1




















1
0.06
3.56
0.47



2
−0.02
13.06
−0.13



3
−0.12
1.67
−1.00



4
0.20
1.00
1.67



5
−0.066
3.00
−0.56



6
0.08
2.36
0.71



7
−0.07

−0.63










FIG. 6 shows yet another example of a 2G pop-out optical lens system disclosed herein and numbered 600. Lens system 600 comprises a pop-out lens 602 divided into G1 and G2, an image sensor 604 and, optionally, an optical element 606. Image sensor 604 may have a SD of 21.5 mm (“1/0.8” sensor”). Table 8 provides surface types and Table 9 provides aspheric coefficients.









TABLE 8







EFL = 13.4 mm, F number = 2.0, HFOV = 38.7 deg.





















Aperture






Surface


Curvature

Radius



Focal


#
Comment
Type
Radius
Thickness
(D/2)
Material
Index
Abbe #
Length



















 1
A.S.
Plano
Infinity
−1.058
3.34






 2
Lens 1
QTYP
5.277
0.933
3.34
Glass
 1.58
59.45
25.23


 3

QTYP
7.679
0.457
3.258






 4
Lens 2
QTYP
−19.149
0.329
3.216
Glass
1.8
28.39
−153.41 


 5

QTYP
−22.862
0.149
3.113






 6
Lens 3
QTYP
11.011
0.523
3.088
Glass
 1.65
58.52
33.17


 7

QTYP
21.954
0.149
3.028






 8
Lens 4
QTYP
5.875
0.412
2.957
Glass
 1.75
27.71
−35.61  


 9

QTYP
4.675
1.292
2.962






10
Lens 5
QTYP
−7.251
0.399
2.985
Plastic
 1.67
19.44
−30.04  


11

QTYP
−11.536
0.149
3.203






12
Lens 6
QTYP
−16.526
1.152
3.358
Glass
 1.75
52.43
11.72


13

QTYP
−5.945
See Table 1
3.578






14
Lens 7
QTYP
131.123
1.496
7.781
Glass
1.5
56.41
−23.02  


15

QTYP
10.598
0.551
9.375






16
Filter
Plano
Infinity
0.21

Glass
 1.52
64.17



17

Plano
Infinity
0.61







18
Image
Plano
Infinity























TABLE 9








Aspheric Coefficients













Surface #
Conic
NR
A0
A1
A2
A3





 2
0
3.435E+00
−8.330E−02  
−1.460E−02  
−1.340E−03  
6.450E−04


 3
0
3.346E+00
−2.180E−01  
−8.720E−03  
4.973E−03
3.093E−03


 4
0
3.296E+00
6.016E−01
−3.329E−02  
6.221E−03
3.051E−03


 5
0
3.185E+00
5.671E−01
−3.032E−02  
3.896E−03
2.892E−03


 6
0
3.107E+00
−1.547E−01  
2.423E−03
6.657E−03
1.069E−03


 7
0
3.009E+00
−6.753E−02  
−1.839E−02  
1.766E−03
−1.370E−03  


 8
0
2.977E+00
−6.020E−01  
−3.387E−02  
−4.751E−03  
−5.961E−05  


 9
0
2.964E+00
−5.604E−01  
9.384E−03
4.645E−04
1.054E−03


10
0
3.051E+00
3.974E−02
3.237E−02
6.908E−03
−2.147E−04  


11
0
3.473E+00
−5.742E−02  
1.715E−02
2.850E−04
−4.169E−03  


12
0
4.053E+00
−2.565E−01  
−1.954E−02  
−1.276E−02  
−3.579E−03  


13
0
4.416E+00
5.790E−02
9.910E−02
2.532E−02
−8.018E−03  


14
0
7.963E+00
−3.528E+00  
7.011E−01
8.371E−02
3.460E−02


15
0
9.619E+00
−8.035E+00  
3.629E−01
−6.957E−02  
1.066E−01












Aspheric Coefficients (Continued)










Surface #
A4
A5
A6





 2
6.734E−05
1.684E−05
1.215E−05


 3
−7.664E−04  
−2.648E−05  
1.238E−04


 4
−2.713E−04  
5.560E−04
−1.247E−04  


 5
1.264E−03
9.987E−04
−1.156E−04  


 6
1.115E−03
2.658E−04
−1.238E−04  


 7
2.450E−04
−3.497E−05  
−8.649E−05  


 8
1.049E−04
2.363E−04
−3.592E−06  


 9
−2.871E−04  
9.801E−05
−6.196E−06  


10
−1.235E−03  
3.796E−05
1.015E−04


11
−3.032E−03  
1.568E−03
2.758E−04


12
4.638E−03
6.031E−03
8.180E−04


13
−9.655E−03  
−2.828E−03  
−2.185E−04  


14
5.576E−04
−3.777E−03  
−1.705E−04  


15
7.556E−03
−1.287E−02  
−4.342E−04  









The power sequence for lens element from L1 to L7 is as follows: +−+−−+− (plus-minus-plus-minus-minus-plus-minus). L5 and L6 (last 2 lens elements of G1) together have an Abbe-#L5+L6=71.87 and an EFLL5+L6=17.51 mm. |f6| is much smaller than the magnitude of all the focal lengths of the single lens elements L1, L2, L3 L4, L5, i.e. f6|<<|f1|, |f2|, |f3|, |f4|, |f5|. For example, |f1|, |f2|, |f3|, |f4|, |f5| may be greater than |f6| by more than 100%. L2, L4 and L6 are made of glass, with a refractive index n>1.7. PG1 and P6 are similar, i.e. PG1/P6 does not vary by more than 10% from 1. Specifically, Table 10 shows powers Pi, ratios |f/f6| and ratios between each Pi and PG1.













TABLE 10









Refractive


Lens element Li
Pi
|f/f6|
Pi/PG1
Index n



















1
0.04
2.15
0.50
1.58


2
−0.01
13.09
−0.08
1.80


3
0.03
2.83
0.38
1.65


4
−0.03
3.04
−0.36
1.75


5
−0.03
2.56
−0.42
1.68


6
0.09
1.00
1.08
1.76


7
−0.04

−0.55
1.50










FIG. 7 shows yet another example of a 2G pop-out optical lens system disclosed herein and numbered 700. Lens system 700 comprises a pop-out lens 702 divided into G1 and G2, an image sensor 704 and, optionally, an optical element 706. Image sensor 204 may have a SD of 21.5 mm (“1/0.8″ sensor”). Table 11 provides surface types and Table 12 provides aspheric coefficients.









TABLE 11







EFL = 13.4 mm, F number = 2.0, HFOV = 38.6 deg.





















Aperture






Surface


Curvature

Radius


Abbe
Focal


#
Comment
Type
Radius
Thickness
(D/2)
Material
Index
#
Length



















 1
A.S.
Plano
Infinity
−0.307
3.352






 2
Lens 1
QTYP
8.118
0.57
3.352
Plastic
1.55
56.02
37.83


 3

QTYP
13.007
0.15
3.355






 4
Lens 2
QTYP
13.861
0.33
3.342
Plastic
1.67
19.44
151.7 


 5

QTYP
15.876
0.182
3.375






 6
Lens 3
QTYP
25.961
0.33
3.44
Plastic
1.58
28.22
−11.25  


 7

QTYP
5.248
0.157
3.396






 8
Lens 4
QTYP
5.778
1.071
3.325
Glass
1.88
40.78
 7.59


 9

QTYP
37.193
1.637
3.16






10
Lens 5
QTYP
−3.556
0.712
3.106
Plastic
1.63
23.36
−16.78  


11

QTYP
−5.742
0.15
3.487






12
Lens 6
QTYP
1654.871
1.052
3.633
Plastic
1.55
56.02
14.14


13

QTYP
−7.788
See Table 1
3.834






14
Lens 7
QTYP
−33.826
1.386
7.797
Plastic
1.53
56.16
−20.36  


15

QTYP
16.297
0.256
9.247






16
Filter
Plano
Infinity
0.21

Glass
1.52
64.17



17

Plano
Infinity
0.61







18
Image
Plano
Infinity























TABLE 12








Aspheric Coefficients













Surface #
Conic
NR
A0
A1
A2
A3





 2
0
3.390E+00
−3.730E−01  
−1.514E−02  
2.945E−03
−4.989E−04  


 3
0
3.388E+00
−2.961E−01  
−3.935E−02  
4.904E−03
2.612E−05


 4
0
3.376E+00
−2.066E−01  
−8.890E−02  
1.620E−02
3.787E−03


 5
0
3.405E+00
6.021E−02
−1.244E−01  
3.506E−02
4.437E−03


 6
0
3.438E+00
4.547E−01
−6.225E−02  
2.113E−02
5.558E−04


 7
0
3.385E+00
−5.643E−01  
5.145E−03
−1.265E−02  
−1.390E−03  


 8
0
3.304E+00
−1.129E−01  
4.829E−02
2.524E−03
7.171E−04


 9
0
3.154E+00
1.262E−01
3.003E−02
6.768E−03
1.160E−03


10
0
3.098E+00
6.435E−01
2.731E−02
1.313E−02
1.166E−03


11
0
3.489E+00
4.682E−01
1.917E−02
2.533E−04
−4.889E−04  


12
0
3.647E+00
−5.625E−01  
−3.789E−03  
−1.003E−02  
3.206E−03


13
0
3.876E+00
−2.461E−01  
−1.794E−02  
7.369E−03
6.491E−03


14
0
7.963E+00
−2.665E+00  
5.812E−01
−4.696E−02  
3.626E−02


15
0
9.619E+00
−5.889E+00  
5.626E−01
1.325E−02
1.334E−01












Aspheric Coefficients (Continued)










Surface #
A4
A5
A6





 2
−4.893E−04  
3.602E−05
9.729E−05


 3
−1.171E−03  
9.917E−04
−3.303E−05  


 4
−2.122E−03  
1.619E−03
−3.584E−04  


 5
−4.114E−03  
1.635E−03
−4.492E−04  


 6
−2.004E−03  
8.672E−04
−1.981E−04  


 7
8.441E−04
8.169E−04
−3.232E−04  


 8
−2.463E−04  
2.781E−04
−3.720E−05  


 9
−3.417E−05  
−2.070E−06  
1.232E−05


10
6.432E−04
1.006E−04
7.294E−05


11
−4.309E−04  
3.393E−05
−3.081E−05  


12
2.586E−04
4.192E−04
−1.253E−05  


13
3.107E−03
9.339E−04
2.311E−04


14
−4.361E−03  
−1.111E−03  
−1.748E−03  


15
1.995E−04
2.381E−03
−2.411E−04  









The power sequence for lens element from L1 to L7 is as follows: ++−+−+− (plus-plus-minus-plus-minus-plus-minus), see Table 13. L5 and L6 (the last 2 lens elements of G1) together have an Abbe-#L5+L6=79.38 and an EFLL5+L6=49.75 mm. |f4| is much smaller than that of all the focal lengths of the single lens elements L1, L2, L3 L5, L6, i.e. |f4|<<|f1|, |f2|, |f3|, |f5|, |f6|. For example, |f1|, |f2|, |f3|, |f5|, |f6| may be greater than |f4| by more than 80%.


The deflection point of L1 is located at a distance of 3.275 mm measured from the OA at the front surface and at a distance of 2.749 mm measured from the OA at the rear surface. PG1 and P3, as well as PG1 and P6 are similar, i.e. PG1/P3 as well as PG1/P6 do not vary by more than 20% from 1. L4 is made of glass, with a refractive index n>1.7. Specifically, Table 13 also shows powers Pi, ratios between each Pi and PG1, ratios |f/f4| and refractive indexes of each lens element.













TABLE 13









Refractive


Lens element Li
Pi
Pi/PG1
|f/f4|
index n



















1
0.03
0.33
4.98
1.55


2
0.01
0.08
19.99
1.68


3
−0.09
−1.12
1.48
1.59


4
0.13
1.67
1.00
1.89


5
−0.06
−0.75
2.21
1.64


6
0.07
0.89
1.86
1.55


7
−0.05
−0.62

1.53










FIG. 8 shows yet another example of a 2G pop-out optical lens system disclosed herein and numbered 800. Lens system 800 comprises a pop-out lens 802 divided into G1 and G2, an image sensor 804 and, optionally, an optical element 806. Image sensor 804 may have a SD of 21.5 mm. Table 14 provides just surface types and Table 15 provides aspheric coefficients.









TABLE 14







EFL = 12.1 mm, F number = 2.0, HFOV = 41.3 deg.





















Aperture






Surface


Curvature

Radius


Abbe
Focal


#
Comment
Type
Radius
Thickness
(D/2)
Material
Index
#
Length



















 1
A.S.
Plano
Infinity
−0.071
3.028






 2
Lens 1
QTYP
−9.406
0.343
3.028
Plastic
1.66
21.26
70.53


 3

QTYP
−7.942
0.148
2.945






 4
Lens 2
QTYP
6.216
1.07
3.074
Plastic
1.54
56.05
15.54


 5

QTYP
21.745
0.149
3.103






 6
Lens 3
QTYP
5.072
0.33
3.159
Plastic
1.65
21.78
−27.18  


 7

QTYP
3.846
1.12
3.061






 8
Lens 4
QTYP
19.026
0.853
3.126
Plastic
1.54
56.05
30.13


 9

QTYP
−120.768
0.564
3.148






10
Lens 5
QTYP
−3.422
0.623
3.162
Plastic
1.62
24.44
−18.03  


11

QTYP
−5.257
0.15
3.44






12
Lens 6
QTYP
10.603
0.922
3.67
Plastic
1.54
55.9 
12.72


13

QTYP
−19.495
See Table 1
3.979






14
Lens 7
QTYP
−23.148
1.396
8.002
Plastic
1.54
55.99
−13.18  


15

QTYP
10.681
0.319
9.039






16
Filter
Plano
Infinity
0.21

Glass
1.52
64.17



17

Plano
Infinity
0.61







18
Image
Plano
Infinity























TABLE 15








Aspheric Coefficients













Surface #
Conic
NR
A0
A1
A2
A3





 2
0
3.313E+00
8.957E−01
4.109E−02
8.360E−03
2.264E−03


 3
0
3.212E+00
1.028E+00
7.698E−02
2.576E−02
8.420E−03


 4
0
3.305E+00
−3.018E−01  
−3.778E−02  
−5.269E−03  
−3.905E−04  


 5
0
3.208E+00
−4.006E−01  
−3.108E−04  
−9.269E−03  
8.447E−05


 6
0
3.160E+00
−2.459E−01  
4.353E−02
−9.540E−04  
−5.431E−04  


 7
0
3.196E+00
−4.877E−01  
1.567E−02
−6.572E−03  
−3.724E−03  


 8
0
3.259E+00
−1.187E−01  
6.735E−02
3.056E−02
8.447E−03


 9
0
3.340E+00
−3.000E−01  
5.534E−02
4.719E−02
1.855E−02


10
0
3.390E+00
1.911E+00
8.570E−02
7.185E−02
1.062E−02


11
0
3.401E+00
8.313E−01
2.304E−02
8.364E−03
−5.818E−03  


12
0
3.739E+00
−1.184E+00  
1.073E−01
2.210E−02
8.046E−03


13
0
3.896E+00
−4.957E−01  
1.422E−02
2.538E−02
4.112E−03


14
0
7.839E+00
−2.401E+00  
1.038E+00
−1.558E−01  
2.461E−02


15
0
9.455E+00
−8.848E+00  
1.028E+00
2.281E−02
1.962E−01












Aspheric Coefficients (Continued)










Surface #
A4
A5
A6





 2
5.970E−04
−7.580E−05  
4.376E−05


 3
2.804E−03
5.578E−04
1.736E−04


 4
−1.633E−03  
−7.214E−04  
−1.205E−04  


 5
−2.128E−03  
−5.100E−05  
−1.513E−04  


 6
−2.053E−03  
2.628E−04
7.901E−05


 7
−2.817E−03  
−2.357E−04  
8.681E−05


 8
2.631E−04
−7.949E−04  
−3.010E−04  


 9
6.479E−03
2.460E−03
2.437E−04


10
1.028E−02
2.963E−03
4.296E−04


11
−5.594E−05  
3.334E−04
−2.177E−04  


12
−8.268E−03  
−2.892E−03  
−1.411E−03  


13
−3.740E−03  
−1.547E−03  
−6.049E−04  


14
−1.499E−02  
5.715E−03
−8.238E−04  


15
−3.926E−02  
2.242E−02
−5.473E−04  









A sequence of lens powers from L1 to L7 is as follows: ++−+−+− (plus-plus-minus-plus-minus-plus-minus). The deflection point of L1 is located at a distance of 1.989 mm measured from the OA at the front surface and at a distance of 1.95 mm measured from the OA at the rear surface. PG1 and P6 as well as PG1 and P7 are similar, i.e. PG1/P6 as well as PG1/P7 do not vary by more than 20% from 1. Specifically, Table 16 shows powers Pi and ratios between each Pi and PG1.











TABLE 16





Lens element Li
Pi
Pi/PG1

















1
0.01
0.16


2
0.06
0.71


3
−0.04
−0.41


4
0.03
0.37


5
−0.06
−0.61


6
0.08
0.87


7
−0.08
−0.84










FIG. 9 shows yet another example of a 2G pop-out optical lens system disclosed herein and numbered 900. Lens system 900 comprises a pop-out lens 902 divided into G1 and G2, an image sensor 904 and, optionally, an optical element 906. Image sensor 904 may have a SD of 21.5 mm. G1 includes 5 lens elements and G2 includes one lens element. Table 17 provides surface types and Table 18 provides aspheric coefficients.









TABLE 17







EFL = 12.2 mm, F number = 2.5, HFOV = 41.1 deg.





















Aperture






Surface


Curvature

Radius



Focal


#
Comment
Type
Radius
Thickness
(D/2)
Material
Index
Abbe #
Length



















 1
A.S.
Plano
Infinity
−0.830
2.398






 2
Lens 1
QTYP
3.851
1.041
2.398
Plastic
1.54
55.91
10.35


 3

QTYP
10.916
0.348
2.286






 4
Lens 2
QTYP
5.19
0.318
2.146
Plastic
1.67
19.44
−28.23  


 5

QTYP
3.978
1.151
2.005






 6
Lens 3
QTYP
−33.307
0.453
2.349
Plastic
1.54
55.91
55.24


 7

QTYP
−15.915
0.737
2.592






 8
Lens 4
QTYP
−3.797
0.871
3.283
Plastic
1.67
19.44
−23.29  


 9

QTYP
−5.467
0.226
3.828






10
Lens 5
QTYP
7.497
1.206
4.231
Plastic
1.54
55.91
16.89


11

QTYP
37.557
See Table1
4.563






12
Lens 6
QTYP
−49.973
1.169
7.903
Plastic
1.54
55.91
−14.45  


13

QTYP
9.459
0.337
8.940






14
Filter
Plano
Infinity
0.21

Glass
1.52
64.17



15

Plano
Infinity
0.61







16
Image
Plano
Infinity























TABLE 18








Aspheric Coefficients













Surface #
Conic
NR
A0
A1
A2
A3





 2
0
2.491E+00
4.440E−02
9.801E−03
2.525E−03
5.460E−04


 3
0
2.458E+00
−3.707E−02  
1.324E−02
−1.374E−03  
1.848E−05


 4
0
2.421E+00
−1.545E−01  
2.164E−02
−9.674E−03  
−7.402E−04  


 5
0
2.342E+00
−1.074E−02  
3.903E−02
−1.296E−03  
4.145E−04


 6
0
2.393E+00
−2.229E−01  
2.616E−02
1.354E−02
2.289E−03


 7
0
2.537E+00
−2.120E−01  
3.323E−02
1.339E−02
2.864E−04


 8
0
3.094E+00
9.095E−01
3.023E−02
2.507E−03
−5.696E−03  


 9
0
3.592E+00
5.490E−01
1.013E−01
−3.267E−02  
−4.194E−03  


10
0
4.010E+00
−1.866E+00  
1.988E−01
−1.808E−02  
1.183E−02


11
0
4.321E+00
−1.429E+00  
−1.897E−02  
−5.209E−03  
−8.930E−04  


12
0
7.594E+00
−3.232E+00  
1.078E+00
−1.596E−01  
1.507E−02


13
0
8.882E+00
−9.125E+00  
9.677E−01
−1.603E−01  
3.356E−02












Aspheric Coefficients (Continued)










Surface #
A4
A5
A6





 2
9.609E−05
−8.114E−06  



 3
−1.084E−04  
−8.918E−06  



 4
−2.033E−05  
2.019E−05



 5
1.481E−04
−6.227E−05  



 6
2.499E−04
−1.424E−04  



 7
−1.163E−04  
−1.725E−04  
−4.524E−05  


 8
3.022E−03
−4.446E−04  
−1.182E−04  


 9
2.606E−03
−4.025E−04  
−1.797E−04  


10
−1.467E−03  
−5.540E−04  
−5.377E−04  


11
4.458E−03
7.204E−04
6.093E−04


12
−1.296E−02  
7.023E−03
−1.074E−03  


13
−5.957E−02  
1.294E−02
−2.078E−03  









A sequence of lens powers from L1 to L6 is as follows: +−+−+− (plus-minus-plus-minus-plus-minus). PG1 and P1 are similar, i.e. PG1/P1 does not vary by more than 20% from 1. Specifically, Table 19 shows powers Pi and ratios between each Pi and PG1.











TABLE 19





Lens element Li
Pi
Pi/PG1

















1
0.10
1.09


2
−0.04
−0.40


3
0.02
0.20


4
−0.04
−0.48


5
0.06
0.67


6
−0.07
−0.78










FIG. 10 shows yet another example of a 2G pop-out optical lens system disclosed herein and numbered 1000. Lens system 1000 comprises a pop-out lens 1002 divided into G1 and G2, an image sensor 1004 and, optionally, an optical element 1006. Image sensor 204 may have a SD of 21.5 mm. Table 20 provides surface types and Table 21 provides aspheric coefficients.









TABLE 20







EFL = 13.1 mm, F number = 2, HFOV = 39.1 deg.





















Aperture






Surface


Curvature

Radius


Abbe
Focal


#
Comment
Type
Radius
Thickness
(D/2)
Material
Index
#
Length



















 1
A.S.
Plano
Infinity
−1.095
3.289






 2
Lens 1
QTYP
5.488
1.318
3.289
Glass
1.58
59.45
13.77


 3

QTYP
15.69
0.418
3.159






 4
Lens 2
QTYP
−27.704
0.33
3.101
Plastic
1.65
21.78
−46.91  


 5

QTYP
−282.717
0.315
3.005






 6
Lens 3
QTYP
9.98
0.376
2.911
Plastic
1.64
23.37
−81.82  


 7

QTYP
8.269
0.43
2.844






 8
Lens 4
QTYP
7.214
0.426
2.787
Glass
1.75
27.71
77.39


 9

QTYP
8.025
0.699
2.939






10
Lens 5
QTYP
−6.935
0.404
3.099
Plastic
1.64
23.37
−19.69  


11

QTYP
−15.627
0.18
3.383






12
Lens 6
QTYP
−23.396
1.423
3.67
Glass
1.75
52.43
10.85


13

QTYP
−6.236
See Table 1
3.926






14
Lens 7
QTYP
−15.089
1.424
7.998
Plastic
1.54
55.99
−13.69  


15

QTYP
15.34
0.238
9.302






16
Filter
Plano
Infinity
0.21

Glass
1.52
64.17



17

Plano
Infinity
0.61







18
Image
Plano
Infinity























TABLE 21








Aspheric Coefficients













Surface #
Conic
NR
A0
A1
A2
A3





 2
0
3.435E+00
5.002E−02
1.923E−02
3.655E−03
1.317E−04


 3
0
3.346E+00
−7.572E−02  
1.189E−02
−3.167E−04  
−5.946E−04  


 4
0
3.296E+00
2.744E−01
−6.799E−02  
2.373E−02
−1.366E−03  


 5
0
3.185E+00
2.833E−01
−8.883E−02  
3.090E−02
−2.104E−04  


 6
0
3.107E+00
−2.719E−01  
3.963E−02
−3.736E−03  
−1.893E−03  


 7
0
3.009E+00
−4.217E−01  
6.410E−02
−2.386E−02  
−9.752E−03  


 8
0
2.977E+00
−7.884E−01  
−5.166E−02  
6.128E−03
−5.476E−03  


 9
0
2.964E+00
−2.987E−01  
−3.838E−02  
5.225E−03
−2.759E−03  


10
0
3.051E+00
4.321E−01
−5.039E−03  
−1.595E−02  
−1.685E−03  


11
0
3.473E+00
1.457E−01
−6.641E−03  
−5.240E−03  
−4.904E−03  


12
0
4.053E+00
1.869E−01
7.094E−02
−2.167E−02  
−1.287E−02  


13
0
4.416E+00
7.823E−01
1.748E−01
−3.634E−02  
−3.794E−02  


14
0
7.963E+00
−1.304E+00  
7.078E−01
−9.398E−02  
2.563E−02


15
0
9.619E+00
−6.107E+00  
7.241E−01
−1.507E−02  
1.531E−01












Aspheric Coefficients (Continued)










Surface #
A4
A5
A6





 2
−3.206E−04  
−1.266E−04  
−3.507E−05  


 3
3.659E−04
2.430E−04
−9.735E−06  


 4
1.986E−03
−4.930E−05  
−1.801E−04  


 5
2.037E−03
8.652E−05
−2.348E−05  


 6
1.350E−03
1.456E−03
4.098E−04


 7
−2.356E−03  
3.057E−04
2.124E−04


 8
−1.609E−03  
−6.836E−05  
2.410E−04


 9
1.407E−04
3.219E−05
6.245E−05


10
8.996E−04
−5.355E−04  
−5.956E−05  


11
−2.225E−03  
−1.419E−03  
3.236E−04


12
−1.924E−03  
5.020E−04
9.564E−04


13
−1.061E−02  
−9.185E−04  
8.961E−05









A sequence of lens powers from L1 to L7 is as follows: +−−+−+− (plus-minus-minus-plus-minus-plus-minus). PG1 and P6 are similar, i.e. PG1/P6 does not vary by more than 20% from 1. L4 and L6 are made of glass, with a refractive index n>1.7. Specifically, Table 22 shows powers Pi, ratios between each Pi and PG1 and the refractive indexes of lens elements.













TABLE 22









Refractive



Lens element Li
Pi
Pi/PG1
index n




















1
0.07
0.86
1.58



2
−0.02
−0.25
1.65



3
−0.01
−0.15
1.64



4
0.01
0.15
1.75



5
−0.05
−0.60
1.64



6
0.09
1.10
1.76



7
−0.07
−0.87
1.55










FIG. 11 shows yet another example of a 2G pop-out optical lens system disclosed herein and numbered 1100. Lens system 1100 comprises a pop-out lens 1102 divided into G1 and G2, an image sensor 1104 and, optionally, an optical element 1106. Image sensor 1104 may have a SD of 21.5 mm. Table 23 provides surface types and Table 24 provides aspheric coefficients.









TABLE 23







EFL = 12.1 mm, F number = 2, HFOV = 41.2 deg.





















Aperture






Surface


Curvature

Radius


Abbe
Focal


#
Comment
Type
Radius
Thickness
(D/2)
Material
Index
#
Length



















1
A.S.
Plano
Infinity
−1.201
3.028






2
Lens 1
QTYP
4.329
1.587
3.028
Plastic
1.53
56.16
10.63


3

QTYP
15.838
0.176
2.865






4
Lens 2
QTYP
64.604
0.33
2.788
Plastic
1.65
21.78
−22.89


5

QTYP
12.145
0.391
2.597






6
Lens 3
QTYP
7.748
0.38
2.561
Plastic
1.64
23.37
156.79


7

QTYP
8.23
0.615
2.487






8
Lens 4
QTYP
−3026.741
0.4
2.479
Glass
1.75
27.71
50.54


9

QTYP
−37.597
0.55
2.75






10
Lens 5
QTYP
−6.299
0.4
3.206
Plastic
1.64
23.37
−18.25


11

QTYP
−13.887
0.494
3.622






12
Lens 6
QTYP
−65.179
1.08
3.904
Glass
1.75
52.43
11.73


13

QTYP
−7.864
See Table 1
4.106






14
Lens 7
QTYP
−9.837
1.387
8.231
Plastic
1.54
55.99
−10.29


15

QTYP
13.788
0.193
9.201






16
Filter
Plano
Infinity
0.21

Glass
1.52
64.17



17

Plano
Infinity
0.61







18
Image
Plano
Infinity























TABLE 24








Aspheric Coefficients













Surface #
Conic
NR
A0
A1
A2
A3





2
0
3.435E+00
 6.800E−03
−2.002E−02 
−1.794E−02
−9.577E−03


3
0
3.346E+00
−1.344E−01
6.154E−03
−1.069E−02
−5.257E−03


4
0
3.296E+00
 3.472E−01
6.961E−03
 1.856E−02
 8.602E−04


5
0
3.185E+00
 4.529E−01
−1.527E−02 
 7.381E−03
−4.863E−03


6
0
3.107E+00
−3.209E−01
6.810E−02
−2.046E−02
−2.222E−02


7
0
3.009E+00
−3.312E−01
4.847E−02
−3.047E−02
−3.037E−02


8
0
2.977E+00
−4.778E−01
−3.186E−02 
 1.913E−02
 2.793E−03


9
0
2.964E+00
−1.901E−01
1.328E−04
 2.573E−02
 1.134E−02


10
0
3.051E+00
 3.018E−01
2.468E−02
−1.563E−02
 2.174E−03


11
0
3.473E+00
 1.133E−01
6.276E−02
−3.039E−02
−4.606E−04


12
0
4.053E+00
−6.073E−01
1.253E−01
 2.681E−02
−2.082E−03


13
0
4.416E+00
−1.486E−01
2.059E−01
 1.320E−01
 4.297E−02


14
0
7.963E+00
 9.061E−02
1.119E+00
−2.440E−01
 1.567E−02


15
0
9.619E+00
−8.108E+00
1.368E+00
−5.642E−02
−3.287E−02












Aspheric Coefficients (Continued)












Surface #
A4
A5
A6






2
−4.170E−03
−1.271E−03
−2.922E−04



3
−1.060E−03
−9.981E−04
−2.532E−04



4
 1.403E−03
−9.479E−04
−2.192E−04



5
−2.441E−03
−1.600E−03
−3.275E−04



6
−8.996E−03
−1.789E−03
−1.665E−04



7
−1.411E−02
−3.771E−03
−5.864E−04



8
−1.543E−03
−1.700E−04
 1.237E−04



9
 2.869E−03
 1.063E−03
 2.493E−04



10
 1.739E−04
 2.560E−04
−1.756E−04



11
−3.692E−04
 7.370E−04
−4.804E−04



12
−3.331E−03
 4.442E−04
 1.214E−04



13
 1.196E−02
 3.543E−03
 7.783E−04









A sequence of lens powers from L1 to L7 is as follows: +−++−+− (plus-minus-plus-plus-minus-plus-minus). PG1 and P1 as well as PG1 and P7 are similar, i.e. PG1/P1 as well as PG1/P7 do not vary by more than 10% from 1. L4 and L6 are made of glass, with a refractive index n>1.7. Specifically, Table 25 shows powers Pi, ratios between each Pi and PG1 and the refractive indexes of lens elements.













TABLE 25









Refractive



Lens element Li
Pi
Pi/PG1
index n




















1
0.09
1.00
1.53



2
−0.04
−0.46
1.65



3
0.01
0.07
1.64



4
0.02
0.21
1.75



5
−0.055
−0.58
1.64



6
0.09
0.90
1.76



7
−0.10
−1.03
1.55










FIG. 12 shows yet another example of a 2G pop-out optical lens system disclosed herein and numbered 1200. Lens system 1200 comprises a pop-out lens 1202 divided into G1 and G2, an image sensor 1204 and, optionally, an optical element 1206. Image sensor 1204 may have a SD of 21.5 mm. Table 26 provides surface types and Table 27 provides aspheric coefficients.









TABLE 26







EFL = 12.1 mm, F number = 2, HFOV = 41.2 deg.





















Aperture






Surface


Curvature

Radius


Abbe
Focal


#
Comment
Type
Radius
Thickness
(D/2)
Material
Index
#
Length



















1
A.S.
Plano
Infinity
−1.092
3.026






2
Lens 1
QTYP
4.769
1.352
3.026
Plastic
1.54
55.91
11.62


3

QTYP
17.232
0.236
2.884






4
Lens 2
QTYP
12.713
0.33
2.817
Plastic
1.66
20.27
−32.44


5

QTYP
7.922
0.208
2.697






6
Lens 3
QTYP
12.337
0.415
2.646
Plastic
1.54
56.41
166.99


7

QTYP
14.124
0.897
2.536






8
Lens 4
QTYP
33.441
0.399
2.485
Plastic
1.67
19.44
−99.32


9

QTYP
22.206
0.474
2.797






10
Lens 5
QTYP
11.659
0.655
2.986
Plastic
1.57
37.43
−12.59


11

QTYP
18.942
0.332
3.286






12
Lens 6
QTYP
8.13
0.886
3.717
Plastic
1.52
56.49
7.51


13

QTYP
−7.161
See Table 1
4.01






14
Lens 7
QTYP
−10.75
1.512
8.052
Plastic
1.54
55.84
−9.37


15

QTYP
10.232
0.29
9.229






16
Filter
Plano
Infinity
0.21

Glass
1.52
64.17



17

Plano
Infinity
0.61







18
Image
Plano
Infinity























TABLE 27








Aspheric Coefficients













Surface #
Conic
NR
A0
A1
A2
A3





2
0
3.625E+00
 2.026E−01
8.199E−02
2.304E−02
4.348E−03


3
0
3.354E+00
 1.816E−02
4.501E−02
1.005E−04
3.441E−03


4
0
3.350E+00
−1.194E−01
6.618E−02
1.455E−02
8.102E−03


5
0
3.308E+00
−1.402E−01
3.525E−02
1.938E−02
3.259E−03


6
0
3.308E+00
 3.506E−01
6.438E−02
−3.239E−02 
−1.571E−02 


7
0
3.183E+00
 2.955E−01
6.134E−02
−4.671E−02 
−2.408E−02 


8
0
3.183E+00
−1.145E+00
2.052E−03
1.657E−02
−4.672E−04 


9
0
3.755E+00
−8.645E−01
3.255E−01
9.233E−02
2.749E−02


10
0
4.113E+00
−8.324E−02
4.451E−01
1.688E−01
2.217E−01


11
0
4.327E+00
−2.554E+00
5.919E−01
−6.482E−02 
9.881E−02


12
0
4.632E+00
−3.445E+00
2.696E−01
1.141E−02
2.475E−02


13
0
5.112E+00
−1.545E−01
−1.860E−01 
−6.736E−02 
−1.039E−02 


14
0
9.049E+00
 9.589E−01
1.376E+00
6.918E−01
1.024E−01


15
0
9.922E+00
−1.135E+01
1.231E+00
−2.802E−01 
−3.718E−02 












Aspheric Coefficients (Continued)













Surface #
A4
A5
A6
A7
A8
A9





2
3.581E−04







3
9.607E−04
1.543E−04






4
2.093E−04
−8.588E−04 






5
−1.593E−04 
−8.193E−04 






6
9.074E−04
1.072E−03






7
−4.734E−03 
−9.441E−05 






8
2.554E−04
1.030E−03






9
1.530E−02
5.659E−03
−7.614E−04 





10
9.458E−02
3.658E−02
2.670E−03
1.391E−03




11
2.500E−02
3.472E−02
1.155E−02
5.493E−03




12
−2.345E−02 
−4.521E−03 
−4.322E−03 
−5.488E−04 




13
1.387E−01
1.057E−01
3.310E−02
1.565E−03
−6.534E−04










A sequence of lens powers from L1 to L7 is as follows: +−+−−+− (plus-minus-plus-minus-minus-plus-minus). PG1 and P1 as well as PG1 and P5 and PG1 and P7 are similar, i.e. PG1/P1 as well as PG1/P5 as well as PG1/P7 do not vary by more than 20% from 1. Specifically. Table 28 shows powers Pi and ratios between each Pi and PG1.











TABLE 28





Lens element Li
Pi
Pi/PG1

















1
0.09
0.90


2
−0.03
−0.32


3
0.01
0.06


4
−0.01
−0.10


5
−0.08
−0.83


6
0.13
1.39


7
−0.11
−1.11










FIG. 13 shows yet another example of a 2G pop-out optical lens system disclosed herein and numbered 1300. Lens system 1300 comprises a pop-out lens 1302 divided into G1 and G2, an image sensor 1304 and, optionally, an optical element 1306. Image sensor 1304 may have a SD of 21.5 mm. Table 29 provides surface types and Table 30 provides aspheric coefficients.









TABLE 29







EFL = 12.6 mm, F number = 2, HFOV = 39.3 deg.





















Aperture






Surface


Curvature

Radius


Abbe
Focal


#
Comment
Type
Radius
Thickness
(D/2)
Material
Index
#
Length



















1
A.S.
Plano
Infinity
−0.903
3.142






2
Lens 1
EVAS
5.615
0.901
3.179
Plastic
1.54
55.99
30.68


3

EVAS
7.961
0.627
3.175






4
Lens 2
EVAS
5.836
0.329
3.187
Plastic
1.67
19.44
−93.33


5

EVAS
5.22
0.289
3.26






6
Lens 3
EVAS
12.044
0.706
3.267
Plastic
1.55
56.02
20.88


7

EVAS
−225.315
1.006
3.347






8
Lens 4
EVAS
−3.849
0.33
3.347
Plastic
1.67
19.44
−18.81


9

EVAS
−5.713
0.182
3.557






10
Lens 5
EVAS
−4.241
0.331
3.578
Plastic
1.67
19.44
−307.83


11

EVAS
−4.465
0.148
3.642






12
Lens 6
EVAS
25.56
1.323
3.724
Plastic
1.57
37.43
12.42


13

EVAS
−9.583
See Table 1
4.041






14
Lens 7
EVAS
−11.028
1.532
7.503
Plastic
1.64
23.66
−13.47


15

EVAS
42.148
0.272
9.308






16
Filter
Plano
Infinity
0.21

Glass
1.52
64.17



17

Plano
Infinity
0.41







18
Image
Plano
Infinity























TABLE 30








Aspheric Coefficients













Surface #
Conic
NR
A0
A1
A2
A3
















2
0
3.229E+00
−1.235E−02
4.715E−03
 9.662E−04
 1.386E−04


3
0
3.225E+00
−2.368E−01
−2.926E−03 
−1.557E−04
 1.368E−04


4
0
3.237E+00
−1.043E+00
2.199E−02
 6.547E−03
 2.206E−04


5
0
3.310E+00
−1.243E+00
1.930E−02
 5.252E−03
−2.858E−04


6
0
3.317E+00
−5.969E−01
−3.406E−02 
−7.316E−03
−2.547E−03


7
0
3.397E+00
−5.013E−01
−1.798E−02 
−5.619E−03
−2.550E−03


8
0
3.397E+00
 5.778E−01
5.399E−02
−8.323E−04
−7.149E−04


9
0
3.607E+00
 2.081E−01
1.736E−02
−3.999E−02
−1.142E−03


10
0
3.628E+00
 1.154E+00
1.023E−02
 8.780E−03
 3.538E−04


11
0
3.692E+00
 1.162E+00
2.182E−02
 3.335E−02
 6.836E−04


12
0
3.774E+00
−9.166E−01
−7.666E−02 
−1.886E−02
−5.092E−04


13
0
4.091E+00
−6.129E−01
−1.144E−01 
−1.873E−02
−1.030E−03


14
0
7.553E+00
−8.439E−01
5.216E−01
−3.266E−02
−2.044E−03


15
0
9.358E+00
−2.860E+00
3.162E−01
 5.330E−02
 7.525E−03









A sequence of lens powers from L1 to L7 is as follows: +−+−−+− (plus-minus-plus-minus-minus-plus-minus). PG1 and P6 and PG1 and P7 are similar, i.e. PG1/P6 as well as PG1/P7 do not vary by more than 20% from 1. Specifically. Table 31 shows powers Pi, and ratios between each Pi and PG1.











TABLE 31





Lens element Li
Pi
Pi/PG1

















1
0.03
0.39


2
−0.01
−0.13


3
0.05
0.57


4
−0.05
−0.63


5
−0.003
−0.04


6
0.08
0.96


7
−0.07
−0.88










FIG. 14 shows yet another example of a 2G pop-out optical lens system disclosed herein and numbered 1400. Lens system 1400 comprises a pop-out lens 1402 divided into G1 and G2, an image sensor 1404 and, optionally, an optical element 1406. Image sensor 1404 may have a SD of 21.5 mm. G1 includes 6 lens elements and G2 includes 2 lens elements. Table 32 provides surface types and Table 33 provides aspheric coefficients.









TABLE 32







EFL = 12.7 mm, F number = 2.0, HFOV = 39.8 deg.





















Aperture






Surface


Curvature

Radius


Abbe
Focal


#
Comment
Type
Radius
Thickness
(D/2)
Material
Index
#
Length



















1
A.S
Plano
Infinity
−1.173
3.126






2
Lens 1
QTYP
4.257
0.849
3.126
Plastic
1.55
55.64
40.02


3


4.905
0.239
3.050






4
Lens 2
QTYP
5.858
0.767
3.013
Plastic
1.54
56.02
14.52


5


21.545
0.155
2.929






6
Lens 3
QTYP
43.094
0.327
2.826
Plastic
1.67
19.44
−22.34


7


11.138
1.043
2.615






8
Lens 4
QTYP
12.884
0.343
2.666
Plastic
1.66
20.37
−256.57


9


11.853
0.399
2.818






10
Lens 5
QTYP
−7.412
0.580
2.954
Plastic
1.48
53.18
−22.78


11


−22.945
0.143
3.218






12
Lens 6
QTYP
23.742
0.887
3.377
Plastic
1.54
55.93
10.11


13


−7.101
See Table 1
3.640






14
Lens 7
QTYP
−17.344
0.958
7.429
Plastic
1.54
55.84
100.36


15


−13.428
0.144
8.528






16
Lens 8
QTYP
−13.701
0.526
9.105
Plastic
1.64
22.48
−11.01


17


15.049
0.418
9.940






18
Filter
Plano
Infinity
0.210

Glass
1.52
64.17



19


Infinity
0.610







20
Image
Plano
Infinity























TABLE 33








Aspheric Coefficients













Surface #
Conic
NR
A0
A1
A2
A3





2
0
3.143E+00
−1.098E−01
−2.995E−02
−9.778E−03
−2.383E−03


3
0
3.065E+00
−3.197E−01
−3.252E−02
−4.966E−03
−1.075E−04


4
0
3.028E+00
−2.078E−01
−5.212E−03
−1.565E−03
−1.263E−03


5
0
2.943E+00
−5.199E−03
−5.229E−03
−2.287E−03
−1.050E−03


6
0
2.842E+00
 2.122E−01
 1.208E−03
 3.425E−03
 7.139E−04


7
0
2.641E+00
 2.189E−01
 1.861E−02
 5.213E−03
 1.194E−03


8
0
2.690E+00
−6.105E−01
 1.330E−02
 6.598E−03
−3.544E−04


9
0
2.840E+00
−6.878E−01
 2.026E−02
 9.721E−03
−7.749E−04


10
0
2.974E+00
 7.904E−02
−5.296E−03
 9.013E−04
 1.902E−03


11
0
3.236E+00
−5.517E−01
 2.281E−02
−3.339E−02
 6.714E−03


12
0
3.377E+00
−9.074E−01
−4.722E−03
−1.976E−02
 8.406E−03


13
0
3.646E+00
−2.077E−01
−3.542E−02
 1.401E−02
 5.964E−03


14
0
7.352E+00
−1.488E+00
 7.850E−01
−1.083E−01
 1.104E−03


15
0
8.543E+00
 2.265E+00
−4.326E−01
 3.402E−01
−8.181E−02


16
0
9.177E+00
 3.244E+00
−5.744E−01
 2.497E−01
−1.108E−01


17
0
9.950E+00
−4.293E+00
 8.805E−01
−2.453E−01
 1.766E−02












Aspheric Coefficients (Continued)











Surface #
A4
A5
A6
A7





2
−3.582E−04
−5.203E−05
 2.764E−05
0


3
 4.497E−04
−2.254E−04
 4.933E−05
0


4
 1.891E−04
−5.820E−04
 1.191E−05
0


5
−5.243E−04
−6.759E−04
 2.412E−04
0


6
−6.093E−04
−3.465E−04
 1.582E−04
0


7
−1.226E−04
−7.590E−05
 2.154E−05
0


8
−2.222E−04
−1.919E−04
−6.507E−05
0


9
−2.815E−04
−4.442E−04
−1.443E−04
0


10
 5.612E−04
−5.409E−04
−1.665E−04
0


11
 1.104E−03
 2.116E−04
−8.451E−05
0


12
 1.459E−03
 1.062E−03
 1.328E−04
 2.473E−08


13
 1.823E−03
 6.058E−05
−1.096E−04
−8.042E−05


14
−5.708E−03
 3.784E−03
−9.286E−04
 5.045E−05


15
−8.215E−04
 3.556E−03
−2.557E−03
 6.527E−04


16
 2.505E−02
−2.317E−03
−3.436E−03
−3.352E−05


17
−1.755E−03
−3.480E−03
−2.580E−04
−1.976E−03









A sequence of lens powers from L1 to L8 is as follows: ++−+−++− (plus-plus-minus-plus-minus-plus-plus-minus. PG1 and P6 as well as PG1 and P8 are similar, i.e. PG1/P6 as well as PG1/P8 do not vary by more than 20% from 1. Specifically. Table 34 shows powers Pi and ratios between each Pi and PG1.











TABLE 34





Lens element Li
Pi
Pi/PG1

















1
0.02
0.28


2
0.07
0.78


3
−0.04
−0.50


4
0.00
−0.04


5
−0.044
−0.50


6
0.10
1.12


7
0.01
0.11


8
−0.09
−1.02
















TABLE 35







EFL = 13.2 mm, F number = 2.0, HFOV = 39.4 deg.





















Aperture






Surface


Curvature

Radius


Abbe
Focal


#
Comment
Type
Radius
Thickness
(D/2)
Material
Index
#
Length



















1
A.S
Plano
Infinity
−0.494
3.126






2
Lens 1
QTYP
7.657
0.901
3.126
Plastic
1.54
55.91
15.04


3


107.057
0.210
3.050






4
Lens 2
QTYP
−48.306
0.295
3.013
Plastic
1.67
19.44
−33.21


5


41.959
0.116
2.929






6
Lens 3
QTYP
21.922
0.397
2.826
Plastic
1.61
25.98
−12.31


7


5.607
0.106
2.615






8
Lens 4
QTYP
5.453
0.904
2.666
Plastic
1.64
23.51
9.33


9


55.523
1.139
2.818






10
Lens 5
QTYP
−3.972
0.412
2.954
Plastic
1.66
20.37
−16.54


11


−6.471
0.157
3.218






12
Lens 6
QTYP
246.542
1.199
3.377
Plastic
1.54
55.91
11.33


13


−6.345
0.177
3.640






14
Lens 7
QTYP
−6.372
0.730
7.429
Plastic
1.54
55.91
199.96


15


−6.265
See Table 1
8.528






16
Lens 8
QTYP
−9.380
0.850
9.105
Plastic
1.54
55.91
−12.85


17


28.902
0.500
9.940






18
Filter
Plano
Infinity
0.210

Glass
1.52
64.17



19


Infinity
0.303







20
Image
Plano
Infinity
















FIG. 15 shows yet another example of a 2G pop-out optical lens system disclosed herein and numbered 1500. Lens system 1500 comprises a pop-out lens 1502 divided into G1 and G2, an image sensor 1504 and, optionally, an optical element 1506. Image sensor 1504 may have a SD of 21.5 mm. G1 includes 6 lens elements and G2 includes one lens element. Table 35 provides surface types and Table 36 provides aspheric coefficients.










TABLE 36








Aspheric Coefficients













Surface #
Conic
NR
A0
A1
A2
A3





2
0
3.450E+00
−2.469E−01
−1.438E−02
1.904E−03
0.000E+00


3
0
3.450E+00
−9.930E−02
−2.812E−02
8.326E−03
−9.317E−04 


4
0
3.550E+00
 9.246E−02
−1.182E−01
2.438E−02
−4.846E−03 


5
0
3.600E+00
 2.517E−01
−1.189E−01
1.268E−02
−8.922E−03 


6
0
3.650E+00
 4.045E−01
 5.631E−02
3.458E−03
−5.764E−04 


7
0
3.650E+00
−8.877E−01
 2.412E−01
1.765E−03
1.056E−02


8
0
3.650E+00
−9.234E−01
 2.566E−01
3.189E−02
1.579E−02


9
0
3.650E+00
−2.653E−01
 7.598E−02
3.497E−02
7.540E−03


10
0
3.650E+00
 1.118E+00
−2.755E−02
4.450E−02
−5.308E−03 


11
0
3.850E+00
 9.315E−01
−1.944E−02
6.237E−02
1.738E−03


12
0
3.850E+00
−6.634E−01
 5.333E−02
5.310E−02
3.425E−02


13
0
3.850E+00
−7.973E−03
−5.870E−03
−3.239E−03 
−2.326E−03 


14
0
4.250E+00
−1.316E−02
−1.447E−03
3.163E−02
7.507E−03


15
0
4.250E+00
−3.488E−01
−1.423E−02
5.162E−02
3.651E−02


16
0
7.850E+00
−2.353E−01
 7.871E−01
−9.935E−02 
3.144E−02


17
0
9.750E+00
−2.626E+00
 5.124E−01
−7.258E−02 
3.113E−02












Aspheric Coefficients (Continued)











Surface #
A4
A5
A6
A7





2
0.000E+00
0.000E+00
0.000E+00
0.000E+00 


3
2.698E−04
0.000E+00
0.000E+00
0.00E+00


4
−2.299E−03 
0.000E+00
0.000E+00
0.00E+00


5
−7.397E−04 
1.759E−04
0.000E+00
0.00E+00


6
3.646E−03
1.197E−03
5.762E−04
0.00E+00


7
1.439E−03
3.035E−03
1.448E−03
0.00E+00


8
3.193E−03
2.294E−03
1.037E−03
0.00E+00


9
2.396E−03
7.310E−05
1.092E−04
0.00E+00


10
4.547E−03
7.679E−04
1.488E−03
4.45E−04


11
9.201E−03
8.693E−04
1.689E−03
5.03E−04


12
1.890E−02
5.849E−03
1.045E−03
3.347E−04 


13
1.158E−03
1.445E−03
−8.931E−04 
5.032E−05 


14
−2.724E−03 
−5.502E−03 
−3.435E−03 
3.098E−04 


15
1.753E−02
6.219E−03
1.298E−03
2.331E−04 


16
−3.689E−03 
6.368E−03
−5.464E−04 
8.309E−04 


17
−8.399E−03 
6.362E−03
−7.124E−04 
7.999E−04 









The sequence of lens powers for lens element from L1 to L7 is as follows: +−−+−++−(plus-minus-minus-plus-minus-plus-plus-minus). The deflection point of L1 is located at a distance of 2.16 mm measured from the OA at the rear surface. PG1 and P3, PG1 and P6 and PG1 and P8 are similar, i.e. PG1/P3 as well as PG1/P6 as well as PG1/P8 do not vary by more than 10% from 1. Specifically, Table 37 shows powers Pi and ratios between each Pi and PG1.











TABLE 37





Lens element Li
Pi
Pi/PG1

















1
0.07
0.79


2
−0.03
−0.36


3
−0.08
−0.97


4
0.11
1.28


5
−0.060
−0.72


6
0.09
1.05


7
0.01
0.06


8
−0.08
−0.93










FIG. 16 shows an example of a 1G pop-out optical lens system disclosed herein and numbered 1600. Lens system 1600 comprises a pop-out lens 1602, an image sensor 1604 and, optionally, an optical element 1606. Image sensor 1604 may have a SD of 16.0 mm. Table 38 provides surface types and Table 39 provides aspheric coefficients.









TABLE 38







Embodiment 1600


EFL = 9.37 mm, F number = 1.84, HFOV = 40.0 deg.





















Aperture









Curvature

Radius



Focal


Surface #
Comment
Type
Radius
Thickness
(D/2)
Material
Index
Abbe #
Length



















1
A.S
Plano
Infinity
−1.122
2.550






2
Lens 1
EVAS
3.227
1.443
2.550
Plastic
1.53
55.69
7.02


3

EVAS
18.976
0.017
2.404






4
Lens 2
EVAS
3.461
0.284
2.248
Plastic
1.66
20.37
−10.67


5

EVAS
2.252
1.075
1.989






6
Lens 3
EVAS
13.144
0.808
2.013
Plastic
1.57
37.43
30.59


7

EVAS
52.540
0.551
2.250






8
Lens 4
EVAS
5.277
0.361
2.638
Plastic
1.59
28.30
61.61


9

EVAS
6.014
0.934
2.982






10
Lens 5
EVAS
−53.694
0.604
3.147
Plastic
1.54
55.93
7.45


11

EVAS
−3.798
0.499
3.597






12
Lens 6
EVAS
−8.200
0.499
3.878
Plastic
1.53
55.69
−5.56


13

EVAS
4.791
2.333
4.275






14
Filter
Plano
Infinity
0.210

Glass
1.52
64.17



15

Plano
Infinity
0.390







16
Image
Plano
Infinity























TABLE 39








Aspheric Coefficients












Surface #
Conic
A2
A4
A6
A8





2
0
0.000E+00
 3.222E−04
−4.323E−04 
 9.425E−05


3
0
0.000E+00
−1.488E−03
2.408E−03
−1.278E−03


4
0
0.000E+00
−3.295E−02
1.182E−02
−3.724E−03


5
0
0.000E+00
−3.670E−02
1.014E−02
−2.509E−03


6
0
0.000E+00
−4.156E−03
1.429E−04
 2.540E−04


7
0
0.000E+00
−1.490E−02
2.801E−03
−1.612E−03


8
0
0.000E+00
−2.351E−02
2.210E−03
−4.348E−04


9
0
0.000E+00
−1.965E−02
6.792E−04
 3.093E−04


10
0
0.000E+00
 6.912E−03
−1.457E−03 
−7.604E−04


11
0
0.000E+00
 3.911E−02
−7.011E−03 
 4.579E−04


12
0
0.000E+00
 3.459E−04
−5.140E−03 
 1.727E−03


13
0
0.000E+00
−3.175E−02
4.512E−03
−5.677E−04












Aspheric Coefficients (Continued)











Surface #
A10
A12
A14
A16





2
−2.325E−05 
 3.135E−06
−3.321E−07
 1.739E−08


3
3.596E−04
−5.754E−05
 4.985E−06
−1.807E−07


4
8.317E−04
−1.178E−04
 9.389E−06
−3.464E−07


5
2.460E−04
 2.627E−05
−9.329E−06
 2.372E−07


6
−3.190E−04 
 1.243E−04
−2.388E−05
 1.773E−06


7
4.400E−04
−8.468E−05
 9.509E−06
−5.306E−07


8
8.410E−05
−2.403E−05
 3.251E−06
−1.327E−07


9
−1.002E−04 
 1.824E−05
−1.666E−06
 5.839E−08


10
1.604E−04
−3.126E−06
−1.293E−06
 7.684E−08


11
4.776E−05
−9.884E−06
 5.758E−07
−1.089E−08


12
−2.634E−04 
 2.080E−05
−8.200E−07
 1.276E−08


13
5.143E−05
−3.272E−06
 1.216E−07
−1.885E−09









A thickness profile (the thickness being measured along the z-axis) of L5 taken along the y-axis and starting from lens 1602's OA has a local maximum at the OA and a local minimum, wherein the location of the local minimum is not at L5's margin (or border), i.e. the local minimum is located at a distance smaller than DA/2 from the OA. A thickness profile of L6 taken as see above for L5 has a local minimum at the OA and a local maximum, wherein the location of the local maximum is not at L6's margin. This property of L5 and L6 respectively is beneficial for achieving a lens with low Field curvature. The power sequence for lens elements L1 to L6 is plus-minus-plus-plus-plus-minus. L2 is a strong negative lens, its magnitude |f2| fulfils |f2|/EFL<1.5.



FIG. 17 shows another example of a 1G pop-out optical lens system disclosed herein and numbered 1700. Lens system 1700 comprises a pop-out lens 1702, an image sensor 1704 and, optionally, an optical element 1706. Image sensor 1704 may have a SD of 16.0 mm. Table 40 provides surface types and Table 41 provides aspheric coefficients.









TABLE 40







Embodiment 1700


EFL = 7.68 mm, F number = 1.88, HFOV = 45.5 deg.





















Aperture









Curvature

Radius



Focal


Surface #
Comment
Type
Radius
Thickness
(D/2)
Material
Index
Abbe #
Length



















1
A.S
Plano
Infinity
−0.490
2.036






2
Lens 1
QType
2.756
0.309
2.036
Plastic
1.67
19.24
−29.45


3

QType
2.312
0.075
1.993






4
Lens 2
QType
2.932
0.936
2.006
Plastic
1.54
55.93
6.48


5

QType
15.214
0.529
1.956






6
Lens 3
QType
551.231
0.499
1.845
Plastic
1.54
55.93
25.99


7

QType
−14.565
0.436
1.829






8
Lens 4
QType
−20.972
0.299
1.831
Plastic
1.67
19.24
−71.17


9

QType
−37.348
0.675
2.057






10
Lens 5
QType
−2.328
0.594
2.229
Plastic
1.67
19.24
−17.48


11

QType
−3.197
0.033
2.735






12
Lens 6
QType
4.088
1.728
3.394
Plastic
1.54
55.93
8.23


13

QType
38.318
0.887
4.788






14
Lens 7
QType
−13.465
0.636
5.199
Plastic
1.59
28.30
−6.90


15

QType
5.957
1.171
5.772






16
Filter
Plano
Infinity
0.210

Glass
1.52
64.17



17

Plano
Infinity
0.350







18
Image
Plano
Infinity























TABLE 41








Aspheric Coefficients













Surface #
Conic
Norm Radius
A0
A1
A2
A3





2
0
2.35E+00
−6.504E−01
−3.822E−02 
5.215E−03
3.401E−03


3
0
2.30E+00
−9.762E−01
−7.592E−02 
−2.475E−03 
6.950E−03


4
0
2.30E+00
−2.498E−01
4.742E−02
−3.017E−02 
−5.791E−03 


5
0
2.27E+00
−1.224E−01
−1.972E−02 
−6.107E−04 
9.147E−03


6
0
2.10E+00
−3.239E−02
8.029E−02
4.028E−02
1.906E−02


7
0
2.06E+00
−1.648E−01
5.856E−02
2.847E−02
1.510E−02


8
0
2.03E+00
−6.689E−01
2.784E−03
6.319E−04
−1.605E−04 


9
0
2.34E+00
−7.010E−01
1.041E−02
2.584E−02
1.459E−02


10
0
2.41E+00
 1.120E+00
−1.166E−01 
3.139E−02
3.720E−03


11
0
2.89E+00
 7.671E−01
−3.878E−03 
3.986E−02
1.379E−02


12
0
3.51E+00
−2.723E+00
8.833E−02
−1.341E−02 
2.533E−02


13
0
4.32E+00
−8.076E−01
−1.254E−01 
7.299E−02
−1.896E−02 


14
0
5.11E+00
−9.693E−01
5.510E−01
−2.286E−01 
4.907E−02


15
0
5.74E+00
−6.334E+00
7.433E−01
−4.116E−01 
6.440E−02












Aspheric Coefficients (Continued)












Surface #
A4
A5
A6






2
−4.852E−04 
−8.759E−05
2.283E−05



3
2.670E−03
 2.670E−03
9.297E−04



4
1.436E−03
 3.073E−03
1.195E−03



5
6.841E−03
 2.351E−03
3.722E−04



6
7.179E−03
 1.920E−03
2.523E−04



7
6.779E−03
 2.057E−03
4.147E−04



8
2.188E−03
 9.726E−05
−5.666E−05 



9
6.770E−03
−2.975E−04
−1.054E−04 



10
9.033E−03
 8.668E−04
2.888E−04



11
4.342E−03
−6.248E−03
−1.343E−03 



12
−3.529E−03 
−2.370E−03
−1.358E−03 



13
6.583E−03
−4.586E−03
7.122E−04



14
−9.388E−03 
−3.842E−03
2.482E−03



15
−3.297E−02 
−5.116E−03
−1.298E−02 










L1 and L2 as well as L3 and L4 have a uniform distance to each other. For all values between OA and DA/2 along the y-axis, the average of the distance between L1 and L2 (“μL1-L2”) and L3 and L4 (“μL3-L4”) respectively measured along the z-axis is μdL1-L2=0.06 mm and μdL3-L4=0.39 mm, the standard deviation of the average being σdL1-L2=0.02 mm and σdL3-L4=0.07 mm. Ratios of σ and μ are σdL1-L2L1-L2-0.36 and σdL3-L4L3-L4=0.17 for L1, L2 and L3, L4 respectively. Ratios of the distance at the OA between L1 and L2 (“dL1-L2”) and L3 and L4 (“dL3-L4”) respectively and TLens are dL1-L2/TLens=1.03% and dL3-L4/TLens=5.2%. L1 and L2 are very close to each other and resemble a doublet lens.



FIG. 18 shows another example of a 1G pop-out optical lens system disclosed herein and numbered 1800. Lens system 1800 comprises a pop-out lens 1802, an image sensor 1804 and, optionally, an optical element 1806. Image sensor 1804 may have a SD of 16.0 mm. Table 42 provides surface types and Table 43 provides aspheric coefficients.


The power sequence for lens elements L1 to L7 is minus-plus-plus-minus-minus-plus-minus. L6 has a deflection point that is not located at the OA, what is beneficial for achieving a lens with low Field curvature. A thickness profile of L6 taken along the y-axis and starting from lens 1802's OA has a local maximum at the OA and a local minimum, wherein the location of the local minimum is not at L6's margin. This is beneficial for achieving low Field curvature. All the surfaces of L1-L5 are convex. The signs of the sequence of fi's for lens elements L1 to L8 is minus-minus-plus-minus-minus-plus-plus-minus.


L1 and L2, L2 and L3 as well as L3 and L4 have a uniform distance to each other. For all values between OA and DA/2 along the y-axis, average distances are μdL1-L2=0.10 mm, μdL2-L3=0.17 mm and μdL3-L4=0.15 mm, the standard deviation of the average being σdL1-L2=0.09 mm, σdL2-L3=0.07 mm and σdL3-L4=0.02 mm. Ratios of the standard deviation and the average distances are σdL1-L2/μL1-L2=0.88, σdL2-L3L2-L3=0.43 and σdL3-L4L3-L4=0.02 for L1, L2 and L2, L3 and L3, L7 respectively. Ratios of OA distances dL1-L2=0.07 mm, dL2-L3=0.12 mm and dL3-L4=0.12 mm and TLens are dL1-L2/TLens=0.93%, dL2-L3/TLens=1.56% and dL3-L4/TLens=1.47% respectively.









TABLE 42







Embodiment 1800


EFL = 8.78 mm, F number = 1.67, HFOV = 41.9 deg.





















Aperture









Curvature

Radius



Focal


Surface #
Comment
Type
Radius
Thickness
(D/2)
Material
Index
Abbe #
Length



















1
A.S
Plano
Infinity
−0.606
2.622






2
Lens 1
QTYP
3.383
0.338
2.622
Plastic
1.67
19.24
−51.54


3


2.960
0.074
2.616






4
Lens 2
QTYP
3.089
0.769
2.635
Plastic
1.54
55.93
−243.32


5


2.753
0.123
2.535






6
Lens 3
QTYP
2.946
1.177
2.406
Plastic
1.54
55.93
6.51


7


14.770
0.116
2.207






8
Lens 4
QTYP
5.956
0.328
2.149
Plastic
1.67
19.24
−101.54


9


5.359
1.004
1.982






10
Lens 5
QTYP
84.496
0.726
2.352
Plastic
1.59
28.30
−44.77


11


20.085
0.492
2.950






12
Lens 6
QTYP
−5.776
0.738
3.203
Plastic
1.57
37.43
36.42


13


−4.726
0.043
3.613






14
Lens 7
QTYP
4.275
1.041
4.052
Plastic
1.54
55.93
9.37


15


23.788
0.503
4.576






16
Lens 8
QTYP
−6.320
0.371
5.755
Plastic
1.53
55.69
−6.71


17


8.540
1.981
5.899






18
Filter
Plano
Infinity
0.210

Glass
1.52
64.17



19


Infinity
0.350







20
Image
Plano
Infinity























TABLE 43








Aspheric Coefficients













Surface #
Conic
NR
A0
A1
A2
A3





2
0
2.645E+00
−5.332E−01
−9.847E−02
 1.486E−02
−5.989E−04


3
0
2.645E+00
−7.497E−01
−1.451E−01
 2.252E−02
−8.303E−03


4
0
2.686E+00
−3.438E−01
−2.891E−03
−2.226E−03
−1.048E−02


5
0
2.582E+00
−9.916E−01
−1.475E−02
−5.140E−02
−6.855E−03


6
0
2.490E+00
−3.264E−01
 3.682E−02
−1.668E−02
−1.569E−03


7
0
2.336E+00
−1.210E−02
 6.992E−02
−1.065E−02
 2.242E−03


8
0
2.262E+00
−3.234E−01
 5.237E−02
−1.548E−02
 3.667E−03


9
0
2.281E+00
−6.626E−02
 5.126E−02
−1.442E−03
 3.867E−03


10
0
2.591E+00
−6.915E−01
−8.357E−02
−5.558E−02
−2.962E−02


11
0
2.986E+00
−9.156E−01
−2.864E−02
 4.300E−02
 6.817E−03


12
0
3.208E+00
 1.640E−01
−2.832E−01
 9.804E−02
 9.750E−03


13
0
3.816E+00
 2.617E−01
 1.640E−01
−1.030E−01
−3.797E−02


14
0
4.034E+00
 4.573E+00
 7.271E−01
−8.859E−02
−7.911E−02


15
0
4.375E+00
−1.991E+00
 1.117E−01
 6.020E−02
−5.128E−02


16
0
 5.25E+00
 1.32E+00
 2.09E−01
 −5.88E−02
 4.54E−02


17
0
 5.45E+00
 −3.47E+00
 5.15E−01
 −1.31E−01
 9.49E−02












Aspheric Coefficients (Continued)











Surface #
A4
A5
A6
A7





2
 6.638E−04
−7.669E−04
1.771E−04
0.000E+00


3
 7.971E−04
−1.137E−03
1.776E−04
0.000E+00


4
−2.871E−04
−7.898E−04
5.210E−04
0.000E+00


5
 2.928E−03
−1.823E−04
−7.881E−04 
0.000E+00


6
−1.816E−03
−9.393E−05
−2.978E−04 
0.000E+00


7
−1.219E−03
 4.561E−04
2.196E−05
0.000E+00


8
−4.628E−04
 3.771E−04
4.859E−05
0.000E+00


9
 9.940E−04
 4.421E−04
1.709E−04
0.000E+00


10
−1.269E−02
−4.403E−03
−8.491E−04 
0.000E+00


11
−3.855E−03
−4.598E−03
−1.213E−03 
0.000E+00


12
 5.204E−03
−5.852E−03
−1.176E−03 
0.000E+00


13
−2.414E−03
−5.348E−04
1.878E−03
0.000E+00


14
 1.230E−02
 2.036E−03
−2.439E−03 
3.871E−04


15
 3.270E−02
−9.973E−03
3.421E−03
−3.083E−05 


16
 −3.45E−02
 1.67E−02
−3.79E−03
 3.81E−04


17
 −4.42E−02
 1.50E−02
−7.86E−03
 2.16E−03









While this disclosure has been described in terms of certain examples and generally associated methods, alterations and permutations of the examples and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific examples described herein, but only by the scope of the appended claims.


It is appreciated that certain features of the presently disclosed subject matter, which are, for clarity, described in the context of separate examples, may also be provided in combination in a single example. Conversely, various features of the presently disclosed subject matter, which are, for brevity, described in the context of a single example, may also be provided separately or in any suitable sub-combination.


Furthermore, for the sake of clarity the term “substantially” is used herein to imply the possibility of variations in values within an acceptable range. According to one example, the term “substantially” used herein should be interpreted to imply possible variation of up to 10% over or under any specified value. According to another example, the term “substantially” used herein should be interpreted to imply possible variation of up to 5% over or under any specified value. According to a further example, the term “substantially” used herein should be interpreted to imply possible variation of up to 2.5% over or under any specified value.


Unless otherwise stated, the use of the expression “and/or” between the last two members of a list of options for selection indicates that a selection of one or more of the listed options is appropriate and may be made.


It should be understood that where the claims or specification refer to “a” or “an” element, such reference is not to be construed as there being only one of that element.


All patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present disclosure.

Claims
  • 1. A lens system for a compact digital camera, comprising: an image sensor having a sensor diagonal (SD); anda lens with a field of view (FOV)>60 deg, a lens thickness (TLens), a back focal length (BFL), an effective focal length (EFL) and N≥6 lens elements L1-LN arranged along a lens optical axis (OA) starting with L1 from an object side toward an image side, the lens having a pop-out total track length (TTL)<20 mm in a pop-out state and a collapsed total track length (c-TTL) in a collapsed state, wherein the lens system is configured to switch from a pop-out state to a collapsed state by collapsing BFL to a collapsed (c-BFL), wherein SD≥10 mm, wherein BFL>0.15×TTL, and wherein a ratio c-TTL/SD<0.7.
  • 2. The lens system of claim 1, wherein N is 6, 7 or 8.
  • 3. The lens system of claim 1, wherein c-TTL/SD<0.65.
  • 4. The lens system of claim 1, wherein c-TTL/SD<0.6.
  • 5. The lens system of claim 1, wherein c-TTL/SD<0.55.
  • 6. The lens system of claim 1, wherein c-TTL/SD>0.4.
  • 7. The lens system of claim 1, wherein TTL/SD≤0.7.
  • 8. The lens system of claim 1, wherein TTL/SD≤0.65.
  • 9. The lens system of claim 1, wherein TTL/SD is in the range of 0.59 to 0.65.
  • 10. The lens system of claim 1, the lens system having a f number (f/#), and wherein f/#≤2.0.
  • 11. The lens system of claim 10, wherein f/#≤1.75.
  • 12. The lens system of claim 1, wherein TTL is in the range of 9.3 mm to 10.5 mm.
  • 13. The lens system of claim 1, wherein BFL>1.5 mm.
  • 14. The lens system of claim 1, wherein BFL>2 mm.
  • 15. The lens system of claim 1, wherein BFL≤3.0 mm.
  • 16. A lens system for a compact digital camera, comprising: an image sensor having a sensor diagonal (SD); and
  • 17. The lens system of claim 1, wherein c-TTL/TTL<0.9.
  • 18. The lens system of claim 1, wherein BFL>0.2×TTL.
  • 19. The lens system of claim 1, wherein SD=16.0 mm.
  • 20. The lens system of claim 1, wherein SD is in the range of 10-30 mm.
  • 21. The lens system of claim 1, wherein SD is in the range of 14-20 mm.
  • 22. The lens system of claim 1, wherein FOV≥80 degrees.
  • 23. The lens system of claim 1, wherein the lens system is included in a mobile device.
  • 24. The lens system of claim 23, wherein the mobile device is a smartphone.
CROSS REFERENCE TO RELATED APPLICATIONS

This is a continuation from U.S. patent application Ser. No. 17/794,972 filed Jul. 28, 2022 (now allowed), which was a 371 application from international patent application PCT/IB2022/050594 filed Jan. 24, 2022, and is related to and claims priority from U.S. Provisional Patent Application No. 63/141,128 filed Jan. 25, 2021, which is expressly incorporated herein by reference in its entirety.

US Referenced Citations (240)
Number Name Date Kind
2106752 Land Feb 1938 A
2354503 Arthur Jul 1944 A
2378170 Aklin Jun 1945 A
2441093 Aklin May 1948 A
3388956 Eggert et al. Jun 1968 A
3524700 Eggert et al. Aug 1970 A
3558218 Grey Jan 1971 A
3864027 Harada Feb 1975 A
3942876 Betensky Mar 1976 A
4134645 Sugiyama et al. Jan 1979 A
4338001 Matsui Jul 1982 A
4465345 Yazawa Aug 1984 A
4792822 Akiyama et al. Dec 1988 A
5000551 Shibayama Mar 1991 A
5327291 Baker et al. Jul 1994 A
5331465 Miyano Jul 1994 A
5600488 Minefuji et al. Feb 1997 A
5969869 Hirai et al. Oct 1999 A
6014266 Obama et al. Jan 2000 A
6035136 Hayashi et al. Mar 2000 A
6147702 Smith Nov 2000 A
6169636 Kreitzer Jan 2001 B1
6654180 Ori Nov 2003 B2
6853499 Iwasaki Feb 2005 B2
7187504 Horiuchi Mar 2007 B2
7206136 Labaziewicz et al. Apr 2007 B2
7515351 Chen et al. Apr 2009 B2
7564635 Tang Jul 2009 B1
7643225 Tsai Jan 2010 B1
7660049 Tang Feb 2010 B2
7684128 Tang Mar 2010 B2
7688523 Sano Mar 2010 B2
7692877 Tang et al. Apr 2010 B2
7697220 Iyama Apr 2010 B2
7738186 Chen et al. Jun 2010 B2
7777972 Chen et al. Aug 2010 B1
7813057 Lin Oct 2010 B2
7821724 Tang et al. Oct 2010 B2
7826149 Tang et al. Nov 2010 B2
7826151 Tsai Nov 2010 B2
7869142 Chen et al. Jan 2011 B2
7898747 Tang Mar 2011 B2
7916401 Chen et al. Mar 2011 B2
7918398 Li et al. Apr 2011 B2
7957075 Tang Jun 2011 B2
7957076 Tang Jun 2011 B2
7957079 Tang Jun 2011 B2
7961406 Tang et al. Jun 2011 B2
8000031 Tsai Aug 2011 B1
8004777 Sano et al. Aug 2011 B2
8077400 Tang Dec 2011 B2
8149523 Ozaki Apr 2012 B2
8218253 Tang Jul 2012 B2
8228622 Tang Jul 2012 B2
8233224 Chen Jul 2012 B2
8253843 Lin Aug 2012 B2
8279537 Sato Oct 2012 B2
8363337 Tang et al. Jan 2013 B2
8395851 Tang et al. Mar 2013 B2
8400717 Chen et al. Mar 2013 B2
8451549 Yamanaka et al. May 2013 B2
8503107 Chen et al. Aug 2013 B2
8514502 Chen Aug 2013 B2
8570668 Takakubo et al. Oct 2013 B2
8718458 Okuda May 2014 B2
8780465 Chae Jul 2014 B2
8810923 Shinohara Aug 2014 B2
8854745 Chen Oct 2014 B1
8958164 Kwon et al. Feb 2015 B2
9185291 Shabtay Nov 2015 B1
9201223 Ohashi Dec 2015 B2
9229194 Yoneyama et al. Jan 2016 B2
9235036 Kato et al. Jan 2016 B2
9279957 Kanda et al. Mar 2016 B2
9438792 Nakada et al. Sep 2016 B2
9488802 Chen et al. Nov 2016 B2
9568712 Dror et al. Feb 2017 B2
9678310 Iwasaki et al. Jun 2017 B2
9817213 Mercado Nov 2017 B2
9835834 Li et al. Dec 2017 B2
11340425 Yamazaki et al. May 2022 B2
20020118471 Imoto Aug 2002 A1
20030048542 Enomoto Mar 2003 A1
20050041300 Oshima et al. Feb 2005 A1
20050062346 Sasaki Mar 2005 A1
20050128604 Kuba Jun 2005 A1
20050141103 Nishina Jun 2005 A1
20050168840 Kobayashi et al. Aug 2005 A1
20050270667 Gurevich et al. Dec 2005 A1
20060092524 Konno May 2006 A1
20060238902 Nakashima et al. Oct 2006 A1
20060275025 Labaziewicz et al. Dec 2006 A1
20070114990 Godkin May 2007 A1
20070229983 Saori Oct 2007 A1
20070247726 Sudoh Oct 2007 A1
20070253689 Nagai et al. Nov 2007 A1
20080056698 Lee et al. Mar 2008 A1
20080094730 Toma et al. Apr 2008 A1
20080094738 Lee Apr 2008 A1
20080291531 Heimer Nov 2008 A1
20080304161 Souma Dec 2008 A1
20090002839 Sato Jan 2009 A1
20090067063 Asami et al. Mar 2009 A1
20090122423 Park et al. May 2009 A1
20090135245 Luo et al. May 2009 A1
20090141365 Jannard et al. Jun 2009 A1
20090147368 Oh et al. Jun 2009 A1
20090225438 Kubota Sep 2009 A1
20090279191 Yu Nov 2009 A1
20090303620 Abe et al. Dec 2009 A1
20100026878 Seo Feb 2010 A1
20100033844 Katano Feb 2010 A1
20100060995 Yumiki et al. Mar 2010 A1
20100165476 Eguchi Jul 2010 A1
20100214664 Chia Aug 2010 A1
20100277813 Ito Nov 2010 A1
20110001838 Lee Jan 2011 A1
20110032409 Rossi et al. Feb 2011 A1
20110080655 Mori Apr 2011 A1
20110102667 Chua et al. May 2011 A1
20110102911 Iwasaki May 2011 A1
20110115965 Engelhardt et al. May 2011 A1
20110149119 Matsui Jun 2011 A1
20110157430 Hosoya et al. Jun 2011 A1
20110188121 Goring et al. Aug 2011 A1
20110249347 Kubota Oct 2011 A1
20120062783 Tang et al. Mar 2012 A1
20120069455 Lin et al. Mar 2012 A1
20120092777 Tochigi et al. Apr 2012 A1
20120105708 Hagiwara May 2012 A1
20120147489 Matsuoka Jun 2012 A1
20120154929 Tsai et al. Jun 2012 A1
20120194923 Um Aug 2012 A1
20120229920 Otsu et al. Sep 2012 A1
20120262806 Lin et al. Oct 2012 A1
20130002933 Topliss et al. Jan 2013 A1
20130057971 Zhao et al. Mar 2013 A1
20130088788 You Apr 2013 A1
20130176479 Wada Jul 2013 A1
20130208178 Park Aug 2013 A1
20130271852 Schuster Oct 2013 A1
20130279032 Suigetsu et al. Oct 2013 A1
20130286488 Chae Oct 2013 A1
20140022436 Kim et al. Jan 2014 A1
20140063616 Okano et al. Mar 2014 A1
20140092487 Chen et al. Apr 2014 A1
20140139719 Fukaya et al. May 2014 A1
20140146216 Okumura May 2014 A1
20140160581 Cho et al. Jun 2014 A1
20140204480 Jo et al. Jul 2014 A1
20140240853 Kubota et al. Aug 2014 A1
20140285907 Tang et al. Sep 2014 A1
20140293453 Ogino et al. Oct 2014 A1
20140362274 Christie et al. Dec 2014 A1
20150022896 Cho et al. Jan 2015 A1
20150029601 Dror et al. Jan 2015 A1
20150116569 Mercado Apr 2015 A1
20150138431 Shin et al. May 2015 A1
20150153548 Kim et al. Jun 2015 A1
20150168667 Kudoh Jun 2015 A1
20150177496 Marks et al. Jun 2015 A1
20150205068 Sasaki Jul 2015 A1
20150244942 Shabtay et al. Aug 2015 A1
20150253532 Lin Sep 2015 A1
20150253543 Mercado Sep 2015 A1
20150253647 Mercado Sep 2015 A1
20150323757 Bone Nov 2015 A1
20150373252 Georgiev Dec 2015 A1
20150373263 Georgiev et al. Dec 2015 A1
20160007008 Molgaard et al. Jan 2016 A1
20160033742 Huang Feb 2016 A1
20160044250 Shabtay et al. Feb 2016 A1
20160062084 Chen et al. Mar 2016 A1
20160062136 Nomura et al. Mar 2016 A1
20160070088 Koguchi Mar 2016 A1
20160085089 Mercado Mar 2016 A1
20160105616 Shabtay et al. Apr 2016 A1
20160187631 Choi et al. Jun 2016 A1
20160195691 Bito et al. Jul 2016 A1
20160202455 Aschwanden et al. Jul 2016 A1
20160212333 Liege et al. Jul 2016 A1
20160241756 Chen Aug 2016 A1
20160291295 Shabtay Oct 2016 A1
20160306161 Harada et al. Oct 2016 A1
20160313537 Mercado Oct 2016 A1
20160341931 Liu et al. Nov 2016 A1
20160349504 Hun-Kim et al. Dec 2016 A1
20160353008 Osborne Dec 2016 A1
20170023778 Inoue Jan 2017 A1
20170094187 Sharma et al. Mar 2017 A1
20170102522 Jo Apr 2017 A1
20170115471 Shinohara Apr 2017 A1
20170153422 Tang et al. Jun 2017 A1
20170160511 Kim et al. Jun 2017 A1
20170199360 Chang Jul 2017 A1
20170276911 Huang Sep 2017 A1
20170310952 Adomat et al. Oct 2017 A1
20170329108 Hashimoto Nov 2017 A1
20170337703 Wu et al. Nov 2017 A1
20180024319 Lai et al. Jan 2018 A1
20180059365 Bone et al. Mar 2018 A1
20180059376 Lin et al. Mar 2018 A1
20180081149 Bae et al. Mar 2018 A1
20180120674 Avivi et al. May 2018 A1
20180149835 Park May 2018 A1
20180196236 Ohashi et al. Jul 2018 A1
20180196238 Goldenberg et al. Jul 2018 A1
20180217475 Goldenberg et al. Aug 2018 A1
20180218224 Olmstead et al. Aug 2018 A1
20180224630 Lee et al. Aug 2018 A1
20180268226 Shashua et al. Sep 2018 A1
20190025549 Hsueh et al. Jan 2019 A1
20190025554 Son Jan 2019 A1
20190075284 Ono Mar 2019 A1
20190086638 Lee Mar 2019 A1
20190107651 Sade Apr 2019 A1
20190121216 Shabtay et al. Apr 2019 A1
20190155002 Shabtay et al. May 2019 A1
20190170965 Shabtay Jun 2019 A1
20190187443 Jia et al. Jun 2019 A1
20190187486 Goldenberg et al. Jun 2019 A1
20190196148 Yao et al. Jun 2019 A1
20190215440 Rivard et al. Jul 2019 A1
20190222758 Goldenberg et al. Jul 2019 A1
20190235202 Smyth et al. Aug 2019 A1
20190353874 Yeh et al. Nov 2019 A1
20200084358 Nadamoto Mar 2020 A1
20200192069 Makeev et al. Jun 2020 A1
20200221026 Fridman et al. Jul 2020 A1
20200241233 Shabtay et al. Jul 2020 A1
20200333691 Shabtay et al. Oct 2020 A1
20200400926 Bachar Dec 2020 A1
20210048628 Shabtay et al. Feb 2021 A1
20210263276 Huang et al. Aug 2021 A1
20210364746 Chen Nov 2021 A1
20210396974 Kuo Dec 2021 A1
20220046151 Shabtay et al. Feb 2022 A1
20220066168 Shi Mar 2022 A1
20220113511 Chen Apr 2022 A1
20220232167 Shabtay et al. Jul 2022 A1
Foreign Referenced Citations (69)
Number Date Country
101634738 Jan 2010 CN
102147519 Aug 2011 CN
102193162 Sep 2011 CN
102466865 May 2012 CN
102466867 May 2012 CN
102147519 Jan 2013 CN
103576290 Feb 2014 CN
103698876 Apr 2014 CN
104297906 Jan 2015 CN
104407432 Mar 2015 CN
105467563 Apr 2016 CN
105657290 Jun 2016 CN
106680974 May 2017 CN
104570280 Jun 2017 CN
S54157620 Dec 1979 JP
S59121015 Jul 1984 JP
6165212 Apr 1986 JP
S6370211 Mar 1988 JP
H0233117 Feb 1990 JP
406059195 Mar 1994 JP
H06258702 Sep 1994 JP
H06347687 Dec 1994 JP
H07120673 May 1995 JP
H07325246 Dec 1995 JP
H07333505 Dec 1995 JP
H08179215 Jul 1996 JP
H09211326 Aug 1997 JP
H11223771 Aug 1999 JP
2000292848 Oct 2000 JP
3210242 Sep 2001 JP
2002365549 Dec 2002 JP
2004226563 Aug 2004 JP
2004334185 Nov 2004 JP
2006195139 Jul 2006 JP
2007133096 May 2007 JP
2007164065 Jun 2007 JP
2007219199 Aug 2007 JP
2007306282 Nov 2007 JP
2008111876 May 2008 JP
2008191423 Aug 2008 JP
2010032936 Feb 2010 JP
2010164841 Jul 2010 JP
2011145315 Jul 2011 JP
2012203234 Oct 2012 JP
2013003317 Jan 2013 JP
2013003754 Jan 2013 JP
2013101213 May 2013 JP
2013105049 May 2013 JP
2013106289 May 2013 JP
2013148823 Aug 2013 JP
2014142542 Aug 2014 JP
2017116679 Jun 2017 JP
2018059969 Apr 2018 JP
2019113878 Jul 2019 JP
20080088477 Oct 2008 KR
20090019525 Feb 2009 KR
20090131805 Dec 2009 KR
20110058094 Jun 2011 KR
20110115391 Oct 2011 KR
20120068177 Jun 2012 KR
20140135909 May 2013 KR
20140023552 Feb 2014 KR
20160000759 Jan 2016 KR
101632168 Jun 2016 KR
20160115359 Oct 2016 KR
M602642 Oct 2020 TW
2013058111 Apr 2013 WO
2013063097 May 2013 WO
2018130898 Jul 2018 WO
Non-Patent Literature Citations (11)
Entry
A compact and cost effective design for cell phone zoom lens, Chang et al., Sep. 2007, 8 pages.
Consumer Electronic Optics: How small a lens can be? The case of panomorph lenses, Thibault et al., Sep. 2014, 7 pages.
Optical design of camera optics for mobile phones, Steinich et al., 2012, pp. 51-58 (8 pages).
The Optics of Miniature Digital Camera Modules, Bareau et al., 2006, 11 pages.
Modeling and measuring liquid crystal tunable lenses, Peter P. Clark, 2014, 7 pages.
Mobile Platform Optical Design, Peter P. Clark, 2014, 7 pages.
Boye et al., “Ultrathin Optics for Low-Profile Innocuous Imager”, Sandia Report, 2009, pp. 56-56.
“Cheat sheet: how to understand f-stops”, Internet article, Digital Camera World, 2017.
Office Action in related KR patent application 2022-7042147, dated Sep. 2, 2024.
Office Action in related KR patent application 2022-7042150, dated Sep. 2, 2024.
Office Action in related JP patent application 2023-144491, dated Aug. 28, 2024.
Related Publications (1)
Number Date Country
20240196079 A1 Jun 2024 US
Provisional Applications (1)
Number Date Country
63141128 Jan 2021 US
Continuations (1)
Number Date Country
Parent 17794972 US
Child 18436137 US