The present disclosure relates in general to digital cameras, and more particularly to digital cameras with pop-out mechanisms and lenses.
In this application and for optical and other properties mentioned throughout the description and figures, the following symbols and abbreviations are used, all for terms known in the art:
Total track length (TTL): the maximal distance, measured along an axis parallel to the optical axis of a lens, between a point of the front surface S1 of a first lens element L1 and an image sensor, when the system is focused to an infinity object distance.
Back focal length (BFL): the minimal distance, measured along an axis parallel to the optical axis of a lens, between a point of the rear surface S2N of the last lens element LN and an image sensor, when the system is focused to an infinity object distance.
Effective focal length (EFL): in a lens (assembly of lens elements L1 to LN), the distance between a rear principal point P′ and a rear focal point F′ of the lens.
f-number (f/#): the ratio of the EFL to an entrance pupil diameter.
Multi-aperture digital cameras (or multi-cameras) are standard in today's mobile handheld electronic devices (or in short “mobile devices”, e.g. smartphones, tablets, etc.). In general, a Wide camera having a Wide camera field-of-view (FOVW) of 70-90 degrees acts as the mobile device's main (or “primary”) camera.
A main challenge is the design of Wide cameras that support ever higher image quality (IQ) and still fit into thin mobile devices with device heights of e.g. <10 mm. One promising path for improving the Wide camera's IQ is the incorporation of larger image sensors.
This shows that a larger EFL is required for realizing a camera with a larger image sensor, but similar FOV. Incorporating larger image sensors in Wide cameras is desirable for improving the Wide camera's IQ, but it requires larger EFL for maintaining the same (Wide camera) FOV, resulting in larger TTL, which is undesirable as it impedes the integration of the Wide camera in a mobile device.
Pop-out cameras resolve this conflict. They combine the advantages of a large TTL when the camera is in use (“pop-out state”), and a slim design by collapsing the TTL to a collapsed TTL (“c-TTL”) when the camera is not in use (“collapsed state”). The c-TTL is compatible with the height dimensions of modern mobile devices. Only in the pop-out state, the pop-out camera is operational as a camera. Pop-out cameras are described for example in co-owned international patent application PCT/IB2020/058697.
It would be beneficial to have Wide camera lens designs that support pop-out Wide cameras including large image sensors such as 1/1.2″ or larger, i.e. having a SD≥14.3 mm.
In various examples there are provided lens systems for a compact digital camera, comprising an image sensor having a sensor diagonal SD and a lens with a field of view FOV>60 deg and having N≥6 lens elements L1-LN starting with L1 from an object side toward an image side, each lens element Li having a respective focal length fi, with a magnitude |fi|, the lens elements divided into two lens groups G1 and G2 separated by a big gap (BG), the lens having a pop-out total track length TTL<20 mm in a pop-out state and a collapsed total track length (c-TTL) in a collapsed state, wherein the lens system is configured to switch from a pop-out state to a collapsed state by collapsing BG to a collapsed BG (and vice versa), wherein BG>0.25×TTL, wherein SD≥12 mm, and wherein a ratio c-TTL/SD<0.7.
In some examples, G1 may include five or more lens elements and G2 may include 1 or 2 lens elements.
In some examples, the ratio c-TTL/TTL<0.7. In some examples, the ratio c-TTL/TTL<0.65.
In some examples, BG>0.3×TTL. In some examples, BG>0.35×TTL.
In some examples, a thickness TG1 of G1 fulfills 0.35×TTL<TG1<0.47×TTL.
In some examples, a power PG1 of G1 fulfills PG1>0 and a power PG2 of G2 fulfills PG2<0. In some examples, −1.81≤PG1/PG2≤−0.9.
In some examples, i=6 and a sequence of lens powers P1 to P6 of lens elements L1 to L6 may be plus-minus-plus-minus-plus-minus.
In some examples, i=7 and a sequence of lens powers P1 to P7 of lens elements L1 to L7 may be plus-minus-minus-plus-minus-plus-minus, or plus-minus-plus-minus-minus-plus-minus, or plus-plus-minus-plus-minus-plus-minus, or plus-minus-plus-plus-minus-plus-minus.
In some examples, i=8 and a sequence of lens powers P1 to P8 of lens elements L1 to L8 may be plus-plus-minus-plus-minus-plus-plus-minus, or plus-minus-minus-plus-minus-plus-plus-minus.
In some examples, the last two lens elements in G1 may have together an Abbe number 50<V<120 and an effective focal length EFL of 13 mm<EFL<50 mm.
In some examples, the focal length magnitude |f1| of L1 and the focal length magnitude |f6| of L6 may vary by <25%, and both |f1| and |f6| may be less than 45% of each of the magnitudes of focal lengths |f2|, |f3|, |f4| and |f5| of, respectively, L2, L3, L4 and L5.
In some examples, L1, L2, L3 and L4 have a meniscus shape with respect to the object side and L5 and L6 have a meniscus shape with respect to the image side.
In some examples, the focal length magnitude |f4| of L4 may vary by more than 50% of each of the focal length magnitudes |f1|, |f2|, |f3|, |f5|, |f6| of, respectively, L1, L2, L3, L5 and L6.
In some examples, the focal length magnitude |f6| of L6 may vary by more than 100% of each of the magnitudes of focal lengths |f1|, |f2|, |f3|, |f4|, |f5|.
In some examples, PG1/P3 does not vary by more than 10% from 1. In some examples, PG1/P6 does not vary by more than 10% from 1. In some examples, PG1/P3 and PG1/P6 do not vary by more than 20% from 1. In some examples, PG1/P6 and PG1/P7 do not vary by more than 20% from 1. In some examples, PG1/P1 does not vary by more than 20% from 1. In some examples, PG1/P1, PG1/P5 and PG1/P7 do not vary by more than 20% from 1. In some examples, PG1/P6 and PG1/P8 do not vary by more than 20% from 1. In some examples, PG1/P3, PG1/P6 and PG1/P8 do not vary by more than 10% from 1.
In some examples, one or more lens elements may be made of glass and the refractive index n of each of the one or more lens elements may be >1.7.
In some examples, L4 is made of glass and has a refractive index n>1.7.
In some examples, L2, L4, L6 are made of glass and have each a refractive index n>1.7.
In some examples, L4 and L6 are made of glass and have each a refractive index n>1.7.
In some examples, a deflection point at the front surface of L1 is located at a distance d-f measured from an optical axis of the lens, wherein 1.5 mm<d-f<3.5 mm.
In some examples, a deflection point at the rear surface of L1 is located at a distance d-r measured from an optical axis of the lens, wherein 1.5 mm<d-r<3.5 mm.
In some examples, a lens system as above or below may be included in a pop-out camera having a sensor with a sensor diagonal SD in the range of 10-30 mm.
In some examples, a lens system as above or below may be included in a pop-out camera having a sensor with a sensor diagonal SD in the range of 14-22 mm.
In some examples, a lens system as above or below may be included in a pop-out camera that is included in a smartphone.
In various examples there are provided lens systems for a lens system for a compact digital camera, comprising an image sensor having a sensor diagonal SD, and a lens with a field of view FOV>60 deg, having a f number (f/#), a lens thickness (“TLens”) a back focal length (BFL) and an effective focal length (EFL), and having N≥6 lens elements L1-LN starting with L1 from an object side toward an image side each lens element Li having a respective focal length fi, with a magnitude |fi|, wherein the lens system is configured to switch from a pop-out state to a collapsed state by collapsing BFL to a collapsed BFL (and vice versa), wherein SD≥12 mm, wherein BFL>0.15×TTL, and wherein a ratio c-TTL/SD<0.65.
Non-limiting examples of examples disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. Identical structures, elements or parts that appear in more than one figure are generally labeled with a same numeral in all the figures in which they appear. If identical elements are shown but numbered in only one figure, it is assumed that they have the same number in all figures in which they appear. The drawings and descriptions are meant to illuminate and clarify examples disclosed herein and should not be considered limiting in any way. In the drawings:
As used herein the term “front surface” of each lens element refers to the surface of a lens element located closer to the entrance of the camera (camera object side) and the term “rear surface” refers to the surface of a lens element located closer to the image sensor (camera image side).
Each lens group includes one or more lens elements Li. G1 may include ≥5 elements and G2 may include 1-2 elements. G2 may act as a field lens as known in the art.
2G pop-out optical lens system 200 and 1G pop-out optical lens system 250 can be included in a pop-out camera. For performing optical image stabilization (OIS), the pop-out camera may use several methods known in the art. Such methods may be “lens shift OIS”, wherein the lens is moved relative to the image sensor and a camera hosting mobile device for OIS, or “sensor shift OIS”, wherein the image sensor is moved relative to the lens and to a camera hosting mobile device for OIS.
All pop-out optical lens systems disclosed herein can be used in the pop-out camera examples described in co-owned PCT patent application PCT/IB2020/058697.
Wherein
All 2G pop-out optical lens systems disclosed below can be both focused by G1-G2 focusing as well as by lens focusing. All 1G pop-out optical lens systems disclosed below are focused by lens focusing.
All pop-out optical lens systems disclosed below are shown in a pop-out state, where a pop-out camera including the optical lens system is operational
In a collapsed state, all 2G pop-out optical lens system examples have a c-BG of 0.2 mm-4.4 mm. In a collapsed state, all 1G pop-out optical lens systems examples have a c-BFL of 1.0 mm-2.5 mm. A small c-BG and c-BFL respectively is beneficial for achieving a slim camera module that can be integrated in a slim mobile device such as a smartphone. To clarify, all lens systems disclosed herein may beneficially be included or incorporated in smartphones.
Table 1 shows the values and ranges that are included in lens system examples 400-1800 disclosed below (SD, TTL, c-TTL, BG, c-BG, EFL, TG1, TFocus, dL1-L2, TLens, fLS, fN-1 given in mm; Half-field-of-view (“HFOV”) and 35 mm equivalent focal length (“35 mm EqFL”) are given in degrees, Abbe number v, #LS and f number (“f/#”) are given without units, and powers are given in inverse meter [1/m]. c-TTLMIN and c-TTLMAX respectively refer to a minimum and maximum c-TTL that can be achieved in the respective example. In general, in Table 1, “MIN” and “MAX” refer respectively to minimum and maximum values in a range.
“#LS” represents the number of the strongest lens element in a lens, i.e. the lens element with the smallest, positive focal length f. “fLS” represents the f of the strongest lens element in a lens. “fN-1” represents the f of the N−1th (i.e. the second to last) lens element in a lens. dL1-L2 represents a distance (or air gap) between L1 and L2.
For 2G type lens systems, LM refers to the last lens element in G1. The index “LM-1+LM” refers to properties of the two last lens elements in G1 together. For example, in example 400 LM-1+LM refers to properties of L5 and L6 together, in example 1500 LM-1+LM refers to properties of L6 and L7 together, etc. For performing G1-G2 focusing, BG represents the thickness of surface “#BG” when focused to infinity. “TFocus” represents the thickness of surface “#BG” when focused to 1 m and 0.5 m respectively. The power of the entire G1 group is marked PG1, the power of the entire G2 group is marked PG2 and powers of individual lens elements are marked by the element number, i.e. the power of L1 is marked P1, the power of L2 is marked P2, etc. TG1 gives the thickness of G1.
In all the 2G lens system examples 400-1500 disclosed below, ratios of TTL to EFL are in the range of TTL/EFL=1.13-1.3, ratios of TTL to SD are in the range of TTL/SD=0.64-0.78 and ratios of c-TTL to SD are in the range of c-TTL/SD=0.41-0.73.
In all the 1G lens system examples 1600-1800 disclosed below, ratios of TTL to EFL are in the range of TTL/EFL=1.05-1.3, ratios of TTL to SD are in the range of TTL/SD=0.59-0.65 and ratios of c-TTL to SD are in the range of c-TTL/SD=0.50-0.65.
Detailed optical data and surface data for pop-out lens 402 are given in Tables 2-3. Table 2 provides surface types and Table 3 provides aspheric coefficients. The surface types are:
where {z, r} are the standard cylindrical polar coordinates, c is the paraxial curvature of the surface, k is the conic parameter, rnorm is generally one half of the surface's clear aperture (CA), and An are the aspheric coefficients shown in lens data tables. The Z axis is positive towards the image side. Values for CA are given as a clear aperture radius, i.e. D/2. The reference wavelength is 555.0 nm. Units are in mm except for refractive index (“Index”) and Abbe #. Each lens element Li has a respective focal length fi, given in Table 2. The FOV is given as half FOV (HFOV). The definitions for surface types. Z axis. CA values, reference wavelength, units, focal length and HFOV are valid for all following Tables.
The deflection point of L1 is located at a distance of 1.884 mm measured from the optical axis (“OA”) at the rear surface. The magnitudes of the focal lengths of L1 (|f1|) and of L6 (|f6|) are similar, i.e. their magnitude may differ by <30%. The magnitudes |f1| and |f6| are pairwise much smaller than the magnitudes of all the focal lengths of the single lens elements L2, L3, L4 and L5, i.e. |f1|, |f6|<<|f2|, |f3|, |f4|, |f5|.| For example |f2|, |f3|, |f4|, |f5| may be greater than |f1|, |f6| by more than 45%. The ratio between the power of L1 (P1) and PG1 fulfills P1/PG1=0.89. Specifically, Table 4 shows ratios |fi/f1| and |fi/f6| and ratios between each Pi and PG1.
The power sequence for lens element from L1 to L7 is as follows: +−−+−+− (plus-minus-minus-plus-minus-plus-minus). Specifically, lens powers Pi for lens element from L1 to L7 are given in Table 7. L1, L2 and L4 are each formed meniscus with respect to the object side. L5 and L6 are each formed meniscus with respect to the image side. |f4| is much smaller than the |f| of all the focal lengths of the single lens elements L1, L2, and L3. That is, |f4|<<|f1|, |f2|, |f3|. For example, |f1|, |f2|, |f3| may be greater than |f4| by more than 50%. L4 is made of glass, with a refractive index n>1.7. PG1 and P3 are similar, i.e. PG1/P3 does not vary by more than 10% from 1. Specifically, Table 7 shows powers Pi, ratios |f/f4|, and ratios between each Pi and PG1
The power sequence for lens element from L1 to L7 is as follows: +−+−−+− (plus-minus-plus-minus-minus-plus-minus). L5 and L6 (last 2 lens elements of G1) together have an Abbe-#L5+L6=71.87 and an EFLL5+L6=17.51 mm. |f6| is much smaller than the magnitude of all the focal lengths of the single lens elements L1, L2, L3 L4, L5, i.e. f6|<<|f1|, |f2|, |f3|, |f4|, |f5|. For example, |f1|, |f2|, |f3|, |f4|, |f5| may be greater than |f6| by more than 100%. L2, L4 and L6 are made of glass, with a refractive index n>1.7. PG1 and P6 are similar, i.e. PG1/P6 does not vary by more than 10% from 1. Specifically, Table 10 shows powers Pi, ratios |f/f6| and ratios between each Pi and PG1.
The power sequence for lens element from L1 to L7 is as follows: ++−+−+− (plus-plus-minus-plus-minus-plus-minus), see Table 13. L5 and L6 (the last 2 lens elements of G1) together have an Abbe-#L5+L6=79.38 and an EFLL5+L6=49.75 mm. |f4| is much smaller than that of all the focal lengths of the single lens elements L1, L2, L3 L5, L6, i.e. |f4|<<|f1|, |f2|, |f3|, |f5|, |f6|. For example, |f1|, |f2|, |f3|, |f5|, |f6| may be greater than |f4| by more than 80%.
The deflection point of L1 is located at a distance of 3.275 mm measured from the OA at the front surface and at a distance of 2.749 mm measured from the OA at the rear surface. PG1 and P3, as well as PG1 and P6 are similar, i.e. PG1/P3 as well as PG1/P6 do not vary by more than 20% from 1. L4 is made of glass, with a refractive index n>1.7. Specifically, Table 13 also shows powers Pi, ratios between each Pi and PG1, ratios |f/f4| and refractive indexes of each lens element.
A sequence of lens powers from L1 to L7 is as follows: ++−+−+− (plus-plus-minus-plus-minus-plus-minus). The deflection point of L1 is located at a distance of 1.989 mm measured from the OA at the front surface and at a distance of 1.95 mm measured from the OA at the rear surface. PG1 and P6 as well as PG1 and P7 are similar, i.e. PG1/P6 as well as PG1/P7 do not vary by more than 20% from 1. Specifically, Table 16 shows powers Pi and ratios between each Pi and PG1.
A sequence of lens powers from L1 to L6 is as follows: +−+−+− (plus-minus-plus-minus-plus-minus). PG1 and P1 are similar, i.e. PG1/P1 does not vary by more than 20% from 1. Specifically, Table 19 shows powers Pi and ratios between each Pi and PG1.
A sequence of lens powers from L1 to L7 is as follows: +−−+−+− (plus-minus-minus-plus-minus-plus-minus). PG1 and P6 are similar, i.e. PG1/P6 does not vary by more than 20% from 1. L4 and L6 are made of glass, with a refractive index n>1.7. Specifically, Table 22 shows powers Pi, ratios between each Pi and PG1 and the refractive indexes of lens elements.
A sequence of lens powers from L1 to L7 is as follows: +−++−+− (plus-minus-plus-plus-minus-plus-minus). PG1 and P1 as well as PG1 and P7 are similar, i.e. PG1/P1 as well as PG1/P7 do not vary by more than 10% from 1. L4 and L6 are made of glass, with a refractive index n>1.7. Specifically, Table 25 shows powers Pi, ratios between each Pi and PG1 and the refractive indexes of lens elements.
A sequence of lens powers from L1 to L7 is as follows: +−+−−+− (plus-minus-plus-minus-minus-plus-minus). PG1 and P1 as well as PG1 and P5 and PG1 and P7 are similar, i.e. PG1/P1 as well as PG1/P5 as well as PG1/P7 do not vary by more than 20% from 1. Specifically. Table 28 shows powers Pi and ratios between each Pi and PG1.
A sequence of lens powers from L1 to L7 is as follows: +−+−−+− (plus-minus-plus-minus-minus-plus-minus). PG1 and P6 and PG1 and P7 are similar, i.e. PG1/P6 as well as PG1/P7 do not vary by more than 20% from 1. Specifically. Table 31 shows powers Pi, and ratios between each Pi and PG1.
A sequence of lens powers from L1 to L8 is as follows: ++−+−++− (plus-plus-minus-plus-minus-plus-plus-minus. PG1 and P6 as well as PG1 and P8 are similar, i.e. PG1/P6 as well as PG1/P8 do not vary by more than 20% from 1. Specifically. Table 34 shows powers Pi and ratios between each Pi and PG1.
The sequence of lens powers for lens element from L1 to L7 is as follows: +−−+−++−(plus-minus-minus-plus-minus-plus-plus-minus). The deflection point of L1 is located at a distance of 2.16 mm measured from the OA at the rear surface. PG1 and P3, PG1 and P6 and PG1 and P8 are similar, i.e. PG1/P3 as well as PG1/P6 as well as PG1/P8 do not vary by more than 10% from 1. Specifically, Table 37 shows powers Pi and ratios between each Pi and PG1.
A thickness profile (the thickness being measured along the z-axis) of L5 taken along the y-axis and starting from lens 1602's OA has a local maximum at the OA and a local minimum, wherein the location of the local minimum is not at L5's margin (or border), i.e. the local minimum is located at a distance smaller than DA/2 from the OA. A thickness profile of L6 taken as see above for L5 has a local minimum at the OA and a local maximum, wherein the location of the local maximum is not at L6's margin. This property of L5 and L6 respectively is beneficial for achieving a lens with low Field curvature. The power sequence for lens elements L1 to L6 is plus-minus-plus-plus-plus-minus. L2 is a strong negative lens, its magnitude |f2| fulfils |f2|/EFL<1.5.
L1 and L2 as well as L3 and L4 have a uniform distance to each other. For all values between OA and DA/2 along the y-axis, the average of the distance between L1 and L2 (“μL1-L2”) and L3 and L4 (“μL3-L4”) respectively measured along the z-axis is μdL1-L2=0.06 mm and μdL3-L4=0.39 mm, the standard deviation of the average being σdL1-L2=0.02 mm and σdL3-L4=0.07 mm. Ratios of σ and μ are σdL1-L2/μL1-L2-0.36 and σdL3-L4/μL3-L4=0.17 for L1, L2 and L3, L4 respectively. Ratios of the distance at the OA between L1 and L2 (“dL1-L2”) and L3 and L4 (“dL3-L4”) respectively and TLens are dL1-L2/TLens=1.03% and dL3-L4/TLens=5.2%. L1 and L2 are very close to each other and resemble a doublet lens.
The power sequence for lens elements L1 to L7 is minus-plus-plus-minus-minus-plus-minus. L6 has a deflection point that is not located at the OA, what is beneficial for achieving a lens with low Field curvature. A thickness profile of L6 taken along the y-axis and starting from lens 1802's OA has a local maximum at the OA and a local minimum, wherein the location of the local minimum is not at L6's margin. This is beneficial for achieving low Field curvature. All the surfaces of L1-L5 are convex. The signs of the sequence of fi's for lens elements L1 to L8 is minus-minus-plus-minus-minus-plus-plus-minus.
L1 and L2, L2 and L3 as well as L3 and L4 have a uniform distance to each other. For all values between OA and DA/2 along the y-axis, average distances are μdL1-L2=0.10 mm, μdL2-L3=0.17 mm and μdL3-L4=0.15 mm, the standard deviation of the average being σdL1-L2=0.09 mm, σdL2-L3=0.07 mm and σdL3-L4=0.02 mm. Ratios of the standard deviation and the average distances are σdL1-L2/μL1-L2=0.88, σdL2-L3/μL2-L3=0.43 and σdL3-L4/μL3-L4=0.02 for L1, L2 and L2, L3 and L3, L7 respectively. Ratios of OA distances dL1-L2=0.07 mm, dL2-L3=0.12 mm and dL3-L4=0.12 mm and TLens are dL1-L2/TLens=0.93%, dL2-L3/TLens=1.56% and dL3-L4/TLens=1.47% respectively.
While this disclosure has been described in terms of certain examples and generally associated methods, alterations and permutations of the examples and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific examples described herein, but only by the scope of the appended claims.
It is appreciated that certain features of the presently disclosed subject matter, which are, for clarity, described in the context of separate examples, may also be provided in combination in a single example. Conversely, various features of the presently disclosed subject matter, which are, for brevity, described in the context of a single example, may also be provided separately or in any suitable sub-combination.
Furthermore, for the sake of clarity the term “substantially” is used herein to imply the possibility of variations in values within an acceptable range. According to one example, the term “substantially” used herein should be interpreted to imply possible variation of up to 10% over or under any specified value. According to another example, the term “substantially” used herein should be interpreted to imply possible variation of up to 5% over or under any specified value. According to a further example, the term “substantially” used herein should be interpreted to imply possible variation of up to 2.5% over or under any specified value.
Unless otherwise stated, the use of the expression “and/or” between the last two members of a list of options for selection indicates that a selection of one or more of the listed options is appropriate and may be made.
It should be understood that where the claims or specification refer to “a” or “an” element, such reference is not to be construed as there being only one of that element.
All patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present disclosure.
This is a continuation from U.S. patent application Ser. No. 17/794,972 filed Jul. 28, 2022 (now allowed), which was a 371 application from international patent application PCT/IB2022/050594 filed Jan. 24, 2022, and is related to and claims priority from U.S. Provisional Patent Application No. 63/141,128 filed Jan. 25, 2021, which is expressly incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2106752 | Land | Feb 1938 | A |
2354503 | Arthur | Jul 1944 | A |
2378170 | Aklin | Jun 1945 | A |
2441093 | Aklin | May 1948 | A |
3388956 | Eggert et al. | Jun 1968 | A |
3524700 | Eggert et al. | Aug 1970 | A |
3558218 | Grey | Jan 1971 | A |
3864027 | Harada | Feb 1975 | A |
3942876 | Betensky | Mar 1976 | A |
4134645 | Sugiyama et al. | Jan 1979 | A |
4338001 | Matsui | Jul 1982 | A |
4465345 | Yazawa | Aug 1984 | A |
4792822 | Akiyama et al. | Dec 1988 | A |
5000551 | Shibayama | Mar 1991 | A |
5327291 | Baker et al. | Jul 1994 | A |
5331465 | Miyano | Jul 1994 | A |
5600488 | Minefuji et al. | Feb 1997 | A |
5969869 | Hirai et al. | Oct 1999 | A |
6014266 | Obama et al. | Jan 2000 | A |
6035136 | Hayashi et al. | Mar 2000 | A |
6147702 | Smith | Nov 2000 | A |
6169636 | Kreitzer | Jan 2001 | B1 |
6654180 | Ori | Nov 2003 | B2 |
6853499 | Iwasaki | Feb 2005 | B2 |
7187504 | Horiuchi | Mar 2007 | B2 |
7206136 | Labaziewicz et al. | Apr 2007 | B2 |
7515351 | Chen et al. | Apr 2009 | B2 |
7564635 | Tang | Jul 2009 | B1 |
7643225 | Tsai | Jan 2010 | B1 |
7660049 | Tang | Feb 2010 | B2 |
7684128 | Tang | Mar 2010 | B2 |
7688523 | Sano | Mar 2010 | B2 |
7692877 | Tang et al. | Apr 2010 | B2 |
7697220 | Iyama | Apr 2010 | B2 |
7738186 | Chen et al. | Jun 2010 | B2 |
7777972 | Chen et al. | Aug 2010 | B1 |
7813057 | Lin | Oct 2010 | B2 |
7821724 | Tang et al. | Oct 2010 | B2 |
7826149 | Tang et al. | Nov 2010 | B2 |
7826151 | Tsai | Nov 2010 | B2 |
7869142 | Chen et al. | Jan 2011 | B2 |
7898747 | Tang | Mar 2011 | B2 |
7916401 | Chen et al. | Mar 2011 | B2 |
7918398 | Li et al. | Apr 2011 | B2 |
7957075 | Tang | Jun 2011 | B2 |
7957076 | Tang | Jun 2011 | B2 |
7957079 | Tang | Jun 2011 | B2 |
7961406 | Tang et al. | Jun 2011 | B2 |
8000031 | Tsai | Aug 2011 | B1 |
8004777 | Sano et al. | Aug 2011 | B2 |
8077400 | Tang | Dec 2011 | B2 |
8149523 | Ozaki | Apr 2012 | B2 |
8218253 | Tang | Jul 2012 | B2 |
8228622 | Tang | Jul 2012 | B2 |
8233224 | Chen | Jul 2012 | B2 |
8253843 | Lin | Aug 2012 | B2 |
8279537 | Sato | Oct 2012 | B2 |
8363337 | Tang et al. | Jan 2013 | B2 |
8395851 | Tang et al. | Mar 2013 | B2 |
8400717 | Chen et al. | Mar 2013 | B2 |
8451549 | Yamanaka et al. | May 2013 | B2 |
8503107 | Chen et al. | Aug 2013 | B2 |
8514502 | Chen | Aug 2013 | B2 |
8570668 | Takakubo et al. | Oct 2013 | B2 |
8718458 | Okuda | May 2014 | B2 |
8780465 | Chae | Jul 2014 | B2 |
8810923 | Shinohara | Aug 2014 | B2 |
8854745 | Chen | Oct 2014 | B1 |
8958164 | Kwon et al. | Feb 2015 | B2 |
9185291 | Shabtay | Nov 2015 | B1 |
9201223 | Ohashi | Dec 2015 | B2 |
9229194 | Yoneyama et al. | Jan 2016 | B2 |
9235036 | Kato et al. | Jan 2016 | B2 |
9279957 | Kanda et al. | Mar 2016 | B2 |
9438792 | Nakada et al. | Sep 2016 | B2 |
9488802 | Chen et al. | Nov 2016 | B2 |
9568712 | Dror et al. | Feb 2017 | B2 |
9678310 | Iwasaki et al. | Jun 2017 | B2 |
9817213 | Mercado | Nov 2017 | B2 |
9835834 | Li et al. | Dec 2017 | B2 |
11340425 | Yamazaki et al. | May 2022 | B2 |
20020118471 | Imoto | Aug 2002 | A1 |
20030048542 | Enomoto | Mar 2003 | A1 |
20050041300 | Oshima et al. | Feb 2005 | A1 |
20050062346 | Sasaki | Mar 2005 | A1 |
20050128604 | Kuba | Jun 2005 | A1 |
20050141103 | Nishina | Jun 2005 | A1 |
20050168840 | Kobayashi et al. | Aug 2005 | A1 |
20050270667 | Gurevich et al. | Dec 2005 | A1 |
20060092524 | Konno | May 2006 | A1 |
20060238902 | Nakashima et al. | Oct 2006 | A1 |
20060275025 | Labaziewicz et al. | Dec 2006 | A1 |
20070114990 | Godkin | May 2007 | A1 |
20070229983 | Saori | Oct 2007 | A1 |
20070247726 | Sudoh | Oct 2007 | A1 |
20070253689 | Nagai et al. | Nov 2007 | A1 |
20080056698 | Lee et al. | Mar 2008 | A1 |
20080094730 | Toma et al. | Apr 2008 | A1 |
20080094738 | Lee | Apr 2008 | A1 |
20080291531 | Heimer | Nov 2008 | A1 |
20080304161 | Souma | Dec 2008 | A1 |
20090002839 | Sato | Jan 2009 | A1 |
20090067063 | Asami et al. | Mar 2009 | A1 |
20090122423 | Park et al. | May 2009 | A1 |
20090135245 | Luo et al. | May 2009 | A1 |
20090141365 | Jannard et al. | Jun 2009 | A1 |
20090147368 | Oh et al. | Jun 2009 | A1 |
20090225438 | Kubota | Sep 2009 | A1 |
20090279191 | Yu | Nov 2009 | A1 |
20090303620 | Abe et al. | Dec 2009 | A1 |
20100026878 | Seo | Feb 2010 | A1 |
20100033844 | Katano | Feb 2010 | A1 |
20100060995 | Yumiki et al. | Mar 2010 | A1 |
20100165476 | Eguchi | Jul 2010 | A1 |
20100214664 | Chia | Aug 2010 | A1 |
20100277813 | Ito | Nov 2010 | A1 |
20110001838 | Lee | Jan 2011 | A1 |
20110032409 | Rossi et al. | Feb 2011 | A1 |
20110080655 | Mori | Apr 2011 | A1 |
20110102667 | Chua et al. | May 2011 | A1 |
20110102911 | Iwasaki | May 2011 | A1 |
20110115965 | Engelhardt et al. | May 2011 | A1 |
20110149119 | Matsui | Jun 2011 | A1 |
20110157430 | Hosoya et al. | Jun 2011 | A1 |
20110188121 | Goring et al. | Aug 2011 | A1 |
20110249347 | Kubota | Oct 2011 | A1 |
20120062783 | Tang et al. | Mar 2012 | A1 |
20120069455 | Lin et al. | Mar 2012 | A1 |
20120092777 | Tochigi et al. | Apr 2012 | A1 |
20120105708 | Hagiwara | May 2012 | A1 |
20120147489 | Matsuoka | Jun 2012 | A1 |
20120154929 | Tsai et al. | Jun 2012 | A1 |
20120194923 | Um | Aug 2012 | A1 |
20120229920 | Otsu et al. | Sep 2012 | A1 |
20120262806 | Lin et al. | Oct 2012 | A1 |
20130002933 | Topliss et al. | Jan 2013 | A1 |
20130057971 | Zhao et al. | Mar 2013 | A1 |
20130088788 | You | Apr 2013 | A1 |
20130176479 | Wada | Jul 2013 | A1 |
20130208178 | Park | Aug 2013 | A1 |
20130271852 | Schuster | Oct 2013 | A1 |
20130279032 | Suigetsu et al. | Oct 2013 | A1 |
20130286488 | Chae | Oct 2013 | A1 |
20140022436 | Kim et al. | Jan 2014 | A1 |
20140063616 | Okano et al. | Mar 2014 | A1 |
20140092487 | Chen et al. | Apr 2014 | A1 |
20140139719 | Fukaya et al. | May 2014 | A1 |
20140146216 | Okumura | May 2014 | A1 |
20140160581 | Cho et al. | Jun 2014 | A1 |
20140204480 | Jo et al. | Jul 2014 | A1 |
20140240853 | Kubota et al. | Aug 2014 | A1 |
20140285907 | Tang et al. | Sep 2014 | A1 |
20140293453 | Ogino et al. | Oct 2014 | A1 |
20140362274 | Christie et al. | Dec 2014 | A1 |
20150022896 | Cho et al. | Jan 2015 | A1 |
20150029601 | Dror et al. | Jan 2015 | A1 |
20150116569 | Mercado | Apr 2015 | A1 |
20150138431 | Shin et al. | May 2015 | A1 |
20150153548 | Kim et al. | Jun 2015 | A1 |
20150168667 | Kudoh | Jun 2015 | A1 |
20150177496 | Marks et al. | Jun 2015 | A1 |
20150205068 | Sasaki | Jul 2015 | A1 |
20150244942 | Shabtay et al. | Aug 2015 | A1 |
20150253532 | Lin | Sep 2015 | A1 |
20150253543 | Mercado | Sep 2015 | A1 |
20150253647 | Mercado | Sep 2015 | A1 |
20150323757 | Bone | Nov 2015 | A1 |
20150373252 | Georgiev | Dec 2015 | A1 |
20150373263 | Georgiev et al. | Dec 2015 | A1 |
20160007008 | Molgaard et al. | Jan 2016 | A1 |
20160033742 | Huang | Feb 2016 | A1 |
20160044250 | Shabtay et al. | Feb 2016 | A1 |
20160062084 | Chen et al. | Mar 2016 | A1 |
20160062136 | Nomura et al. | Mar 2016 | A1 |
20160070088 | Koguchi | Mar 2016 | A1 |
20160085089 | Mercado | Mar 2016 | A1 |
20160105616 | Shabtay et al. | Apr 2016 | A1 |
20160187631 | Choi et al. | Jun 2016 | A1 |
20160195691 | Bito et al. | Jul 2016 | A1 |
20160202455 | Aschwanden et al. | Jul 2016 | A1 |
20160212333 | Liege et al. | Jul 2016 | A1 |
20160241756 | Chen | Aug 2016 | A1 |
20160291295 | Shabtay | Oct 2016 | A1 |
20160306161 | Harada et al. | Oct 2016 | A1 |
20160313537 | Mercado | Oct 2016 | A1 |
20160341931 | Liu et al. | Nov 2016 | A1 |
20160349504 | Hun-Kim et al. | Dec 2016 | A1 |
20160353008 | Osborne | Dec 2016 | A1 |
20170023778 | Inoue | Jan 2017 | A1 |
20170094187 | Sharma et al. | Mar 2017 | A1 |
20170102522 | Jo | Apr 2017 | A1 |
20170115471 | Shinohara | Apr 2017 | A1 |
20170153422 | Tang et al. | Jun 2017 | A1 |
20170160511 | Kim et al. | Jun 2017 | A1 |
20170199360 | Chang | Jul 2017 | A1 |
20170276911 | Huang | Sep 2017 | A1 |
20170310952 | Adomat et al. | Oct 2017 | A1 |
20170329108 | Hashimoto | Nov 2017 | A1 |
20170337703 | Wu et al. | Nov 2017 | A1 |
20180024319 | Lai et al. | Jan 2018 | A1 |
20180059365 | Bone et al. | Mar 2018 | A1 |
20180059376 | Lin et al. | Mar 2018 | A1 |
20180081149 | Bae et al. | Mar 2018 | A1 |
20180120674 | Avivi et al. | May 2018 | A1 |
20180149835 | Park | May 2018 | A1 |
20180196236 | Ohashi et al. | Jul 2018 | A1 |
20180196238 | Goldenberg et al. | Jul 2018 | A1 |
20180217475 | Goldenberg et al. | Aug 2018 | A1 |
20180218224 | Olmstead et al. | Aug 2018 | A1 |
20180224630 | Lee et al. | Aug 2018 | A1 |
20180268226 | Shashua et al. | Sep 2018 | A1 |
20190025549 | Hsueh et al. | Jan 2019 | A1 |
20190025554 | Son | Jan 2019 | A1 |
20190075284 | Ono | Mar 2019 | A1 |
20190086638 | Lee | Mar 2019 | A1 |
20190107651 | Sade | Apr 2019 | A1 |
20190121216 | Shabtay et al. | Apr 2019 | A1 |
20190155002 | Shabtay et al. | May 2019 | A1 |
20190170965 | Shabtay | Jun 2019 | A1 |
20190187443 | Jia et al. | Jun 2019 | A1 |
20190187486 | Goldenberg et al. | Jun 2019 | A1 |
20190196148 | Yao et al. | Jun 2019 | A1 |
20190215440 | Rivard et al. | Jul 2019 | A1 |
20190222758 | Goldenberg et al. | Jul 2019 | A1 |
20190235202 | Smyth et al. | Aug 2019 | A1 |
20190353874 | Yeh et al. | Nov 2019 | A1 |
20200084358 | Nadamoto | Mar 2020 | A1 |
20200192069 | Makeev et al. | Jun 2020 | A1 |
20200221026 | Fridman et al. | Jul 2020 | A1 |
20200241233 | Shabtay et al. | Jul 2020 | A1 |
20200333691 | Shabtay et al. | Oct 2020 | A1 |
20200400926 | Bachar | Dec 2020 | A1 |
20210048628 | Shabtay et al. | Feb 2021 | A1 |
20210263276 | Huang et al. | Aug 2021 | A1 |
20210364746 | Chen | Nov 2021 | A1 |
20210396974 | Kuo | Dec 2021 | A1 |
20220046151 | Shabtay et al. | Feb 2022 | A1 |
20220066168 | Shi | Mar 2022 | A1 |
20220113511 | Chen | Apr 2022 | A1 |
20220232167 | Shabtay et al. | Jul 2022 | A1 |
Number | Date | Country |
---|---|---|
101634738 | Jan 2010 | CN |
102147519 | Aug 2011 | CN |
102193162 | Sep 2011 | CN |
102466865 | May 2012 | CN |
102466867 | May 2012 | CN |
102147519 | Jan 2013 | CN |
103576290 | Feb 2014 | CN |
103698876 | Apr 2014 | CN |
104297906 | Jan 2015 | CN |
104407432 | Mar 2015 | CN |
105467563 | Apr 2016 | CN |
105657290 | Jun 2016 | CN |
106680974 | May 2017 | CN |
104570280 | Jun 2017 | CN |
S54157620 | Dec 1979 | JP |
S59121015 | Jul 1984 | JP |
6165212 | Apr 1986 | JP |
S6370211 | Mar 1988 | JP |
H0233117 | Feb 1990 | JP |
406059195 | Mar 1994 | JP |
H06258702 | Sep 1994 | JP |
H06347687 | Dec 1994 | JP |
H07120673 | May 1995 | JP |
H07325246 | Dec 1995 | JP |
H07333505 | Dec 1995 | JP |
H08179215 | Jul 1996 | JP |
H09211326 | Aug 1997 | JP |
H11223771 | Aug 1999 | JP |
2000292848 | Oct 2000 | JP |
3210242 | Sep 2001 | JP |
2002365549 | Dec 2002 | JP |
2004226563 | Aug 2004 | JP |
2004334185 | Nov 2004 | JP |
2006195139 | Jul 2006 | JP |
2007133096 | May 2007 | JP |
2007164065 | Jun 2007 | JP |
2007219199 | Aug 2007 | JP |
2007306282 | Nov 2007 | JP |
2008111876 | May 2008 | JP |
2008191423 | Aug 2008 | JP |
2010032936 | Feb 2010 | JP |
2010164841 | Jul 2010 | JP |
2011145315 | Jul 2011 | JP |
2012203234 | Oct 2012 | JP |
2013003317 | Jan 2013 | JP |
2013003754 | Jan 2013 | JP |
2013101213 | May 2013 | JP |
2013105049 | May 2013 | JP |
2013106289 | May 2013 | JP |
2013148823 | Aug 2013 | JP |
2014142542 | Aug 2014 | JP |
2017116679 | Jun 2017 | JP |
2018059969 | Apr 2018 | JP |
2019113878 | Jul 2019 | JP |
20080088477 | Oct 2008 | KR |
20090019525 | Feb 2009 | KR |
20090131805 | Dec 2009 | KR |
20110058094 | Jun 2011 | KR |
20110115391 | Oct 2011 | KR |
20120068177 | Jun 2012 | KR |
20140135909 | May 2013 | KR |
20140023552 | Feb 2014 | KR |
20160000759 | Jan 2016 | KR |
101632168 | Jun 2016 | KR |
20160115359 | Oct 2016 | KR |
M602642 | Oct 2020 | TW |
2013058111 | Apr 2013 | WO |
2013063097 | May 2013 | WO |
2018130898 | Jul 2018 | WO |
Entry |
---|
A compact and cost effective design for cell phone zoom lens, Chang et al., Sep. 2007, 8 pages. |
Consumer Electronic Optics: How small a lens can be? The case of panomorph lenses, Thibault et al., Sep. 2014, 7 pages. |
Optical design of camera optics for mobile phones, Steinich et al., 2012, pp. 51-58 (8 pages). |
The Optics of Miniature Digital Camera Modules, Bareau et al., 2006, 11 pages. |
Modeling and measuring liquid crystal tunable lenses, Peter P. Clark, 2014, 7 pages. |
Mobile Platform Optical Design, Peter P. Clark, 2014, 7 pages. |
Boye et al., “Ultrathin Optics for Low-Profile Innocuous Imager”, Sandia Report, 2009, pp. 56-56. |
“Cheat sheet: how to understand f-stops”, Internet article, Digital Camera World, 2017. |
Office Action in related KR patent application 2022-7042147, dated Sep. 2, 2024. |
Office Action in related KR patent application 2022-7042150, dated Sep. 2, 2024. |
Office Action in related JP patent application 2023-144491, dated Aug. 28, 2024. |
Number | Date | Country | |
---|---|---|---|
20240196079 A1 | Jun 2024 | US |
Number | Date | Country | |
---|---|---|---|
63141128 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17794972 | US | |
Child | 18436137 | US |