The present disclosure generally relates to a slimline stop collar with a solid cam ring.
U.S. Pat. No. 4,101,179 discloses a rigid stabilizer sleeve having outwardly extending ribs is slideably received over a drill collar. A pair of internal clamping rings are slideably received through each end of the rigid main sleeve. As a threaded end cap is threaded into the rigid main sleeve, the end clamp forces one ring of the pair against the other thereby producing a clamping effect whereby the stabilizer can be clamped at any desired position on the drill collar. An outer ring of the pair of rings has a groove and a rib disposed on its interior cylindrical surface; the portion of the end clamp received by the outer ring has a rib and a groove disposed upon its outer cylindrical surface. As the end cap receives the outer ring, the rib and the groove of the end cap interlock with the groove and the rib respectively of the outer ring whereby when the end cap is threadedly removed from the rigid main sleeve, the outer ring follows the end cap and is disengaged from the inner ring, thereby unclamping the pair of rings from the drill collar.
U.S. Pat. No. 4,384,626 discloses a clamp-on stabilizer that fixes the lateral position of a drill string in a borehole. The stabilizer includes a gripping sleeve with slotted and tapered ends, a stabilizer body receiving the sleeve, and a tubular locknut threaded into the body. The lower end of the stabilizer body is internally tapered to engage one tapered end of the gripping sleeve, while a ring abutting the locknut engages the other tapered end. The tapers may be different at each end of the sleeve to produce a sequential locking effect. A full-length longitudinal slot in the sleeve increases the tolerance range for objects to be clamped by the stabilizer.
U.S. Pat. No. 5,860,760 discloses a gripping device which has an inner member and an outer member. The inner member has a split which define a first end and a second end. A selectively operable device is also included to keep the first and second ends apart to permit the device to be placed around an object and to permit the first and second ends to move towards each other so that the inner member grips the object. At least part of an outer face of the inner member interfits with at least a part of an inner face of the outer member in a manner such that when a load is applied to the outer member, the inner face of the outer member acts upon the inner member to cause compression of the inner member thereby increasing the grip of the inner member on the object. The device is then locked in position on the object and when the load is removed the action of the outer member on the inner member is reduced thereby decreasing the grip of the inner member on the object and unlocking the device from the object.
U.S. Pat. No. 8,832,906 discloses a stop collar assembled using a method including the steps of receiving a bore of a base having a set of fingers extending along an exterior of a tubular, receiving a bore of a sleeve onto the tubular adjacent the set of fingers, and receiving the sleeve onto the set of fingers in an interference-fit. In alternate embodiments, the base comprises a plurality of angularly distributed fingers and/or the base comprises a gap to permit conformance of the base to the tubular. A fingerless base may cooperate with one or more separate fingers to form a base. In an embodiment of the method, the sleeve may be thermally expanded prior to the step of receiving the sleeve onto the set of fingers. The sleeve may be heated to expand the bore prior to being received onto the set of fingers.
U.S. Pat. No. 9,598,913 discloses a wear band including a rotating element having a bore receivable on a tubular, the bore including first and second bore portions slidably receiving first and second sleeve bearings. Outer surfaces of the sleeve bearings slidably engage the bore portions and the bores of the sleeve bearings slidably engage the tubular. A first stop collar and a second stop collar may be received on the tubular to together straddle the rotating element and sleeve bearings to longitudinally secure the rotating element in a position on the tubular. The tubular may be included within a tubular string run into a borehole or into the bore of an installed casing, such as in casing while drilling. The rotating element provides stand-off between a tubular and the wall of a bore, reduces frictional resistance to longitudinal sliding and also to rotation of the tubular string within the bore.
U.S. Pat. No. 9,963,942 discloses a centralizer including a centralizer body to be situated at the outer surface of a pipe string in the form of casing, liner, or the like used while drilling, the centralizer body being formed with a plurality of outer centralizer blades arranged in an inclined manner to the longitudinal axis thereof, wherein the centralizer body has an separate split inner tube secured to the pipe string by means of a press fit, and low friction inner surface of the centralizer body and separate center tube facing each other are made from low friction material
U.S. Pat. No. 9,982,494 discloses an attachment device for an element made to be arranged on a downhole tubular body, in which an end portion of a sleeve, which is arranged to surround a portion of the tubular body, comprises an attachment portion. The attachment portion comprises at least one clamping element arranged for axial displacement by the abutment of an abutment surface against a conical abutment portion of a surrounding adapter sleeve.
US 2016/0376852 discloses a stabilizer assembly for a tubular member including a stabilizing body dimensioned to fit around the tubular member, a central portion having a radial projection, and a first end having a first threaded outer surface and a set of integral first elastic members. A first nut member includes a proximal end with a threaded inner surface configured to engage the first threaded outer surface of the stabilizing body and a central portion with a first tapered inner surface configured to engage the first elastic members of the stabilizing body. Threading the first nut member onto the first end of the stabilizing body forces the first elastic members to engage the first tapered inner surface of the first nut member thereby radially flexing the first elastic members to engage the tubular member. An inner surface of a distal end of each first elastic member may include a grip section.
US 2020/0109607 discloses a stop collar for mounting to a downhole tubular including: a cylindrical housing having a threaded inner surface and a tapered inner surface; a compressible slip ring having teeth formed in an inner surface thereof and a pair of tapered outer surfaces; a compressible cam ring having a tapered inner surface; and a cylindrical bolt having a threaded outer surface. A natural outer diameter of each ring is greater than a minor diameter of the threaded surfaces. Screwing the threaded surfaces of the housing and the bolt is operable to drive the tapered surfaces together, thereby compressing the slip ring such that the teeth engage a periphery of the tubular.
The present disclosure generally relates to a slimline stop collar with a solid cam ring. In one embodiment, a stop collar for mounting to a downhole tubular includes: a cylindrical housing having a threaded inner surface and a tapered inner surface; a compressible slip ring having teeth formed in an inner surface thereof and a pair of tapered outer surfaces; a solid cam ring having a tapered inner surface; and a cylindrical bolt having a threaded outer surface. A natural outer diameter of each ring is greater than a minor diameter of the threaded surfaces. Screwing the threaded surfaces of the housing and the bolt is operable to drive the tapered surfaces together, thereby compressing the slip ring such that the teeth engage a periphery of the tubular.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
Alternatively, the radial bearing 5 may be a non-split tube. Alternatively, the radial bearing 5 may be made entirely from the low friction material.
A plurality of the centralizers 1 may each be mounted along a string of downhole tubulars 4, such as a casing or liner string, that will be drilled into a wellbore (not shown) adjacent to an unstable or depleted formation. The centralizers 1 may be spaced along the portion of the string of downhole tubulars 4 at regular intervals. Drilling the string of downhole tubulars 4 into the wellbore adjacent to the unstable or depleted formation is advantageous to using a drill string to prevent collapse or loss of drilling fluid due to the unstable or depleted formation. The string of downhole tubulars 4 may further include a casing bit screwed in at a bottom thereof and may be rotated by a top drive during drilling either directly or via a work string of drill pipe extending from the top of the string of downhole tubulars 4 to the top drive. During drilling, drilling fluid, such as mud, may be pumped down a bore of the string of downhole tubulars 4, may be discharged from the casing bit, and may return to surface via an annulus formed between the string of downhole tubulars 4 and the wellbore. The string of downhole tubulars 4 may have premium connections to withstand drilling torque exerted thereon by the top drive. The string of downhole tubulars 4 may further include a float collar located adjacent to the casing bit and a deployment assembly located at an upper end thereof including a hanger, a packer, and one or more wiper plugs. Once the string of downhole tubulars 4 has been drilled into place, the hanger may be set, cement slurry may be pumped into the annulus, and the packer set, thereby installing the string of downhole tubulars into the wellbore. The casing bit may then be drilled through to facilitate further drilling of the wellbore to a hydrocarbon bearing formation, such as crude oil and/or natural gas.
The body 8 may longitudinally extend when moving from the expanded position to the retracted position and longitudinally contract when moving from the retracted position to the expanded position. The bow springs 8s may be naturally biased toward the expanded position and an expanded diameter of the centralizer 7 may correspond to a diameter of the wellbore. Engagement of the bow springs 8s with a wall of the wellbore may move the downhole tubular 4 toward a central position within the wellbore to ensure that a uniform cement sheath is formed around the downhole tubular during the cementing operation. The body 8 may be formed from a single sheet of spring steel by cutting out slots to form strips which will become the bow springs 8s. The body 8 may be formed into a tubular shape by rolling the cut sheet and welding seams of the end rings 8a,b together. The bow springs 8s may have the natural bias toward the expanded position by being held therein during heat treatment of the body 8.
After the body 8 has been formed, each end collar 9a,b may be inserted into the respective end rings 8a,b. Each end collar 9a,b may be formed to be a tight fit within the end rings 8a,b. Each end collar 9a,b may then be spot-welded to the respective end rings 8a,b. A lip of each end ring 8a,b extending past the respective collar 9a,b may be split into a multitude of tabs (before or after insertion of the collars) and the tabs may be bent over the respective end collar, thereby mounting the collars to the body 8 (in addition to the spot welds). The stop collar 2 may be located between the end collars 9a,b by insertion through one of the slots between the bow springs 8s before the centralizer 7 is slid over the periphery of the downhole tubular 4. Setting of the stop collar 2 may trap the centralizer 7 into place along the downhole tubular 4 while allowing limited longitudinal movement of the body 8 relative thereto to accommodate movement between the positions.
Alternatively, the centralizer 7 may include a pair of slimline stop collars 2a,b straddling the end rings 8a,b instead of the single stop collar 2 located therebetween.
Referring also to
The slip ring 12 may have a central portion 12c with a constant diameter outer surface and a pair of working portions 12w, each working portion having a tapered outer surface declining away from the central portion. The taper of each working portion 12w may correspond to the taper of the third portion 13c of the housing 13. An inner surface of each working portion 12w may have a plurality of circumferential teeth 12t (aka wickers) formed therein. Each tooth 12t may have a cross sectional shape resembling a right triangle and the hypotenuses of the teeth of each working portion 12w may incline toward the central portion 12c, thereby providing bidirectional gripping of the downhole tubular 4. The slip ring 12 may be split (aka C-shape) for compression between a natural position (shown) and a compressed position (
Alternatively, the slip ring 12 may be partially split by a plurality of slots extending radially through a wall thereof, each slot extending from one end of the slip ring, along the respective working portion 12w and the center portion 12c, and terminating in the other working portion before reaching the other end of the slip ring. Alternatively, the teeth 12t of the slip ring 12 may all be inclined in the same direction, thereby providing only monodirectional gripping of the downhole tubular 4 and the slip ring may have an orientation indicator, such as an arrow, on a periphery thereof, such as by adhering, engraving, or painting. Alternatively, the teeth 12t of the slip ring 12 may all be inclined away from the central portion.
The solid cam ring 11 may have a first portion 11a with a tapered inner surface for engagement with one of the working portions 12w of the slip ring 12 and a second portion 11b with a reduced inner diameter for engagement with an end of the bolt 10. The solid cam ring 11 may have a constant outer diameter (excluding a chamfer formed at each end thereof). The taper of the first portion 11a may correspond to the taper of the working portions 12w of the slip ring 12. By solid, it is meant that the cam ring has a solid wall (no slots) and is not split. The metal or alloy of the cam ring 11 may possess sufficient resilience to allow elastic compression of the cam ring between a natural position (shown) and a compressed position (
The bolt 10 may be cylindrical and have a first portion 10a with a reduced outer diameter and the thread 10t formed in an outer surface thereof and extending from an end thereof, a second portion 10b with an enlarged outer diameter, the ratchet profile 10r formed in the first portion, and a shoulder 10s connecting the first and second portions. The bolt 10 may also have a plurality of holes formed through a wall of the second portion 10b for facilitating assembly (discussed below). The minor diameter of the threads 13t, 10t may be less than the inner diameter of the first portion 13a of the housing 13.
Referring also to
Alternatively, the cam ring 11 may be inserted into the housing 13 via the non-threaded end thereof adjacent to the second housing section 13b instead of the threaded end thereof adjacent to the fourth housing section 13d. Alternatively, the cam ring 11 may be partially deformed while being inserted into the housing 13 and at least partially deformed back towards its original shape, either prior to or during being positioned parallel to the longitudinal axis 15h thereof (compression is partially plastic).
Also during continued rotation of the bolt 10 relative to the housing 13, the tabs of the ratchet profile 10r may engage the slots of the ratchet profile 13r. Since the bolt 10 is being rotated in a tightening direction, a joined end of each tab may enter and exit the respective slot before the free end of the tab, thereby allowing walls of the slot to compress the tab so that rotation in the tightening direction is not obstructed. Operation of the locking system 14 prevents rotation of the bolt 10 in the loosening direction during deployment of the centralizer 1, which could be caused by vibration. There may be some acceptable backlash until the ratchet profiles 10r, 13r engage depending on the relative positions of the bolt 10 and the housing 13 at full engagement of the slip ring 12.
Alternatively, the stop collar 2 may be installed on the downhole tubular 4 with the bolt 10 located adjacent to one of the thrust bearings 6a,b instead of the housing 13 located adjacent thereto.
Advantageously, use of the solid cam ring 11 instead of a split or slotted cam ring provides for a stronger stop collar 2 as the cam ring serves as a hoop stress support member, thereby reinforcing the thinner first portion 13a of the housing 13. The radial gap that would necessarily result from a use of a split cam ring is eliminated. In the engaged position of the stop collar 2, the cam ring 11 may be loaded primarily or solely in the elastic range, such that the equivalent tensile stress is less than or equal to the yield strength of the cam ring material.
Alternatively, the reduced outer diameter of the alternative cam ring 18 may be greater than the minor diameter of the threads 13t, 10t and less than or equal to the major diameter of the threads 13t, 10t.
Advantageously, radial expansion of the alternative solid cam ring 18 adds pre-load or strain in the alternative stop collar. The cam ring 18 may act as a hoop spring thereby ensuring that the slip ring 12 maintains its grip on the tubular 4. The cam ring 18 may even be expanded beyond its yield strength, thereby strain hardening the cam ring.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope of the invention is determined by the claims that follow.
Number | Date | Country | |
---|---|---|---|
62987923 | Mar 2020 | US |