Sling attachment hardware for firearms

Information

  • Patent Grant
  • 6598330
  • Patent Number
    6,598,330
  • Date Filed
    Thursday, September 13, 2001
    23 years ago
  • Date Issued
    Tuesday, July 29, 2003
    21 years ago
Abstract
The present invention relates to hardware used to secure slings to firearms. In particular, to hardware used to secure slings to firearms like that of the M16A2 and M4 Carbine that are fitted with a Picatinny type rail and collapsible buttstock. A wedge/yoke assembly is used to secure an end of a sling to the firearm on a rail and a rotational ring assembly is used to secure an end of a sling to the extension tube of the lower receiver. Both assemblies are designed to be installed quickly without the use of tools and without modification to the firearm. This hardware provides for ambidextrous attachment of a tactical sling to the firearm giving the user a “hands free” capability and allowing for engagement of targets when firing from a “weak hand” posture.
Description




BACKGROUND OF THE INVENTION




The present invention relates to the field of hardware used to secure slings to firearms.




1. Field of the Invention




The use of hardware to attach slings to firearms is known. Most firearms are provided with a stud, loop or swivel to attach a conventional sling to the firearm. Conventional slings are used primarily to transport the firearm, over the shoulder, when the firearm is not in use. Some slings are equipped with features that enable the user to adjust the sling so that it can be used to steady the firearm when firing from various positions such as the prone and sitting position.




With the recent trend towards armed conflict in urban areas, special slings have been developed that enable the user to engage targets with the firearm and suspend the firearm in an advantageous position, waist level for instance, when the firearm is released. The use of these tactical slings, allows the firearm to be carried comfortably for extended periods of time while making access to the firearm instantaneous should the firearm be needed. Additionally these tactical slings allow the user to release the weapon when one or both hands are needed to perform a task without a change in the general orientation of the muzzle of the firearm. These slings generally position the firearm in the front of the user.




The most popular tactical slings such as the Heckler and Koch (H&K) Ambidextrous Multipurpose Carrying Sling can be configured several different ways for tactical use and transport. This sling uses “snap link” type hooks to attach the sling to the firearm. H&K firearms are manufactured with fixed attachment points designed to accept the hooks of the sling. Some models incorporate the use of modified takedown pins to allow ambidextrous attachment of the tactical sling to the firearm. These pins have a loop at one end and a screw/nut combination at the other. The attachment points for the sling on these weapons are on the receiver placing them close to the torso of the user while keeping the ends of the weapon clear. The sling does not interfere with the users arms increasing his mobility and dexterity.




Some firearms such as the M4 Carbine have incorporated a sling loop into the top of the collapsible buttstock to allow soldiers to configure their conventional slings for tactical “top” carry. The attachment of the sling to the front swivel, located under the front sight, did not allow for a proper “top” carry and a device was introduced that placed the sling swivel on the side of the weapon attached directly to the barrel. This unit is held in place with a plate and two roll pins and can be positioned on either side to accommodate left or right handed shooters. This tactical front swivel device still has several disadvantages when used with a newly adopted Rail Adapter System (RAS) being used by the military. The RAS allows soldiers to attach lights, range finders, night scopes and other accessories to the weapon. The location of the tactical front swivel device negates the use of one rail of the RAS because the sling blocks the device mounted on that side of the weapon when in use.




Another disadvantage of this tactical sling configuration is that the mounting points at the extreme front and rear of the weapon are not desirable when operating in a Close Quarters Battle (CQB) environment such as rooms and hallways. The sling gets in the way of the arms of the user reducing his mobility and dexterity. The balance point of the sling also changes with the location of the collapsible buttstock requiring readjustment of the slung weapon. The conventional sling adapted to this configuration also lacks a means to quickly release and attach it to the weapon.




2. Discussion of Prior Art




Several attempts have been made to adapt the tactical sling to firearms such as the M16A2 and M4 Carbine. Most require the use of tools to install and require the weapon to be disassembled past the operator level.




A modified M4 receiver end plate (Ambiegg) by GG&G has two large eyelets, one on each side, to accept the hook of a tactical sling. The location of these eyelets on the lower portion of the receiver end plate and below the center of balance make the weapon unbalanced. A sling attached to the eyelet on the ejection port side of the weapon will interfere with the operation of the forward assist of the M4 by the left handed user. Disassembly of the weapon past the user level and the use of special tools are required to install this modified plate. This modified plate is not truly ambidextrous as the sling must be unhooked and reattached to accommodate a left or right handed user.




Some devices such as the Knight's Armaments MWS Front Sight Tower Sling Adapter use a screw/plate configuration to affix a swivel to the front sight of the M4 carbine. This device requires the use of tools to install and places the sling forward where it can interfere with accessories mounted to an RAS. There is also the possibility of a loosening of the front sight assembly which is fixed to the barrel with taper pins. If a weapon is fitted with a “flip-up” front sight, this device cannot be used. The “flip-up” front sight is desirable when using optics mounted to the upper receiver of the weapon or RAS.




Another device by Knight's uses a traditional Weaver type base/plate/screw combination to affix the swivel to an RAS rail. This device allows the user to place the mounting point behind the accessories mounted on the rail but requires tools to install/remove and the screw of the assembly can vibrate loose during use.




Yet another device by Dennis S. Chalker utilizes three “D” rings and a nylon strap to secure a sling to the receiver extension of the M4 and similar weapons. This strap device does not require tools to install and can be configured to accommodate both right and left handed shooters. This assembly must be taped or otherwise secured to the receiver extension, however, to keep the mounting point from rotating to the top of the extension and to keep it from sliding back along the length of the extension. Due to the “cinch” configuration of the securing “D” rings, if the assembly rotates to the top of the extension, it will interfere with the operation of the charging handle of the weapon.




It should be clear to the reader that tactical sling hardware should be capable of being easily installed by the user-without the use of tools. Once installed it should provide for secure mounting without screws that can loosen during use. The mounting points provided by the sling hardware should allow proper balance of the slung weapon. The mounting points provided by the hardware should be positioned on the weapon in such a way as to clear the ends of the weapon for free use in CQB environments. It should also be clear to the reader that the mounting points provided by the sling hardware should not interfere with any of the controls or accessories of the weapon such as the charging handle. Further, it should be clear to the reader that the sling mounting hardware should work with the widest range of tactical slings available.




Objects and Advantages




One object of our invention is to provide sling attachment hardware that is readily adaptable to a wide range of “NATO” firearms currently fitted with an RAS such as the M4 Carbine, Modular Weapon System and CQBW. The preferred embodiment of our invention will be manufactured to military specifications providing durable, balanced mounting points on the weapon. The preferred embodiment will also be easily installed by the user without the use of tools and will require no disassembly of the weapon past the user level. This will enable the user to easily configure his weapon for a variety of missions. The hardware will be ambidextrous and/or reversible by design to accommodate either left or right handed users. A further object of our invention is to provide sling attachment hardware that provides mounting points that will not interfere with the controls or accessories of the weapon. The mounting points provided by our invention will be oriented closer to the torso of the user and closer to the receiver to free-up the ends of the weapon for unhindered use in CQB environments.




There is another disadvantage of the current buttstock attachment point of the M4 carbine not previously discussed. A new buttstock with an ergonomically correct cheekpiece is being considered by the military. This buttstock will also house spare batteries in cavities created by the addition of the angled cheekpieces. The user must remove the buttstock to access the spare battery compartments. The action of accessing the spare battery compartments becomes problematic if this is attempted while the weapon is slung. It is a further object of our invention to provide sling mounting hardware that allows for mounting points that are not attached to the buttstock. This will allow the user to freely access the spare battery compartments of the improved buttstock with the weapon slung.




Further objects and advantages of our invention will become apparent from a consideration of the drawings and ensuing description.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will now be described further by way of example, with reference to the accompanying drawings, in which:





FIG. 1

is a side view of the M4 Carbine showing the preferred locations of the preferred embodiments;





FIG. 2

is a perspective view of the preferred embodiment (rear mount);





FIG. 3

is a perspective view of the optional securing spring clip for the preferred embodiment (rear mount);





FIG. 4

is a perspective view showing the preferred embodiment (front mount) base;





FIG. 5

is a perspective view showing the preferred embodiment (front mount) wedge;





FIG. 6

is a left side view of the preferred embodiment (rear mount) assembled;





FIG. 7

is a left side view of the preferred embodiment (rear mount) disassembled;





FIG. 8

is a left side view of the preferred embodiment (rear mount) assembled with optional securing spring clip in place;





FIG. 9

is a left side view of the receiver extension of the M4 Carbine showing the preferred embodiment (rear mount) upper portion being installed (Step


1


);





FIG. 10

is a left side view of the receiver extension of the M4 Carbine showing the preferred embodiment (rear mount) lower portion being installed (Step


2


);





FIG. 11

is a left side view of the receiver extension of the M4 Carbine showing the preferred embodiment (rear mount) lower portion and upper portion joined (Step


3


);





FIG. 12

is a left side view of the receiver extension of the M4 Carbine showing the preferred embodiment (rear mount) upper and lower portions joined with securing spring clip installed in the operational position (Step


4


);





FIG. 13

is an end view of the receiver extension of the M4 Carbine showing the preferred embodiment (rear mount) installed;





FIG. 14

is a side view of a rail of the RAS of the M4 Carbine showing the preferred embodiment (front mount) being installed (Step


1


);





FIG. 15

is a side view of a rail of the RAS of the M4 Carbine showing the preferred embodiment (front mount) being installed, base located and wedge started (Step


2


);





FIG. 16

is a side view of a rail of the RAS of the M4 Carbine showing the preferred embodiment (front mount) installed, base fixed and wedge locked (Step


3


);





FIG. 17

is a side view of a rail of the RAS of the M4 Carbine showing the preferred embodiment (front mount) installed, base fixed and wedge locked with optional split ring attached (Step


4


);





FIG. 18

is a side view of a rail of the RAS of the M4 Carbine showing the preferred embodiment (front mount) installed, base fixed and wedge (modified) locked with tactical sling hook directly attached;





FIG. 19

is a partial cross-section view taken along line


19





19


of

FIG. 1

, showing the preferred embodiment attached to the RAS rail;





FIG. 20

is a end view of a rail of the RAS of the M4 Carbine showing the preferred embodiment (front mount) installed, base fixed and wedge locked with optional split ring attached.











REFERENCE NUMERALS IN DRAWINGS


















 2




base






 3




open end






 4




wedge






 5




slope edge






 6




split ring






 7




orifice






 8




upper ring half






 9a




right upper leg






 9b




left upper leg






10




eyelet






 11a




right lower leg






 11b




left lower leg






12




lower ring half






13




bottom






14




spring clip






 15a




upper channel






 15b




lower channel






16




castle nut






17




leading end






18




stop shelf






19




small end of slot






20




receiver extension






21




hole






22




buttstock






23




dovetail






24




RAS (rail system)






25




large end of slot






26




rail






27




standard recess






28




M4 Carbine






29




standard rib






30




receiver end plate






31




hook






32




cam lever






33




sling






34




end rib






35




latch






36




locking spacer






37




stud






38




locking rib






39




sloping slot






40




charging handle














Description of the Preferred Embodiment—FIGS.


1


-


8







FIG. 1

shows the side view of an M4 Carbine


28


fitted with a RAS


24


consisting of four each of a rail


26


. Each rail


26


has an end rib


34


and a locking spacer


36


at either end. A base


2


of the preferred embodiment (front mount) is shown mounted on rail


26


with a wedge


4


locked in its operational position and an optional split ring


6


attached to accept the hook of a tactical sling.




The preferred embodiment (rear mount) is shown around a receiver extension


20


. The preferred embodiment (rear mount) consists of an upper ring half


8


interlocked with a lower ring half


12


with an optional spring clip


14


affixed. Upper ring half


8


is provided with an eyelet


10


to accept the hook of a tactical sling. The preferred embodiment (rear mount) is stationed and rotational between a stop shelf


18


of receiver extension


20


and a castle nut


16


which is used to secure both receiver extension


20


and a receiver end plate


30


to M4 Carbine


28


. A cam lever


32


is pulled away from receiver extension


20


until a stud


37


is disengaged from a locking rib


38


so that a buttstock


22


can be removed from receiver extension


20


.





FIG. 2

shows the preferred embodiment where upper ring half


8


is connected to lower ring half


12


by means of a mating of a left upper leg


9




b


and a right upper leg 9a with a left lower leg


11




b


and a right lower leg


11




a


respectively. When upper ring half


8


and lower ring half


12


are joined an upper channel


15




a


and a lower channel


15




b


coincide to provide a seat for spring clip


14


. Spring clip


14


is attached to the preferred embodiment by forcing an open end


3


of spring clip


14


over lower ring half


12


while centered in lower channel


15




b


. Spring clip


14


is pushed in the direction of eyelet


10


until it snaps into the channel formed by upper channel


15




a


and lower channel


15




b


. When assembled over a cylinder the preferred embodiment with optional spring clip


14


forms a concentric ring assembly capable of free rotation. Upper ring half


8


and lower ring half


12


are concentrically joined until spring clip


14


is removed. Force exerted on eyelet


10


will not alter the concentricity of the assembly. The width of upper channel


15




a


and lower channel


15




b


are identical and sufficient to allow for the width of spring clip


14


. The width of spring clip


14


should allow for its complete seating within upper channel


15




a


and lower channel


15




b.







FIG. 3

shows spring clip


14


with open end


3


.





FIG. 4

shows the preferred embodiment (front mount) consisting of base


2


with a dovetail


23


running perpendicular to a small end of slot


19


and a hole


21


for weight reduction.





FIG. 5

shows wedge


4


of the preferred embodiment having a slope edge


5


, a bottom


13


and a leading end


17


. Leading end


17


has an orifice


7


for accepting the hook of a sling or other interfaces (optional).





FIG. 6

shows upper ring half


8


and lower ring half


12


engaged to form a concentric assembly.





FIG. 7

shows upper ring half


8


and lower ring half


12


disengaged.





FIG. 8

shows upper ring half


8


and lower ring half


12


engaged with optional spring clip


14


installed forming the preferred embodiment (rear mount).




Description of the Preferred Embodiment—Assembly of the Rear Mount FIGS.


9


-


13







FIG. 9

shows upper ring half


8


straddling receiver extension


20


. This is accomplished by sliding upper ring half


8


over the end of receiver extension


20


in the direction of arrow “A” with left upper leg


9




b


facing away from castle nut


16


. Eyelet


10


must be oriented in the direction opposite that of locking rib


38


. Upper ring half


8


is moved in the direction of arrow “A” until it abuts castle nut


16


. Once, upper ring


8


abuts castle nut


16


, eyelet


10


is rotated in the direction of locking rib


38


. In this position upper ring


8


is stationed between stop shelf


18


and castle nut


16


with its longitudinal movement limited.





FIG. 10

shows upper ring half


8


stationed between castle nut


16


and stop shelf


18


. Eyelet


10


is in alignment with locking rib


38


. Lower ring half


12


is placed over the end of receiver extension


20


and moved in the direction of arrow “A” with right lower leg


11




a


facing castle nut


16


. Lower ring half


12


is moved in the direction of arrow “A” until it contacts and mates with upper ring half


8


.





FIG. 11

shows upper ring half


8


and lower ring half


12


mated. Once mated upper ring half


8


and lower ring half


12


are rotated until eyelet


10


is oriented in the direction opposite that of locking rib


38


. This is the operational orientation of eyelet


10


. When the weapon is shouldered for firing, the sling attached to eyelet


10


pulls eyelet


10


towards the user ensuring that eyelet


10


does not interfere with controls such as charging handle


40


of

FIG. 1

(slung weapon). If the sling is attached to the weapon but not the user, the weight of the attached sling and gravity pulls eyelet


10


to a position that is in alignment with that of locking rib


38


ensuring unhindered access to controls such as the charging handle


40


of FIG.


1


.





FIG. 12

shows upper ring half


8


and lower ring half


12


mated with eyelet


10


in its operational orientation with spring clip


14


attached. The preferred embodiment (rear mount) is rotational, provides for ambidextrous access to eyelet


10


and is stationed between castle nut


16


and stop shelf


18


. With eyelet


10


in its operational orientation, lower ring half


12


is captured between castle nut


16


and stop shelf


18


. The orientation of left upper leg


9




b


and left lower leg


11




b


(right upper leg


9




a


and right lower leg


11




a


—not shown) enables lower ring half


12


to capture upper ring half


8


and maintain a concentric assembly without spring clip


14


installed. Spring clip


14


ensures the assembly's integrity when eyelet


10


is not in its operational orientation.





FIG. 13

shows the rotational capability of upper ring half


8


and lower ring half


12


around receiver extension


20


with eyelet


10


in its operational orientation opposite locking rib


38


.




Description of the Preferred Embodiment—Assembly of the Forward Mount FIGS.


14


-


20







FIG. 14

shows base


2


straddling end rib


34


of rail


26


. The configuration of locking spacer


36


allows base


2


to straddle end rib


34


. It is also possible to simply override end rib


34


with base


2


depending upon the location of rail


26


. Base


2


is moved in the direction of arrow “B” until small end of slot


19


and large end of slot


25


line up with one of several standard recess


27


. Hole


21


of base


2


helps the user align base


2


with standard recess


27


. Wedge


4


is shown in alignment with but out of engagement with large end of slot


25


of base


2


.





FIG. 15

shows base


2


aligned with a standard recess


27


of rail


26


. A leading end


17


of wedge


4


has engaged large end of slot


25


with a slope edge


5


of wedge


4


facing away from rail


26


. Wedge


4


is moved in the direction of arrow “C” until it can be moved no further. This action securely fixes base


2


to rail


26


limiting any longitudinal movement.





FIG. 16

shows the locked positioning of base


2


with wedge


4


in its operational orientation. An orifice


7


is provided for direct connection of the hook of a sling or other interfaces (optional).





FIG. 17

shows the preferred embodiment (front mount) with base


2


fixed to rail


26


by wedge


4


and an additional interface in the form of a split ring


6


. It can be seen that even if wedge


4


loosens it cannot be detached from rail


26


or base


2


due to an interference between small end of slot


19


and split ring


6


. When force is applied in the direction of arrow “C” via split ring


6


, wedge


4


returns to its fixed state tightly securing base


2


to rail


26


. The assembly is therefore self tightening.





FIG. 18

shows a modified wedge


4


securing base


2


to rail


26


where the leading end


17


of wedge


4


has been tapered to accept a hook


31


of a sling


33


through orifice


7


of wedge


4


. A latch


35


of hook


31


is spring loaded and can be depressed to allow for insertion or removal of hook


31


into orifice


7


of wedge


4


.





FIG. 19

shows the locking relationship of wedge


4


with rail


26


and base


2


. A bottom


13


of wedge


4


runs along standard recess


27


in the direction of arrow “C” until slope edge


5


of wedge


4


interferes with a sloping slot


39


of base


2


. This action forces base


2


away from rail


26


causing dovetail


23


to engage rail


26


securely.





FIG. 20

shows base


2


locked into position on rail


26


by wedge


4


with an interface in the form of split ring


6


attached to wedge


4


through orifice


7


.




While the description above contains many specificities, these should not be construed as limitations on the scope of the invention, but rather as an exemplification of one preferred embodiment thereof Many other variations are possible.




Summary




It should, therefore, be clear to the reader that the structure of our invention will enable individuals to remove and install sling attachment hardware to firearms like the M4 Carbine quickly and efficiently without the use of tools. Furthermore, the structure of our invention has additional advantages in that;




it is readily adaptable to a wide range of tactical slings;




it has no screws or other mounting hardware that can shoot loose rendering the sling useless to the user;




when properly installed, the mounting points are fixed and will not shift;




the rear mount is rotational, making it ambidextrous, providing unhindered access to controls such as the charging handle,




the front mount is self-tightening and cannot be inadvertently removed from the weapon;




it can be configured for both right and left handed users;




it allows for removal of the buttstock to access battery storage with the weapon slung;




it can be configured to place the mounting points close to the receiver and torso of the user freeing-up the ends of the weapon, offering the user more mobility in CQB environments;




lastly, the design of our sling attachment hardware provides for the proper balance of the weapon.



Claims
  • 1. Hardware for attaching a sling to a firearm, comprising:Two interconnecting semi-circular ring halves with ends that extend more than 180°; said ends having one or more tooth/slot configurations that, when joined, produce a complete ring; a circular loop projecting from one or more of said ring halves configured to allow for rotational attachment of a sling to said firearm.
  • 2. Hardware according to claim 1, wherein said ring halves include a groove to allow for attachment of a semi-circular spring clip to keep said ring halves in alignment and joined.
  • 3. Hardware according to claim 1, wherein one or more of said ring halves include a slot for directly inserting/attaching a sling having a strap configuration that will not fit through said loop, said slot eliminating the need for additional hardware to attach said sling to said ring halves.
  • 4. Hardware according to claim 2, wherein said semi-circular spring clip is configured to keep said ring halves permanently in alignment and joined.
  • 5. Hardware according to claim 1, wherein one or more of said ring halves includes a means to limit rotation.
Parent Case Info

This application claims the benefit of U. S. Provisional application No. 60/233,062, filed Sep. 14, 2000.

US Referenced Citations (17)
Number Name Date Kind
330426 Rohrer et al. Nov 1885 A
1366715 Burton Jan 1921 A
2913960 Harvey et al. Nov 1959 A
3376004 Goldman Apr 1968 A
3651544 Soma Mar 1972 A
4470216 Harris Sep 1984 A
4571872 Johnson Feb 1986 A
4823998 Johnson Apr 1989 A
5067267 Ives Nov 1991 A
5074069 Shire Dec 1991 A
5092505 Olschlager Mar 1992 A
5501025 Johnson Mar 1996 A
5613316 Hightower Mar 1997 A
5810219 Rosenfield Sep 1998 A
5848491 Biemont Dec 1998 A
5881487 Chalker Mar 1999 A
5971239 Marable Oct 1999 A
Foreign Referenced Citations (1)
Number Date Country
1 040 947 Oct 1953 FR
Provisional Applications (1)
Number Date Country
60/233062 Sep 2000 US