1. Field of the Invention
This invention relates to electrical connectors for transformers. More particularly, it relates to a slip fit electrical connector that is compatible with transformer studs having different diameters.
2. Description of the Prior Art
Conventional multiple stud transformer connections that can accommodate only two (2) studs require multiple machining operations. Thus there is a need for a transformer connection that accommodates two (2) studs of different sizes but which requires fewer manufacturing operations to manufacture.
U.S. Pat. No. 6,579,131 to Ashcroft discloses a small stud seat within a small bore having a first center, and a larger stud seat within a medium-sized bore having a second center that is offset from the first center. A third bore is larger in diameter than the small and medium-size bores and has a third center offset from the first and second centers of the two (2) smaller bores. The sole function of the large bore is to provide clearance space. The large bore is unthreaded to permit a connector to be quickly slipped over a threaded stud regardless of size when jam screws are retracted. In other words, the Ashcroft structure can accommodate two (2) stud sizes but such accommodation requires the machining of three (3) eccentric bores, two (2) of which are threaded.
What is needed, then, is a slip fit electrical connector that can accommodate two (2) stud sizes but which does not require the machining of three (3) eccentric bores of progressively larger sizes.
However, in view of the art considered as a whole at the time the present invention was made, it was not obvious to those of ordinary skill in this art how the identified needs could be met.
The long-standing but heretofore unfulfilled need for a slip fit electrical connector that can handle two (2) studs of differing diameters at different times but which requires fewer machining steps than the connectors of the prior art is now met by a new, useful, and nonobvious invention.
The novel stud mount transformer connector includes an elongate lug of solid construction. A plurality of conductor channels is formed in the elongate lug in transverse relation to a longitudinal axis of the elongate lug. The conductor channels are longitudinally spaced apart with respect to one another. A plurality of set screw channels are also formed in the elongate lug. The set screw channels are also longitudinally spaced apart with respect to one another and the number of set screw channels matches the number of conductor channels. The set screw channels are disposed in intersecting relation to the conductor channels.
An internally threaded, longitudinally-extending circular blind bore is also formed in the elongate lug.
A threaded recess is formed in a periphery of the circular blind bore. This threaded recess or circular arc has a radius that corresponds to a radius of a first transformer stud. The externally threaded first transformer stud screw-threadedly engages the internally threaded circular arc along the bottom of the first transformer stud. A jam or set screw bears down on the top of the first transformer stud to hold it in its operative engagement with the circular arc. An imaginary longitudinal axis of the set screw bisects the circular arc, i.e., the longitudinal axis of the set screw and the mid-point of the circular arc are diametrically opposed to one another.
The circular blind bore intersects the circular arc at a first end of the circular arc and at a second end of the circular arc. The circular blind bore has a diameter sufficient to accommodate a second transformer stud having a diameter greater than a diameter of the first transformer stud and to have excess space around said second transformer stud so that the second transformer stud may be easily positioned in the bore when the set screws are retracted.
The external threads of the second transformer stud screw-threadedly engage the internal threads of the circular blind bore where said internal threads meet the first and second ends of the circular arc. The external threads of the second transformer stud gradually disengage therefrom because the circular blind bore has a diameter greater than the diameter of the second transformer stud. The second transformer stud does not contact or screw threadedly engage the circular blind bore at any points other than near said first and second ends of the circular arc.
The second transformer stud is held in registration with said first and second ends of said circular arc by a set screw disposed in a set screw channel that intersects the circular blind bore. The longitudinal axis of the set screw bisects the circular arc.
Accordingly, only two machining steps are required to form the circular blind bore. The two machining steps include a first step to form the circular blind bore and a second step to form the circular arc or threaded recess in the periphery of the circular blind bore. The first externally threaded stud screw threadedly engages the threaded recess or circular arc and the opposite ends of the circular arc forms a stud seat for the second externally threaded stud having a diameter greater than that of the first stud.
For a fuller understanding of the invention, reference should be made to the following detailed description, taken in connection with the accompanying drawings, in which:
Referring now to
In the embodiment of
An elongate circular blind bore that is internally threaded, not depicted in
The stud-mounted transformer connector of
The elongate blind bore is depicted in the transverse sectional views of
After blind bore 30 is formed in lug 12, a threaded recess or circular arc is machined into the periphery of blind bore 30. The circular arc is formed by a small diameter bore of which only a short arc 32 at the bottom thereof has a physical existence when the machining process is completed. The remainder of said small diameter bore is imaginary because it is subsumed by larger blind bore 30 having a center that is eccentric relative to the center of said small diameter bore.
Short arc 32 is internally threaded and is therefore adapted to screw-theadedly receive externally threaded transformer stud 22. Such stud 22 is a small diameter stud.
Larger bore 40 is also circular in configuration. Imaginary part 42 of larger bore 40 extends between first end 32a of short arc 32 to second end 32b of said short arc 32.
The remainder of large bore 40, i.e., the physical non-imaginary part, i.e., not between points 32a and 32b, is internally threaded and has a diameter greater than the diameter of a second transformer stud.
As best understood in connection with
As best understood in connection with
Significantly, large diameter transformer stud 44 makes full screw-threaded engagement with large circular bore 40 only at two (2) points. Said two (2) points are the above-mentioned endpoints 32a and 32b of short arc 32. The amount of screw-threaded engagement gradually reduces from said respective points of full engagement and disengagement occurs at the points denoted 33a, 33b in
The bottom arc of large diameter stud 44 is unsupported between said points 32a and 32b as depicted in
This is the first lug having a machined bore that includes only two circular parts and which is adapted to accommodate two transformer studs of differing diameters. Only two (2) machining steps are needed to create a large diameter circular bore for receiving a large stud and providing ample clearance space for insertion of said large stud into said large bore. The large bore has a circular arc formed in its periphery that creates a recess for receiving a small stud.
It will be seen that the advantages set forth above, and those made apparent from the foregoing description, are efficiently attained and since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matters contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween. Now that the invention has been described,