In many well applications, a wellbore is drilled and a casing string is deployed along the wellbore. A liner hanger may then be used to suspend a liner downhole within the casing string. The liner hanger may be hydraulically operated via a hydraulic cylinder to set hanger slips. Once the liner hanger is run-in-hole and positioned properly, the hanger slips are set against the surrounding casing string. The set slips are responsible for ensuring sufficient gripping of the surrounding casing string to hold the weight of the liner and to hold against mechanical and hydraulic loads applied to the system.
An important aspect of a slip package design for a liner hanger is ensuring that the slips reliably set and grip into the surrounding casing on each and every deployment. The slips are actuated hydraulically or mechanically depending on the type of hanger with relatively small loads compared to the maximum hang load rating of the slips. In the past, liner hangers have been known to “slip downhole” if they do not successfully bite into the casing during the setting process. Accordingly, there is a continued need for a slip package with improved initial setting for liner hanger applications.
According to one or more embodiments of the present disclosure, a system for use in a well includes a liner hanger including a mandrel; a cone mounted about the mandrel, the cone having tapered slots; a plurality of tapered slips slidably received in the tapered slots, each tapered slip of the plurality of tapered slips comprising a plurality of teeth, wherein each tapered slip of the plurality of tapered slips and the corresponding tapered slot includes: a setting ramp; and a loading ramp separate from the setting ramp; and an actuator mounted about the mandrel to selectively shift the plurality of tapered slips between a radially contracted position and a radially expanded, set position.
According to one or more embodiments of the present disclosure, a system for use in a well includes, a liner hanger including a mandrel; a cone mounted about the mandrel, the cone having tapered slots; a plurality of tapered slips slidably received in the tapered slots, each tapered slip of the plurality of tapered slips including a plurality of teeth; and an actuator mounted about the mandrel to selectively shift the plurality of tapered slips between a radially contracted position and a radially expanded, set position, wherein the cone includes a cone ramp angle, wherein each tapered slip of the plurality of tapered slips includes a slip ramp angle, wherein the cone ramp angle is different from the slip ramp angle, and wherein, upon an actuation force by the actuator: each tapered slip of the plurality of tapered slips contacts the tapered slot of the cone in which the tapered slip is slidably received at a single point at a first end of the tapered slip; and a second end of the tapered slip is unsupported, causing the first end of the tapered slip to rise toward and bite into a host casing.
However, many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
Certain embodiments of the disclosure will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate the various implementations described herein and are not meant to limit the scope of various technologies described herein, and:
In the following description, numerous details are set forth to provide an understanding of some embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that the system and/or methodology may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
One or more embodiments of the present disclosure generally relates to a system and methodology for deploying and setting a liner hanger assembly. More specifically, one or more embodiments of the present disclosure provides a liner hanger assembly including a slip package that ensures a successful initial set or “bite” into the host casing. The design of the slip package according to one or more embodiments of the present disclosure includes one or both of (1) dedicated zones for setting and loading; and (2) “biased” ramp angles of the slip and cone to concentrate the initial bite to a smaller area of the host casing.
Referring generally to
According to an example, the liner hanger 34 comprises an inner mandrel 42 having an internal passage through which, for example, fluid and/or equipment is able to move. In this embodiment, a cone 44 is slid onto the mandrel 42 to an abutment 46. In some applications, a spacer or bearing 48 may be positioned between the abutment 46 and the cone 44. The cone 44 may be generally tubular in structure and sized to slide along the tubular exterior of the mandrel 42. Additionally, the cone 44 comprises a plurality of cone slots 50 arranged generally in an axial direction along a portion of the cone 44. The cone slots 50 are sized to receive corresponding hanger slips 52, according to one or more embodiments of the present disclosure.
As illustrated, the liner hanger 34 also comprises a retainer or retention ring 54 which engages lower ends 56 of the slips 52 so as to facilitate retention of the slips 52 when, for example, the liner hanger assembly 30 is run-in-hole. By way of example, the retention ring 54 may comprise a plurality of retention ring fingers 58. The retention fingers 58 interlock with a plurality of corresponding slip fingers 60 located at the lower ends 56 of the slips 52.
On an opposite side of the retention ring 54 from slips 52, the retention ring 54 may be engaged by a cylinder 62 or other suitable actuator component mounted about the mandrel 42. The cylinder 62 may have an engagement feature 64 which slides over and engages the retention ring 54. By way of example, the engagement feature 64 may be in the form of an expanded inner diameter section of the cylinder 62 which is sized to slide over a portion of the retention ring 54 before abutting the remaining portion of retention ring 54. Additionally, the cylinder 62 may be part of an overall actuator 66, e.g. a hydraulic actuator, a mechanical actuator, or another suitable actuator. For example, the cylinder may be a hydraulically actuated cylinder 62 or a mechanically actuated cylinder 62. The actuator 66 also may have other configurations and may use other types of engagement features 64.
When the engagement feature 64 is positioned against an abutment edge 92 of the retention ring 54, the slip fingers 60 are blocked from moving linearly/axially farther into the spaces 88 between retention ring fingers 58. By limiting this linear/axial movement of the slips 52, the slips 52 are prevented from shifting to a decoupling position while at the same time the cooperating angled surfaces 84, 86, 90 prevent sufficient radial movement of the slips to enable release the slips. Accordingly, the slips 52 are secured along the cone 44 and cannot be inadvertently released or set until cylinder 62 is actuated to force slips 52 to a set position.
In the illustrated example, the cylinder 62 is a hydraulic cylinder which may be hydraulically actuated in an axial direction to shift the retention ring 54 until a face 68 of cylinder 62 is moved into abutting engagement with the lower ends 56 of the slips 52. Continued linear movement of the cylinder 62 in the direction toward slips 52 causes linear/axial movement of the slips 52. The linear movement of slips 52 effectively causes an interaction with cone 44 which forces the slips 52 radially outward into a set position, as illustrated in
In the example illustrated in
Each corresponding slot 50 also may be tapered with a corresponding taper that expands in a circumferential direction moving from an upper region of the slot 50 to a lower region of the slot 50. Additionally, the circumferential sides of each slip 52 may have angled surfaces 74 which taper inwardly moving in a radially inward direction. In other words, the radial exterior of each slip 52 is wider than the radial interior at each linear/axial position along the slip 52.
The slot 50 which receives the slip 52 has corresponding angled surfaces 76 which similarly cause the slot 50 to be circumferentially narrower at a radially inward position than a radially outward position. The corresponding tapers and angled surfaces 74, 76 are thus able to effectively cooperate and force the tapered slips 52 in a radially outward direction as the actuating cylinder 62 forces the slips 52 to move linearly with respect to cone 44 as cone 44 is held by abutment 46. With this configuration, each slip 52 supports an adjacent slip 52 though the cone 44 itself. In one or more embodiments of the present disclosure, such circumferential loading through the cone 44 prevents radial deflection or collapse into the mandrel 42 while allowing bypass flow under the slips 52. According to one or more embodiments of the present disclosure, each slip 52 may also include a head 78 at its upper end 72, which may be constructed to facilitate retention of slips 52 along cone 44 when liner hanger assembly 30 is run-in-in-hole. For example, the head 78 of each slip 52 may be rotated and inserted into an expanded opening 94 at a top of the corresponding cone slot 50. The head 78, which serves as a retention feature of the slips 52, may be shaped like a hammerhead, for example, in one or more embodiments of the present disclosure.
Referring now to
Referring back to
Still referring to
In view of
Referring now to
According to one or more embodiments of the present disclosure, the cone ramp angle θc may be different from the slip ramp angle θs. Because of the difference in angles between the ramp on the slip 52 and cone 44, the actuation force is focused to a smaller number of teeth 70 on the slip 52. For example, when the actuation force is applied, the slip 52 is designed to contact the cone ramp 45 at a single point 51 and is unsupported on the other end (
As previously described, the slip 52 shown in
Advantageously, as shown in
Referring now to
Still referring to
It should be noted that the liner hanger 34 according to one or more embodiments of the present disclosure my include one or both of the separate setting ramp 20 and loading ramp 22 design, and the biased angle slip design, as previously described. Further, it should be noted the liner 32, liner hanger 34, and running string 40 may be constructed in various sizes and configurations. Additionally, each of the components of the overall liner hanger 34 may utilize: various engagement features, differing angled surfaces, different numbers of cooperating angled surfaces, different ramp angles, different setting and loading ramps, various actuators, e.g. actuating cylinders, and/or other features to enable the desired operation.
Although a few embodiments of the disclosure have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
The present application claims priority benefit of U.S. Provisional Application No. 63/109,209, filed Nov. 3, 2020, the entirety of which is incorporated by reference herein and should be considered part of this specification.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/056492 | 10/25/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63109209 | Nov 2020 | US |