The present invention relates to a slip-proof system composed of a screw connection element having recesses for the engagement of a wrench, provided with cams which fit into the recesses, for tightening and loosening the screw connection element.
For screw connection elements, i.e., screws, nuts, and the like, in which the engagement of a tool for tightening and loosening the screw connection element takes place at the end face thereof, there is an increased risk of the tool inadvertently slipping off. The result, on the one hand, is possible damage to the screw connection element and to the tool, and on the other hand, possible injuries. The risk of injury is particularly high during clamping and unclamping of extremely sharp cutting tools in machine tools. Slip-proof clamping systems have therefore been developed to avoid this risk.
A system is known from DE 299 07 998 U, for example, in which the lock nut is provided with end-face, radially oriented grooves having a dovetailed cross section, a wrench having pins or cams with a likewise dovetailed cross section engaging with the grooves in order to tighten and loosen the lock nuts. The dovetail joint between the wrench and the lock nut is intended to prevent the wrench from inadvertently slipping off during the clamping process.
A slip-proof clamping system is known from DE 103 02 529, in which the side flanks of the grooves and cams have an S-shaped profile to avoid the disadvantages of the dovetailed cross section of grooves and cams.
A clamping system composed of a lock nut and a wrench is known from EP 1 563 959, in which the end-face cams of the lock nut or of the wrench are provided with additional undercuts to increase the security against slipping off.
The object of the invention is to enable the principle of slip-proof cooperation of a screw connection element and a wrench having an end-face engagement to be used for other applications.
This object is achieved according to the invention in that the screw connection element is a union nut having a cylindrical lateral surface and a ring-shaped end face, and the recesses extend axially parallel from the end face over at least a portion of the lateral surface, and the wrench is provided with cams which in the axial direction are insertable into the recesses.
Preferred exemplary embodiments are characterized by the features set forth in the subclaims.
Preferred exemplary embodiments of the invention are described below with reference to the accompanying drawings, which show the following:
The lock nut 1 shown in
The lateral surface is provided with six recesses 6 which are distributed uniformly, i.e., at angular distances of 60°, over the circumference, and which extend axially parallel from the end face into the lateral surface. The depth of the recesses in the radial direction is approximately one-half the wall thickness of the lock nut. The base 7 of the recesses is curved corresponding to the axial distance. The openings or orifices in the recesses facing toward the end face each have a width in the tangential direction which corresponds to approximately 30° to 40° of the circumference of the lock nut. The recesses maintain this width over an outer area 10 which extends over approximately one-half their axial length. The flat side walls 8 in this outer area are defined by axial planes, and are thus perpendicular to the base 7. In an inner area adjoining the outer area, the recesses are expanded by oppositely situated semicircular protrusions 9 of the side walls in the tangential direction to a maximum width corresponding to approximately 40° to 45° of the circumference.
The wrench 11 shown in
The tangential width of the enlargements 16 is slightly less than the tangential width of the outer area of the recesses in the lock nut. In this way the wrench may be placed against the lock nut in the axial direction, the cams 14 being inserted into the recesses 5. By rotating the wrench for tightening or loosening the lock nut, i.e., when a torque is active, the enlargements of the cams engage with the protrusions in the recesses, so that it is not possible for the wrench to slip off axially.
In addition to reliably preventing the wrench from slipping off, this system is advantageous due to the small space requirements at the periphery of the lock nut, and its simple manufacture. Another advantage is that the force transmission shoulder is at right angles to the action of force; i.e., the force acts optimally in the tangential direction. Lastly, a further advantage is that a large variety of wrench shapes having the same secure engagement with the nut are possible, for example as a socket wrench or push-on sleeve, for attaching a socket designed as a hexagon wrench or torque wrench, or as an extension having a further interface.
The lock nut 21 shown in
Wrenches which are suitable for this lock nut are shown in
The width of the cams is slightly less than the width of the outer area of the recesses in the lock nut. In this way the wrench may be placed against the lock nut in the axial direction, the cams 28 being inserted into the recesses 22. By rotating the wrench for tightening or loosening the lock nut, i.e., when a torque is active, the cams engage with the protrusions 24 of the recesses, so that it is not possible for the wrench to slip off axially.
The wrench 30 shown in
Number | Date | Country | Kind |
---|---|---|---|
1166/10 | Jul 2010 | CH | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/003378 | 7/7/2011 | WO | 00 | 3/25/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/007127 | 1/19/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1397876 | Meldal | Nov 1921 | A |
6282989 | Sorter | Sep 2001 | B1 |
8635751 | Zollmann | Jan 2014 | B2 |
20010022118 | Zollmann | Sep 2001 | A1 |
20030145691 | Gerber | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
278343 | Oct 1951 | CH |
10302529 | Aug 2003 | DE |
Number | Date | Country | |
---|---|---|---|
20130213194 A1 | Aug 2013 | US |