The present invention relates generally to machines for pushing and pulling rod strings through the ground and specifically to machines used to replace underground pipe and utilities.
The present invention is directed to an apparatus for pushing and pulling a rod string. The rod string comprises a plurality of rod string sections connected together end-to-end. The apparatus comprises a downhole tool, a frame, a stationary frame, a thrust assembly, and a rod spinner. The downhole tool is connected to a first end of the rod string. The frame has a first end and a second end. The stationary frame is supported at the first end of the frame and comprises an opening for the rod string to pass through into the ground. The thrust assembly is supported by the frame and movable along the frame from the first end to the second end. The thrust assembly comprises a main slip bowl to grip the rod string to push and pull the rod string through the ground. The rod spinner is supported at a second end of the frame. The rod spinner comprises a gripper, a driven member, and a drive member. The gripper is movable between a gripping position and a non-gripping position and is disposed around a rod string section to be added to or removed from the rod string. The driven member is connected to the gripper to cause the gripper to rotate with the driven member. The drive member is connected to the driven member to cause rotation of the driven member, the gripper, and the rod string section supported within the gripper in both clockwise and counterclockwise directions. Rotation of these components together will thread the rod section onto the rod string or unthread the rod section from the rod string.
The present invention is directed to a rod spinner for adding and removing a rod string section from a rod string used in pipe-bursting operations. The rod spinner comprises a gripper, an actuator, a driven member, and a drive member. The gripper is movable between a gripping position and a non-gripping position. The rod string section is disposed within the gripper and the gripper is in the gripping position when the rod string section is threaded onto the rod string or unthreaded from the rod string. The actuator moves the gripper between the gripping position and the non-gripping position. The driven member is affixed to the gripper to cause the gripper to rotate with the driven member. The drive member is connected to the driven member to rotate the driven member, the gripper, and the rod string section disposed within the gripper in both clockwise and counterclockwise directions to thread the rod section onto the rod string or to unthread the rod section from the rod string.
The present invention is likewise directed to a method for the replacement of an underground pipe. The method comprises wedging a rod string within a main slip bowl of a thrust assembly. A rod string section to be added to a proximate end of the rod string is positioned within a rod spinner and in an engaging orientation with the rod string. A rod string section is wedged within a spinner bowl of the rod spinner in a pair of jaws. A spinner motor is actuated to rotate the rod string section relative to the rod string to connect the rod section to the rod string so that linear and rotational forces may be transmitted from the rod string section to the rod string. The pair of jaws is at least partially withdrawn from the spinner bowl to release the rod section and the thrust assembly is moved to advance the rod string through the ground.
As the infrastructure of underground utilities has aged the need to replace these underground utilities has grown. However, home and business owners do not like to have their landscaping and streets dug up during the replacement of underground utilities. Thus, systems and methods for the replacement of underground utilities with minimal surface disruption have been developed. For example, horizontal directional drills are regularly used to install new utilities and replace old utilities. Another technology widely used is pit launched rod pushing and pulling machines. These machines push a rod string, comprised of a series of rod string sections attached end-to-end, through an existing pipeline from a launch pit to an exit point remote from the machine. Sections of rod are added to the rod string as the rod string is pushed into the pipe. Conversely, rod string sections are removed from the rod string as the new utility is pulled into the ground toward the launch pit.
One skilled in the art will appreciate that a downhole tool comprising a drill bit could be attached to the far end of the rod string to allow the rod string to be pushed through the ground or an existing pipe. Once the far end of the rod string reaches the target point a downhole tool such as a backreamer or pipe splitter may be attached to the far end of the rod string. The new pipe to be installed may be connected to the downhole tool so that the new pipe follows the downhole tool back through the ground or old pipe to the launch pit. The machine grips the rod string and, using hydraulic cylinders, pulls the rod string, downhole tool, and new pipe toward the launch pit. The downhole tool may comprise a pipe bursting head configured to either burst or slice the old pipe and push it into the surrounding soil.
Threaded pipe or rod strings are generally used in vertical and horizontal drilling and particularly in pipe bursting. The pipe sections range in length from a section of two feet to over fifteen feet in oil and gas operations. High tensile loads are applied to rod strings, whether they are hung vertically in a miles deep bore or deployed horizontally in a pipe burst.
Oil rigs use gravity assisted slips to hold the downhole tool off the bottom of the bore, such as when tripping out to change the drilling tooling, or to provide torsional restraint when adding or removing the top pipe from the string. Gravity assisted slips have a heavy walled outer slip bowl, slips, and jaws. The slip bowl is generally mounted on a structure that passes reaction forces to the ground. The slip bowl is ring shaped and has a conical inside surface running for its functional length; both ends of the bowl are open. The pipe or rod string is disposed at cylindrical centerline of the slip bowl. The angle of the conical side relative to the centerline is on the order of five (5) to fifteen (15) degrees with a preferred angle of ten (10) degrees per side. Without the slips engaged with the rod string, the rod string is free to move in either direction along the axial centerline. Slips are generally thin walled segments having a conical surface on a first side and a cylindrical surface on a second side. The conical surface of the slip is configured to slide with low friction against the conical inner surface of the slip bowl. The cylindrical inner surface of the slip is intended to produce a high coefficient of friction against the matching cylindrical surface of the rod and may have a hardened and serrated finish intended to bite into the mating rod surface. The inner surface is the jaw and may be a replaceable component within the slip. There are generally a minimum of two slips and often there are more, up to a dozen.
In oil field applications, gravity causes the slips to drop into the tapered annular space between the slip bowl and the rod. This causes friction between the rod and the slips. As the rod string moves down under the force of gravity the slip moves with it deeper toward the small diameter end of the slip bowl. Movement continues until at least two opposing slips apply normal forces to the slip bowl cone and the rod string. At this point the rod will be centered in the bowl and both the normal forces and the friction forces of the engaged components rise quickly with slight distances of rod string travel.
The rod string and slips move deeper into the slip bowl until the friction forces on the rod string are equal in magnitude and opposite in direction to the weight (or other) forces pulling the rod string and causing movement. The rod will stop when the normal force around the bowl has caused the bowl to grow slightly within its elastic nature allowed by the geometry of all the components involved adjacent to and including the slip bowl. The invention disclosed in co-pending U.S. patent application Ser. No. 14/242,546 filed Apr. 1, 2014, and entitled “Powered Slip Actuation”, the contents of which are fully incorporated herein, provides a system to induce slip movement toward the small end of the main slip bowl without requiring the force of gravity. Such a system helps lead to successful clamping of the rod string in either the vertical or horizontal orientation. The system of the present invention provides a similar powered gripping system that may be used in conjunction with the invention disclosed in the above-referenced patent application to clamp a rod string section within a rod spinner for powered addition or removal of rod string sections from the rod string gripped by the main slip bowl.
Turning now to the figures,
Turning now to
The thrust assembly 34 is movable along the rails 25 relative to the stationary frame 30. The thrust assembly 34 comprises the main slip bowl 36, two thrust cylinders 38, two rams 40, and rod spinner 42. As shown, the thrust assembly 34 comprises wheels 44 for interaction with the rails 25. One of ordinary skill will appreciate that rack-and-pinion, pulley, or other systems are appropriate alternatives for movement of the thrust assembly 34 relative to the stationary frame 30. Further, the thrust unit 10 may be operable with a different number of cylinders 38 and rams 40. Two cylinders 38 and rams 40 are chosen for convenience in the figures and are not limiting on this invention. An appropriate thrust unit for use with the present invention is disclosed in co-pending and co-owned U.S. patent application Ser. No. 14/206,548, filed Mar. 12, 2014, and entitled “Stepped Load Pull Back Using Rams” the contents of which are incorporated fully herein.
As discussed above, the thrust assembly 34 comprises a main slip bowl 36 that travels toward and away from the stationary frame 30 as the thrust assembly 34 moves along the rails 25. The cylinders 38 are connected to the thrust assembly 34 and the stationary frame 30. Each cylinder 38 comprises a cylinder rod 46 that abuts the stationary frame 30. The cylinder rods 46 are movable between a retracted and extended position in response to the flow of hydraulic fluid to and from the cylinders 38. As shown, cylinder rods 46 of the cylinders 38 are in the extended position. The cylinders 38 expand and retract to increase or decrease the distance between the stationary frame 30 and the thrust assembly 34, causing the rod string 12 to either push into the ground or be pulled out of the ground. As shown, the cylinders 38 are diagonally disposed about the thrust assembly 34 and therefore the rod string 12.
With continued reference to
The rod spinner 42 threads on or off sections of the rod string 12 to make up or break out the rod string during pushing or pulling operations. A rod support frame 48 travels with the thrust assembly 34 and maintains alignment between a rod section 23 (
The stationary frame 30 is a reaction plate that is positioned to ground the thrust unit 10 and allow the extension of the cylinders 38 to cause the thrust assembly 34 to pull or push the rod string. The rod string 12 travels through the central opening 32 and through the main slip bowl 36 to the rod spinner 42. Jacks (not shown) may be used to stabilize the stationary frame 30 to the ground such that the operation of the thrust unit 10 does not cause excessive movement in the stationary frame.
Turning now to
A hydraulic motor 64 is connected to the cover plate 56 and has a drive shaft 136 (
With reference to
The gripper 62 comprises a pair of jaws 80 comprising a gripping surface 82. Jaws 80 are supported within a spinner bowl 84 having a conical inner surface. Jaws 80 are slidably supported within the spinner bowl 84 to grip the rod string section 23 (
Turning now to
Frame plate 52 comprises at least two lobes 72 having holes 116 formed therein. Bushings 118 are mounted on rods 74 (
The driven member 94 comprising a ring gear or sprocket, having a plurality of laterally extending teeth 120. Driven member 94 is disposed within the frame plate 52 and secured by the cover plate 56 for rotation within the cavity created by the frame plate and the cover plate. Bearings 122 are used within the cavity to support rotation of the driven member 94 and align the hole 124 formed in the driven member with the access passage 98. Shear pins 126 secure the frame cover 56 to the frame plate 52 and maintain alignment between the cover and the plate.
The spinner bowl 84 is affixed to the driven member 94 within the hole 124. The spinner bowl 84 has a conical inner surface. The end 128 of spinner bowl 84 toward the cylinder 50 has a larger diameter and the end 86 proximate the yoke 92 has a smaller diameter. As discussed above, the spinner bowl 84 comprises an angled track 88 that comprises a pin configured to engage with a corresponding dovetail 90 (
Yoke 92 is coupled to the jaws 80 and is free to spin about the central axis 60 when actuated by the motor 64. The yoke 92 may be connected to the thrust tube 96 using threaded studs (not shown). Thus, when the cylinder 50 is actuated and the thrust tube 96 moves to the left in
Turning now to
Turning now to
The driven member 94 comprises a ring sprocket having a hole 124 to support the gripper 62 and a plurality of teeth 120. The gripper 62 is affixed to the ring sprocket in the hole 124 for rotation therewith. The gripper 62 is shown to comprise the spinner bowl 84 and the jaws 80.
The drive member 132 is shown disposed below the driven member 94 and has a plurality of laterally extending teeth 134 that engage teeth 120 of driven member. Drive member 132 comprise a sprocket having a drive shaft 136 that is driven by motor 64 (
In operation, the rod string 12 is wedged into the main slip bowl 36 of the thrust assembly 34. A rod string section 23 to be added to the proximate end 22 of the rod string 12 is positioned within the rod spinner 42 and in an engaging orientation with the rod string. The cylinder 50 is actuated to push jaws 80 into the spinner bowl 84 to wedge the rod string section within the spinner bowl 84. Next, the spinner motor 64 is actuated to rotate the rod string section 23 relative to the rod string 12 to connect the rod section to the rod string so that linear and/or rotation forces may be transmitted from the rod string section to the rod string. The cylinder 50 is actuated in the opposite direction to at least partially withdraw the jaws 80 from the spinner bowl 84 to release the rod string section. The thrust assembly 34 is then actuated to advance the rod string 12 and the newly added rod string section through the ground. The rod string 12 is advanced through the ground by actuating the main thrust cylinders 38 to move the thrust assembly along the frame 24. Once the cylinders 38 reach the end of their stroke, the rod string is released from the main slip bowl 36 and the thrust cylinders 38 are reversed to move the thrust assembly 34 rearward along the rod string 12 and frame 24 to the stationary position.
The rod string is thrust through the underground pipe 14 until the distal end 20 reaches a target point or exit pit. The downhole tool 16 and new pipe 18 are connected to the distal end of the rod string 12 and pulled toward the thrust unit 10. The downhole tool 16 and product pipe 18 are pulled by repeatedly gripping and releasing the rod string with the thrust assembly 34 until the downhole tool is removed from the underground pipe and the new pipe has replaced the old underground pipe. Rod string sections are removed from the rod string by gripping the terminal rod string section and actuating the spinner 42 to rotate the terminal uphole rod string section relative to the rod string to unthread the rod string section from the rod string. The disconnected section is removed from the machine and the thrust assembly resumes pulling the rod string out of the ground.
Various modifications can be made in the design and operation of the present invention without departing from the spirit thereof. Thus, while the principle preferred construction and modes of operation of the invention have been explained in what is now considered to represent its best embodiments, which have been illustrated and described, it should be understood that the invention may be practiced otherwise than as specifically illustrated and described.
This application is a continuation of U.S. patent application Ser. No. 14/512,717, filed Oct. 13, 2014, now U.S. Pat. No. 9,915,109, which claims the benefit of provisional patent application Ser. No. 61/949,112, filed on Mar. 6, 2014 and provisional patent application Ser. No. 61/949,454, filed Mar. 7, 2014, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2969702 | Cornish | Jan 1961 | A |
5205671 | Handford | Apr 1993 | A |
5785458 | Handford | Jul 1998 | A |
6158516 | Smith | Dec 2000 | A |
7140806 | Wentworth et al. | Nov 2006 | B2 |
7909539 | Wentworth et al. | Mar 2011 | B2 |
8157478 | Wentworth et al. | Apr 2012 | B2 |
8979435 | Wentworth et al. | Mar 2015 | B2 |
9915109 | Wentworth | Mar 2018 | B2 |
20030075023 | Robichaux | Apr 2003 | A1 |
20040251050 | Shahin | Dec 2004 | A1 |
20060193697 | Wentworth et al. | Aug 2006 | A1 |
20130192842 | Overstreet | Aug 2013 | A1 |
20140270970 | Aus | Sep 2014 | A1 |
Entry |
---|
Rauch Manufacturing Incorporated, Oil Drilling, Oil Rig Spinners, Oil Rig Parts, Off Shore Oil Rig Spinners, website http://www.rauchmfg.com/spinners.html, 2 pages, Garden Valley, Idaho. |
Petroleum Machinery, Drill Rod Spinner, website http://petrolicmachine.com/2-1-drill-rod-spinner/168139, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20180223608 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
61949454 | Mar 2014 | US | |
61949112 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14512717 | Oct 2014 | US |
Child | 15915269 | US |