Sloped tubular reactor with spaced sequential trays

Information

  • Patent Grant
  • 7868129
  • Patent Number
    7,868,129
  • Date Filed
    Thursday, July 12, 2007
    16 years ago
  • Date Issued
    Tuesday, January 11, 2011
    13 years ago
Abstract
A sloped tubular reactor operable to facilitate a chemical reaction in a reaction medium flowing therethrough. The reactor can include a plurality of spaced apart internal trays disposed at different elevations in a downwardly sloping elongated tubular member.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to reactors for processing liquid-containing reaction mediums. In another aspect, the invention concerns polycondensation reactors used for melt-phase production of polyesters.


2. Description of the Prior Art


Melt-phase polymerization can be used to produce a variety of polyesters, such as, for example, polyethylene terephthalate (PET). PET is widely used in beverage, food, and other containers, as well as in synthetic fibers and resins. Advances in process technology coupled with increased demand have led to an increasingly competitive market for the production and sale of PET. Therefore, a low-cost, high-efficiency process for producing PET is desirable.


Generally, melt-phase polyester production facilities, including those used to make PET, employ an esterification stage and a polycondensation stage. In the esterification stage, polymer raw materials (i.e., reactants) are converted to polyester monomers and/or oligomers. In the polycondensation stage, polyester monomers exiting the esterification stage are converted into a polymer product having the desired final average chain length.


In many conventional melt-phase polyester production facilities, esterification and polycondensation are carried out in one or more mechanically agitated reactors, such as, for example, continuous stirred tank reactors (CSTRs). However, CSTRs and other mechanically agitated reactors have a number of drawbacks that can result in increased capital, operating, and/or maintenance costs for the overall polyester production facility. For example, the mechanical agitators and various control equipment typically associated with CSTRs are complex, expensive, and can require extensive maintenance.


Thus, a need exists for a high efficiency polyester process that minimizes capital, operating, and maintenance costs while maintaining or enhancing product quality.


SUMMARY OF THE INVENTION

In one embodiment of the present invention, there is provided a process comprising subjecting a reaction medium to a chemical reaction in a reactor comprising a downwardly sloped elongated tubular member and a plurality of spaced apart trays disposed in the tubular member. The tubular member is elongated along a central axis of elongation that is oriented at a downward angle in the range of from about 5 to about 75 degrees below horizontal. Each of the trays presents an upwardly facing surface across which at least a portion of the reaction medium flows as the reaction medium flows through the reactor.


In another embodiment of the present invention, there is provided a process for making polyethylene terephthalate (PET), the process comprising: (a) introducing a polycondensation feed into a polycondensation reactor, wherein the polycondensation feed forms a predominately liquid reaction medium in the reactor, wherein the polycondensation feed comprises PET having an average chain length in the range of from about 5 to about 100; (b) subjecting the reaction medium to polycondensation in the reactor, wherein the reactor comprises a substantially straight downwardly sloped pipe and at least four spaced apart trays disposed at different elevations in the pipe, wherein the pipe is sloped downwardly at an angle in the range of from about 10 to about 60 degrees below horizontal, wherein the reaction medium flows primarily by gravity through the reactor, wherein each of the trays presents an upwardly facing surface across which at least a portion of the reaction medium flows as the reaction medium flows through the reactor, wherein the upwardly facing surface is sloped less than about 10 degrees from horizontal, wherein each of the trays defines a plurality of apertures through which at least a portion of the reaction medium passes as the reaction medium flows through the reactor; and (c) recovering a predominately liquid polycondensation product from the reactor, wherein the polycondensation product comprises PET having an average chain length that is at least about 10 greater than the average chain length of the PET in the polycondensation feed.


In still another embodiment of the present invention, there is provided a reactor comprising a downwardly sloped tubular member and a plurality of spaced apart trays disposed at different elevations in the tubular member. The tubular member is elongated along a central axis of elongation that is oriented at a downward angle in the range of from about 5 to about 75 degrees below horizontal. Each of the trays presents an upwardly facing surface that is sloped less than about 25 degrees from horizontal.





BRIEF DESCRIPTION OF THE DRAWINGS

Certain embodiments of the present invention are described in detail below with reference to the enclosed figures, wherein:



FIG. 1 is a cut-away top view a sloped tubular reactor configured in accordance with one embodiment of the present invention and suitable for use as a polycondensation reactor in a melt-phase polyester production facility; and



FIG. 2 is a partial sectional side view of the sloped tubular reactor taken along line 2-2 in FIG. 1, particularly illustrating the manner in which a reaction medium passes over and through the series of spaced apart internal trays as it progresses downwardly through the reactor.





DETAILED DESCRIPTION


FIGS. 1 and 2 illustrate an exemplary sloped tubular reactor configured in accordance with one embodiment of the present invention. The configuration and operation of the reactor depicted in FIGS. 1 and 2 are described in detail below. Although certain portions of the following description relate primarily to reactors employed in a melt-phase polyester production process, reactors configured in accordance with embodiments of the present invention may find application in a wide variety of chemical processes. For example, reactors configured in accordance with certain embodiments of the present invention may be advantageously employed in any process where chemical reactions take place in the liquid phase of a reaction medium and a vapor is produced as a result of the chemical reaction. Further, reactors configured in accordance with certain embodiments of the present invention may be advantageously employed in chemical processes that are enhanced by increasing the surface area of the reaction medium.


Referring now to FIGS. 1 and 2, one embodiment of a sloped tubular reactor 10 is illustrated as generally comprising a vessel shell 12 and a series of spaced apart internal trays 14a-e disposed in shell 12. Vessel shell 12 comprises a downwardly sloping tubular member 16, an upper end cap 18 coupled to the top of tubular member 16, and a lower end cap 20 coupled to the bottom of tubular member 16. Vessel shell 12 defines a feed inlet 22 near the top of reactor 10, a liquid product outlet 24 near the bottom of reactor 10, and a vapor outlet 26 near the top of reactor 10.


Tubular member 16 is elongated along a downwardly sloping central axis of elongation. In certain embodiments of the present invention, the central axis of elongation of tubular member 16 is sloped at an angle in the range of from about 5 to about 75 degrees below horizontal, about 10 to about 60 degrees below horizontal, or 12 to 45 degrees below horizontal. In the embodiment illustrated in FIGS. 1 and 2, tubular member 16 is a substantially straight, substantially cylindrical, elongated pipe. However, in certain embodiments, tubular member 16 can be an elongated tubular member having a variety of cross-sectional configurations (e.g., rectangular, square, or oval).


Vessel shell 12 and/or tubular member 16 can have a maximum internal length (L) that is greater than its maximum internal diameter (D). In certain embodiments, shell 12 and/or tubular member 16 has a length-to-diameter (L:D) ratio in the range of from about 2:1 to about 50:1, about 4:1 to about 30:1, or 8:1 to 20:1. In certain embodiments, L is in the range of from about 10 to about 200 feet, about 20 to about 150 feet, or 30 to 80 feet, and D is in the range of from about 1 to about 20 feet, about 2 to about 10 feet, or 3 to 5 feet.


Internal trays 14a-e present respective upwardly facing surfaces 28a-e across which a liquid can flow, as described in detail below. In the embodiment illustrated in FIGS. 1 and 2, upwardly facing surfaces 28a-e of trays 14a-e are substantially planar and substantially horizontal. Alternatively, upwardly facing surfaces can extend at any angle that is within about 25 degrees of horizontal, within about 10 degrees of horizontal, or within 3 degrees of horizontal.


Trays 14a-e each define a plurality of downwardly extending apertures 30a-e through which a liquid can flow. Alternatively, at least one or a majority of trays can define a plurality of downwardly extending apertures through which a liquid can flow. The number, size, and shape of apertures 30a-e can vary greatly depending, for example, on the production capacity of reactor 10 and the viscosity of the medium processed therein. In certain embodiments of the present invention, each tray 14a-e defines in the range of from about 5 to about 200,000 apertures, about 200 to about 50000 apertures, or 1000 to 10000 apertures. In certain embodiments of the present invention, the average number of holes per unit area is in the range from about 0.5 to about 50 holes per square inch, about 1 to about 20 holes per square inch, or 3 to 10 holes per square inch. In certain embodiments of the present invention, the percent open of each tray 14a-e is in the range of from about 5 to about 80 percent, about 10 to about 60 percent, or 15 to 50 percent.


Trays 14a-e each present respective terminal edges 32a-e that are spaced from the inside wall of tubular member 16. Alternatively, at least one or a majority of trays can present terminal edges that are spaced from the inside wall of tubular member 16. Flow passageways 34a-e are defined by the gaps between the inside wall of tubular member 16 and terminal edges 32a-e of trays 14a-e, respectively. One or more of trays 14a-e can, optionally, be equipped with an upwardly extending weir located proximate terminal edges 32a-e. Trays 14a-e also present respective coupling edges 36a-e that are sealingly coupled to the inside wall of tubular member 16 by any suitable method (e.g., welding).


In the embodiment illustrated in FIGS. 1 and 2, each tray 14a-e is a substantially flat, substantially horizontal plate that is sealingly coupled to the inside wall of downwardly sloped tubular member 16 at its respective coupling edge 36a-e. Thus, in the embodiment depicted in FIGS. 1 and 2, the shape of each tray 14a-e can generally be that of a truncated oval, with coupling edges 36a-e defining the curved portion of the oval and terminal edges 32a-e defining the truncated portion of the oval.


Although FIGS. 1 and 2, show trays 14a-e as being supported in tubular member 16 via the rigid attachment of coupling edges 36a-e to the inside wall of tubular member 16, it should be noted that a variety of mechanisms for supporting trays 14a-e in tubular member 16 can be employed. For example, trays 14a-e can be supported in tubular members 16 using support members that support trays 14a-e from the bottom of tubular member 16 and/or suspend trays 14a-e from the top of tubular member 16. However, if the sides of trays 14a-e are spaced from the inside wall of tubular member, tray sidewalls may be required to keep reaction medium from prematurely flowing around the sides of trays 14a-e.


In the embodiment illustrated in FIGS. 1 and 2, each tray 14a-e has a substantially identical configuration. However, in certain embodiments of the present invention, the orientation and/or configuration of trays 14a-e can be different in order to optimize the configuration of reactor 10 to match the application for with reactor 10 is employed. For example, when reactor 10 is used to process a reaction medium whose viscosity increases as it flows downwardly through reactor 10, it may be desirable for trays 14a-e to have an increasing downward slope to facilitate the flow of the higher viscosity reaction medium across the lower trays. Further, in such an application, it may be desired for the size of apertures 30a-e, number of apertures 30a-e, or percent open of trays 14a-e to increase downwardly to facilitate flow of the higher viscosity reaction medium through the lower trays.


The total number of internal trays 14 employed in reactor 10 can vary greatly depending on a variety of factors such as, for example, the length of tubular member 16, the slope of tubular member 16, and the viscosity of the medium processed in reactor 10. In certain embodiments of the present invention, the number of trays 14 employed in reactor 10 can be at least 4, at least 6, or in the range of from about 2 to about 50, about 4 to about 25, or 6 to 15.


In operation, a predominately liquid feed is introduced into reactor 10 via feed inlet 22. In the upper portion of reactor 10, the feed forms a predominately liquid reaction medium 38 that flows downwardly on the bottom of tubular member 16 until it reaches uppermost internal tray 14a.


Once reaction medium 38 is on uppermost tray 14a, it flows across the upwardly facing surface 28a. When tray 14a is configured with apertures 30a, a portion of reaction medium 38 passes downwardly through apertures 30a and onto the bottom of tubular member 16 and/or onto the upwardly facing surface 28b of the next lower tray 14b. In accordance with one embodiment of the present invention, the portion of reaction medium 38 that passes through apertures 30a forms strands that extend below tray 14a. These strands can greatly increase the surface area of reaction medium 38 when compared to the flow of reaction medium 38 through a non-trayed tubular member or across a tray without apertures. In one embodiment, reaction medium 38 flows primarily by gravity through reactor 10.


The portion of reaction medium 38 that does not pass through apertures 30a flows over terminal edge 32a of tray 14a, passes downwardly through flow passageway 34a, and onto the next lower tray 14b. When tray 14a is equipped with a weir, the portion of the reaction medium flowing over terminal edge 32a must pass over, around, through openings in, and/or under the weir prior to entering flow passageway 34a. Flow of reaction medium 38 over and through the remaining trays 14b-e can occur in generally the same manner as described above for uppermost tray 14a.


As reaction medium 38 flows through reactor 10, a chemical reaction takes place within reaction medium 38. A vapor 40 can be formed in reactor 10. Vapor 40 can comprise one or more byproducts of the chemical reaction carried out in reactor 10 and/or one or more volatile compounds present in the feed to reactor 10 that vaporize therein. Vapor 40 is disengaged from and flows generally upwardly and over reaction medium 38 as reaction medium 38 progresses downwardly through reactor 10. In particular, vapor 40 generated in the lower portion of reactor 10 can pass upwardly through flow passageways 34a-e countercurrent to reaction medium 38 passing downwardly through flow passageways 34a-e. Vapor 40 exits reactor 10 via vapor outlet 26, while reaction medium 38 exits reactor 10 as a predominately liquid product via liquid product outlet 24. Alternatively, vapor 40 can flow generally downwardly with reaction medium 38 and exit a vapor outlet (not shown) located near the lower end of reactor 10.


As mentioned above, weirs can be employed on one or more trays 14a-e to help maintain the desired depth of reaction medium 38 on trays 14a-e. In one embodiment of the present invention, the maximum depth of reaction medium 38 on each tray 14a-e is less than about 0.8D, less than about 0.4D, or less than 0.25D, where D is the maximum internal diameter of tubular member 16.


Sloped tubular reactors configured in accordance with certain embodiments of the present invention require little or no mechanical agitation of the reaction medium processed therein. Although the reaction medium processed in the sloped tubular reactor may be somewhat agitated by virtue of flowing through the reactor and falling from one reactor level to another, this flow agitation and gravitational agitation is not mechanical agitation. In one embodiment of the present invention, less than about 50 percent, less than about 25 percent, less than about 10 percent, less than about 5 percent, or 0 percent of the total agitation of the reaction medium processed in the sloped tubular reactor is provided by mechanical agitation. Thus, reactors configured in accordance with certain embodiments of the present invention can operate without any mechanical mixing devices. This is in direct contrast to conventional continuous stirred tank reactors (CSTRs) which employ mechanical agitation almost exclusively.


As indicated above, sloped tubular reactors configured in accordance with embodiments of the present invention reactors can be used in a variety of chemical processes. In one embodiment, a sloped tubular reactor configured in accordance with the present invention is employed in a melt-phase polyester production facility capable of producing any of a variety of polyesters from a variety of starting materials. Examples of melt-phase polyesters that can be produced in accordance with embodiments of the present invention include, but are not limited to, polyethylene terephthalate (PET), which includes homopolymers and copolymers of PET; fully aromatic or liquid crystalline polyesters; biodegradable polyesters, such as those comprising butanediol, terephthalic acid and adipic acid residues; poly(cyclohexane-dimethylene terephthalate) homopolymer and copolymers; and homopolymers and copolymers of 1,4-cyclohexane-dimethanol (CHDM) and cyclohexane dicarboxylic acid or dimethyl cyclohexanedicarboxylate. When a PET copolymer is produced, such copolymer can comprise at least 90, at least 91, at least 92, at least 93, at least 94, at least 95, at least 96, at least 97, at least 98 mole percent of ethylene terephthalate repeat units and up to 10, up to 9, up to 8, up to 7, up to 6, up to 5, up to 4, up to 3, or up to 2 mole percent of added comonomer repeat units. Generally, the comonomer repeat units can be derived from one or more comonomers selected from the group consisting of isophthalic acid, 2,6-naphthaline-dicarboxylic acid, CHDM, and diethylene glycol.


In general, a polyester production process according to certain embodiments of the present invention can comprise two main stages—an esterification stage and a polycondensation stage. In the esterification stage, the polyester starting materials, which can comprise at least one alcohol and at least one acid, are subjected to esterification to thereby produce polyester monomers and/or oligomers. In the polycondensation stage, the polyester monomers and/or oligomers from the esterification stage are reacted into the final polyester product. As used herein with respect to PET, monomers have less than 3 chain lengths, oligomers have from about 7 to about 50 chain lengths (components with a chain length of 4 to 6 units can be considered monomer or oligomer), and polymers have greater than about 50 chain lengths. A dimer, for example, EG-TA-EG-TA-EG, has a chain length of 2, and a trimer 3, and so on.


The acid starting material employed in the esterification stage can be a dicarboxylic acid such that the final polyester product comprises at least one dicarboxylic acid residue having in the range of from about 4 to about 15 or from 8 to 12 carbon atoms. Examples of dicarboxylic acids suitable for use in the present invention can include, but are not limited to, terephthalic acid, phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, cyclohexanedicarboxylic acid, cyclohexanediacetic acid, diphenyl-4,4′-dicarboxylic acid, diphenyl-3,4′-dicarboxylic acid, 2,2-dimethyl-1,3-propandiol, dicarboxylic acid, succinic acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and mixtures thereof. In one embodiment, the acid starting material can be a corresponding ester, such as dimethyl terephthalate instead of terephthalic acid.


The alcohol starting material employed in the esterification stage can be a diol such that the final polyester product can comprise at least one diol residue, such as, for example, those originating from cycloaliphatic diols having in the range of from about 3 to about 25 carbon atoms or 6 to 20 carbon atoms. Suitable diols can include, but are not limited to, ethylene glycol (EG), diethylene glycol, triethylene glycol, 1,4-cyclohexane-dimethanol, propane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, neopentylglycol, 3-methylpentanediol-(2,4), 2-methylpentanediol-(1,4), 2,2,4-trimethylpentane-diol-(1,3), 2-ethylhexanediol-(1,3), 2,2-diethylpropane-diol-(1,3), hexanediol-(1,3), 1,4-di-(hydroxyethoxy)-benzene, 2,2-bis-(4-hydroxycyclohexyl)-propane, 2,4-dihydroxy-1,1,3,3-tetramethyl-cyclobutane, 2,2,4,4tetramethyl-cyclobutanediol, 2,2-bis-(3-hydroxyethoxyphenyl)-propane, 2,2-bis-(4-hydroxy-propoxyphenyl)-propane, isosorbide, hydroquinone, BDS-(2,2-(sulfonylbis)4,1-phenyleneoxy))bis(ethanol), and mixtures thereof.


In addition, the starting materials can comprise one or more comonomers. Suitable comonomers can include, for example, comonomers comprising terephthalic acid, dimethyl terephthalate, isophthalic acid, dimethyl isophthalate, dimethyl-2,6-naphthalenedicarboxylate, 2,6-naphthalene-dicarboxylic acid, ethylene glycol, diethylene glycol, 1,4-cyclohexane-dimethanol (CHDM), 1,4-butanediol, polytetramethyleneglycol, trans-DMCD, trimellitic anhydride, dimethyl cyclohexane-1,4dicarboxylate, dimethyl decalin-2,6dicarboxylate, decalin dimethanol, decahydronaphthalene 2,6-dicarboxylate, 2,6-dihydroxymethyl-decahydronaphthalene, hydroquinone, hydroxybenzoic acid, and mixtures thereof.


According to one embodiment of the present invention, the esterification in the esterification stage can be carried out at a reaction medium temperature in the range of from about 180 to about 350° C., or about 215 to about 305° C., or 260 to 290° C. and a vapor space pressure of less than about 70 psig, in the range of from about −4 to about 10 psig, or 2 to 5 psig. The average chain length of the monomer and/or oligomer exiting the esterification stage can be in the range of from about 1 to about 20, about 2 to about 15, or 5 to 12.


Reactors configured in accordance with certain embodiments of the present invention can be employed in a melt-phase polyester production system as a prepolymer reactor for carrying out a prepolymerization step and/or as a finisher reactor for carrying out a finishing step. A detailed description of the process conditions for the present invention employed as a prepolymer reactor and/or a finisher reactor is given below with reference to FIG. 1. It is understood that reactors configured in accordance with embodiments of the present invention can generally be employed as prepolymer reactors and/or finisher reactors and that these process conditions are not limited to the embodiment described in FIG. 1.


Referring again to FIG. 1, when reactor 10 is employed as a prepolymer reactor in a melt-phase polyester production process (e.g., a process for making PET), more than one chemical reaction can be carried out in reactor 10. For example, although polycondensation may be the predominate chemical reaction carried out in reactor 10, a certain amount of esterification may also occur in reactor 10. When reactor 10 is employed as a prepolymer reactor, the average chain length of the feed introduced into feed inlet 22 can be in the range of from about 1 to about 20, about 2 to about 15, or 5 to 12, while the average chain length of the predominately liquid product withdrawn from liquid product outlet 24 can be in the range of from about 5 to about 50, about 8 to about 40, or 10 to 30. When reactor 10 is employed as a prepolymerization reactor, the chemical reaction carried out in reactor 10 can cause the average chain length of reaction medium 38 to increase by at least about 2, in the range of from about 5 to about 30, or in the range of from 8 to 20 between feed inlet 22 and liquid product outlet 24.


When reactor 10 is employed as a prepolymer reactor, the feed can enter feed inlet 22 at a temperature in the range of from about 220 to about 350° C., about 265 to about 305° C., or 270 to 290° C. The predominately liquid product exiting liquid product outlet 24 can have a temperature within about 50° C., 25° C., or 10° C. of the temperature of the feed entering feed inlet 22. In one embodiment, the temperature of the liquid product exiting liquid product outlet 24 is in the range of from about 220 to about 350° C., about 265 to about 305° C., or 270 to 290° C. In one embodiment, the average temperature of reaction medium 38 in reactor 10 is in the range of from about 220 to about 350° C., about 265 to about 305° C., or 270 to 290° C. The average temperature of reaction medium 38 is the average of at least three temperature measurements taken at equal spacings along the primary flow path of reaction medium 38 through reactor 10, where the temperature measurements are each taken near the cross sectional centroid of reaction medium 38 (as opposed to near the wall of the reactor or near the upper liquid surface of the reaction medium). When reactor 10 is employed as a prepolymer reactor, the vapor space pressure in reactor 10 (measured at vapor outlet 26) can be maintained in the range of from about 0 to about 300 torr, in the range of from about 1 to about 50 torr, or in the range of from 20 to 30 torr.


When reactor 10 is employed as a prepolymer reactor, it may be desirable to heat the feed prior to introduction into reactor 10 and/or it may be desirable to heat reaction medium 38 as it flows through reactor 10. Generally, the cumulative amount of heat added to the feed immediately upstream of reactor 10 plus any heat added to reaction medium 38 in reactor 10 can be in the range of from about 100 to about 5,000 BTU/lb, in the range of from about 400 to about 2,000 BTU/lb, or in the range of from 600 to 1,500 BTU/lb.


Referring again to FIG. 1, when reactor 10 is employed as a finisher reactor in a melt-phase polyester production process (e.g., a process for making PET), the average chain length of the feed introduced into feed inlet 22 can be in the range of from about 5 to about 50, about 8 to about 40, or 10 to 30, while the average chain length of the predominately liquid product withdrawn from liquid product outlet 24 can be in the range of from about 30 to about 210, about 40 to about 80, or 50 to 70. Generally, the polycondensation carried out in reactor 10 can cause the average chain length of reaction medium 38 to increase by at least about 10, at least about 25, or at least 50 between feed inlet 22 and liquid product outlet 24.


When reactor 10 is employed as a finisher reactor, the feed can enter feed inlet 22 at a temperature in the range of from about 220 to about 350° C., about 265 to about 305° C., or 270 to 290° C. The predominately liquid product exiting liquid product outlet 24 can have a temperature within about 50° C., 25° C., or 10° C. of the temperature of the feed entering feed inlet 22. In one embodiment, the temperature of the liquid product exiting liquid product outlet 24 is in the range of from about 220 to about 350° C., about 265 to about 305° C., or 270 to 290° C. In one embodiment, the average temperature of reaction medium 38 in reactor 10 is in the range of from about 220 to about 350° C., about 265 to about 305° C., or 270 to 290° C. When reactor 10 is employed as a finisher reactor, the vapor space pressure in reactor 10 (measured at vapor outlet 26) can be maintained in the range of from about 0 to about 30 torr, in the range of from about 1 to about 20 torr, or in the range of from 2 to 10 torr.


Reactors configured in accordance with embodiments of the present invention can provide numerous advantages when employed as reactors in the polycondensation stages of a polyester production process. Such reactors can be particularly advantageous when employed as prepolymer and/or finisher reactors in a process for making PET. Further, such reactors are well suited for use in commercial scale PET production facilities capable of producing PET at a rate of at least about 10,000 pounds per hours, at least about 100,000 pounds per hour, at least about 250,000 pounds per hour, or at least 500,000 pounds per hour.


In one embodiment of the present invention, there is provided a process comprising subjecting a reaction medium to a chemical reaction in a reactor comprising a downwardly sloped elongated tubular member and a plurality of spaced apart trays disposed in the tubular member. The tubular member is elongated along a central axis of elongation that is oriented at a downward angle in the range of from about 5 to about 75 degrees below horizontal. Each of the trays presents an upwardly facing surface across which at least a portion of the reaction medium flows as the reaction medium flows through the reactor. The detailed description of FIGS. 1 and 2, such as the tubular member, trays, and reaction medium flow, apply to this embodiment.


In one example, a product is removed from a product outlet of the reactor, wherein the reaction medium forms the product in the reactor. Additionally, when the chemical reaction comprises polycondensation, the product can be a polycondensation product. The It.V. of the product or polycondensation product can be in the range of from about 0.3 to about 1.2, about 0.35 to about 0.6, or 0.4 to 0.5 dL/g. In one example, It.V. of the product or polycondensation product is in the range of from about 0.1 to about 0.5, about 0.1 to about 0.4, or 0.15 to 0.35 dL/g. In one example, a feed is introduced to a feed inlet of the reactor to form the reaction medium and the It.V. of the feed is in the range of from about 0.1 to about 0.5, about 0.1 to about 0.4, or 0.15 to 0.35 dL/g.


The Intrinsic viscosity (It.V.) values are set forth in dL/g units as calculated from the inherent viscosity measured at 25° C. in 60% phenol and 40% 1,1,2,2-tetrachloroethane by weight. Polymer samples can be dissolved in the solvent at a concentration of 0.25 g/50 mL. The viscosity of the polymer solutions can be determined, for example, using a Rheotek Glass Capillary viscometer. A description of the operating principle of this viscometer can be found in ASTM D 4603. The inherent viscosity is calculated from the measured solution viscosity. The following equations describe such solution viscosity measurements and subsequent calculations to Ih.V. and from Ih.V. to It.V:

ηinh=[ln(ts/to)]/C


where

    • ηinh=Inherent viscosity at 25° C. at a polymer concentration of 0.5 g/100 mL of 60% phenol and 40% 1,1,2,2-tetrachloroethane by weight
    • ln=Natural logarithm
    • ts=Sample flow time through a capillary tube
    • to=Solvent-blank flow time through a capillary tube
    • C=Concentration of polymer in grams per 100 mL of solvent (0.50%)


The intrinsic viscosity is the limiting value at infinite dilution of the specific viscosity of a polymer. It is defined by the following equation:







η
int

=





lim





C

0










(


η
sp

/
C

)


=




lim





C

0











(

ln






η
r


)

/
C







where

    • ηint=Intrinsic viscosity
    • ηr=Relative viscosity=ts/to
    • ηsp=Specific viscosity=ηr−1


      The intrinsic viscosity (It.V. or ηint) may be estimated using the Billmeyer equation as follows:

      ηint=0.5[e0.5×Ih.V.−1]+(0.75×Ih.V.)

      The reference for estimating intrinsic viscosity (Billmeyer relationship) is J. Polymer Sci., 4, pp. 83-86 (1949).


The viscosity of the polymer solutions can also be determined using a Viscotek Modified Differential Viscometer (a description of the operating principle of the differential pressure viscometers can be found in ASTM D 5225) or other methods known to one skilled in the art.


In another embodiment of the present invention, there is provided a process for making polyethylene terephthalate (PET), the process comprising: (a) introducing a polycondensation feed into a polycondensation reactor, wherein the polycondensation feed forms a predominately liquid reaction medium in the reactor, wherein the polycondensation feed comprises PET having an average chain length in the range of from about 5 to about 100, about 5 to about 50, about 8 to about 40, or 10 to 30; (b) subjecting the reaction medium to polycondensation in the reactor, wherein the reactor comprises a substantially straight downwardly sloped pipe and at least 4, at least 6, or in the range of from about 2 to about 50, about 4 to about 25, or 6 to 15 spaced apart trays disposed at different elevations in the pipe, wherein the pipe is sloped downwardly at an angle in the range of from about 5 to about 75 degrees below horizontal, about 10 to about 60 degrees below horizontal, or 15 to 45 degrees below horizontal, wherein the reaction medium flows primarily by gravity through the reactor, wherein each of the trays presents an upwardly facing surface across which at least a portion of the reaction medium flows as the reaction medium flows through the reactor, wherein the upwardly facing surface is sloped less than about 10 degrees from horizontal, about 5 degrees from horizontal, or 2 degrees from horizontal, wherein each of the trays defines a plurality of apertures through which at least a portion of the reaction medium passes as the reaction medium flows through the reactor; and (c) recovering a predominately liquid polycondensation product from the reactor, wherein the polycondensation product comprises PET having an average chain length that is at least about 10, at least about 25, or at least 50 greater than the average chain length of the PET in the polycondensation feed. The detailed description of FIGS. 1 and 2, such as the tubular member, trays, and reaction medium flow, apply to this embodiment


In one example, the It.V. of the polycondensation feed is in the range of from about 0.1 to about 0.5, about 0.1 to about 0.4, or about 0.15 to about 0.35 dL/g. In one example, the It.V. of or polycondensation product is in the range of from about 0.3 to about 1.2, about 0.35 to about 0.6, or 0.4 to 0.5 dL/g.


In still another embodiment of the present invention, there is provided a reactor comprising a downwardly sloped tubular member and a plurality of spaced apart trays disposed at different elevations in the tubular member. The tubular member is elongated along a central axis of elongation that is oriented at a downward angle in the range of from about 5 to about 75 degrees below horizontal, about 10 to about 60 degrees below horizontal, or 15 to 45 degrees below horizontal. Each of the trays presents an upwardly facing surface that is sloped less than about 10 degrees from horizontal, about 5 degrees from horizontal, or 2 degrees from horizontal. The detailed description of FIGS. 1 and 2, such as the tubular member, trays, and reaction medium flow, apply to this embodiment


Numerical Ranges


The present description uses numerical ranges to quantify certain parameters relating to the invention. It should be understood that when numerical ranges are provided, such ranges are to be construed as providing literal support for claim limitations that only recite the lower value of the range, as well as claim limitations that only recite the upper value of the range. For example, a disclosed numerical range of 10 to 100 provides literal support for a claim reciting “greater than 10” (with no upper bounds) and a claim reciting “less than 100” (with no lower bounds).


DEFINITIONS

As used herein, the terms “a,” “an,” “the,” and “said” means one or more.


As used herein, the term “agitation” refers to work dissipated into a reaction medium causing fluid flow and/or mixing.


As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.


As used herein, the term “average chain length” means the average number of repeating units in the polymer. For a polyester, average chain length means the number of repeating acid and alcohol units. Average chain length is synonymous with the number average degree of polymerization (DP). The average chain length can be determined by various means known to those skilled in the art. For example, 1H-NMR can be used to directly determine the chain length based upon end group analysis, and light scattering can be used to measure the weight average molecular weight with correlations used to determine the chain length. Chain length is often calculated based upon correlations with gel permeation chromatography (GPC) measurements and/or viscosity measurements.


As used herein, the terms “comprising,” “comprises,” and “comprise” are open-ended transition terms used to transition from a subject recited before the term to one or more elements recited after the term, where the element or elements listed after the transition term are not necessarily the only elements that make up the subject.


As used herein, the terms “containing,” “contains,” and “contain” have the same open-ended meaning as “comprising,” “comprises,” and “comprise,” provided below.


As used herein, the term “conversion” is used to describe a property of the liquid phase of a stream that has been subjected to esterification, wherein the conversion of the esterified stream indicates the percentage of the original acid end groups that have been converted (i.e., esterified) to ester groups. Conversion can be quantified as the number of converted end groups (i.e., alcohol end groups) divided by the total number of end groups (i.e., alcohol plus acid end groups), expressed as a percentage.


As used herein, the term “directly coupled” refers to a manner of coupling two vessels in fluid flow communication with one another without the use of an intermediate connector having a substantially narrower diameter than the two vessels.


As used herein, the term “esterification” refers to both esterification and ester exchange reactions.


As used herein, the terms “having,” “has,” and “have” have the same open-ended meaning as “comprising,” “comprises,” and “comprise,” provided above.


As used herein, the terms “including,” “includes,” and “include” have the same open-ended meaning as “comprising,” “comprises,” and “comprise,” provided above.


As used herein, the term, “mechanical agitation” refers to agitation of a reaction medium caused by physical movement of a rigid or flexible element(s) against or within the reaction medium.


As used herein, the term “open flow area” refers to the open area available for fluid flow, where the open area is measured along a plane that is perpendicular to the direction of flow through the opening.


As used herein, the term “percent open” refers to the area of a structure that is open for fluid flow therethrough as a percentage of the total area of the structure measured normal to the direction of flow though the openings in the structure.


As used herein, the term “pipe” refers to a substantially straight elongated tubular member having a generally cylindrical sidewall.


As used herein, the terms “polyethylene terephthalate” and “PET” include PET homopolymers and PET copolymers.


As used herein, the terms “polyethylene terephthalate copolymer” and “PET copolymer” mean PET that has been modified by up to 10 mole percent with one or more added comonomers. For example, the terms “polyethylene terephthalate copolymer” and “PET copolymer” include PET modified with up to 10 mole percent isophthalic acid on a 100 mole percent carboxylic acid basis. In another example, the terms “polyethylene terephthalate copolymer” and “PET copolymer” include PET modified with up to 10 mole percent 1,4-cyclohexane dimethanol (CHDM) on a 100 mole percent diol basis.


As used herein, the term “polyester” refers not only to traditional polyesters, but also includes polyester derivatives, such as, for example, polyetheresters, polyester amides, and polyetherester amides.


As used herein, “predominately liquid” means more than 50 volume percent liquid.


As used herein, the term “reaction medium” refers to any medium subjected to chemical reaction.


As used herein, the term “residue” refers to the moiety that is the resulting product of the chemical species in a particular reaction scheme or subsequent formulation or chemical product, regardless of whether the moiety is actually obtained from the chemical species.


As used herein, the term “vapor byproduct” includes the vapor generated by a desired chemical reaction (i.e., a vapor coproduct) and any vapor generated by other reactions (i.e., side reactions) of the reaction medium.


CLAIMS NOT LIMITED TO DISCLOSED EMBODIMENTS

The exemplary embodiments of the invention described above are to be used as illustration only, and should not be used in a limiting sense to interpret the scope of the claimed invention. Various modifications to the above-described exemplary embodiments could be readily made by those skilled in the art without departing from the scope of the invention as set forth in the following claims.

Claims
  • 1. A process comprising: introducing a polycondensation feed into a polycondensation reactor, wherein said polycondensation feed comprises PET and forms a reaction medium in said reactor, subjecting said reaction medium to a polycondensation reaction in said reactor comprising a downwardly sloped elongated tubular member and a plurality of spaced apart trays disposed in said tubular member, wherein said tubular member is elongated along a central axis of elongation that is oriented at a downward angle in the range of from about 5 to about 75 below horizontal, wherein each of said trays presents an upwardly facing surface across which at least a portion of said reaction medium flows as said reaction medium flows through said reactor.
  • 2. The process of claim 1, wherein said upwardly facing surface is sloped less than about 25 degrees from horizontal.
  • 3. The process of claim 2, wherein said downward angle of said tubular member is in the range of from about 10 to about 60 degrees below horizontal.
  • 4. The process of claim 1, wherein said upwardly facing surface is sloped less than about 5 degrees from horizontal, wherein said downward angle of said tubular member is in the range of from about 12 to about 45 degrees below horizontal.
  • 5. The process of claim 1, wherein said upwardly facing surface is substantially planar and substantially horizontal.
  • 6. The process of claim 1, wherein said reaction medium flows by gravity through said reactor.
  • 7. The process of claim 1, wherein said reactor comprises at least four of said trays located at different elevations in said tubular member.
  • 8. The process of claim 7, wherein said tubular member is a pipe.
  • 9. The process of claim 8, wherein each of said trays is substantially flat and substantially horizontal.
  • 10. The process of claim 1, wherein said tubular member has a length-to-diameter (L:D) ratio in the range of from about 2:1 to about 50:1.
  • 11. The process of claim 10, wherein L is in the range of from about 10 to about 200 feet and D is in the range of from about 1 to about 20 feet.
  • 12. The process of claim 1, wherein at least one of said trays defines a plurality of apertures through which a first portion of said reaction medium passes as said reaction medium flows through said reactor.
  • 13. The process of claim 12, wherein said at least one of said trays presents a terminal edge over which a second portion of said reaction medium passes as said reaction medium flows through said reactor.
  • 14. The process of claim 1, wherein each of said trays presents a coupling edge and a terminal edge, wherein said coupling edge is sealingly coupled to the inside wall of said tubular member, wherein said terminal edge is spaced from the inside wall of said tubular member to thereby provide a flow passageway through which said reaction medium can pass.
  • 15. The process of claim 14, wherein said tubular member is a substantially straight downwardly sloping pipe, wherein each of said trays is substantially flat and substantially horizontal, wherein each of said trays has a truncated oval shape with said coupling edge defining the curved portion of the truncated oval and said terminal edge defining the truncated portion of the truncated oval.
  • 16. The process of claim 15, wherein each of said trays defines a plurality of apertures through which at least a portion of said reaction medium flows.
  • 17. The process of claim 16, wherein each of said trays is in the range of from about 5 to about 80 percent open.
  • 18. The process of claim 16, wherein a first portion of said reaction medium flows downwardly through said apertures and a second portion of said reaction medium flows over said terminal edge and downwardly through said flow passageway.
  • 19. The process of claim 16, wherein said reactor comprises in the range of from 2 to 50 of said trays.
  • 20. The process of claim 1, wherein a vapor byproduct of said polycondensation reaction flows upwardly and/or downwardly in said tubular member as said reaction medium flows downwardly in said tubular member.
  • 21. The process of claim 20, further comprising withdrawing at least a portion of said vapor byproduct from said reactor via a vapor outlet located near the top and/or bottom of said reactor.
  • 22. The process of claim 1, wherein said introducing of said polycondensation a feed into said reactor occurs at a feed inlet located near the top of said reactor, further comprising withdrawing a predominately liquid product from said reactor at a product outlet located near the bottom of said reactor.
  • 23. The process of claim 1, wherein the average chain length of said PET in said reaction medium increases by at least about 10 in said reactor.
  • 24. The process of claim 23, wherein said PET in said polycondensation feed has an average chain length in the range of from about 5 to about 50.
  • 25. The process of claim 24, wherein said polycondensation feed is maintained at a temperature in the range of from about 220 to about 350° C., wherein the vapor space pressure in said reactor is maintained in the range of from about 0 to about 30 torr.
  • 26. The process of claim 1, wherein said PET is a PET copolymer comprising at least about 90 mole percent ethylene terephthalate repeat units and up to about 10 mole percent of added comonomer repeat units.
  • 27. The process of claim 26, wherein said added comonomer repeat units are derived from an added comonomer selected from the group consisting of isophthalic acid, 2,6-naphthaline-dicarboxylic acid, 1,4-cyclohexane-dimethanol, diethylene glycol, and combinations of two or more thereof.
  • 28. The process of claim 27, wherein said added comonomer comprises isophthalic acid.
  • 29. The process of claim 22, wherein said PET in said predominantly liquid product is withdrawn from said reactor at a rate of at least about 10,000 pounds per hour.
  • 30. The process of claim 1, wherein the average chain length of said PET in said reaction medium increases by at least about 2 in said reactor.
  • 31. The process of claim 30, wherein said PET in said polycondensation feed has an average chain length in the range of from about 1 to about 20.
  • 32. The process of claim 31, wherein said polycondensation feed is maintained at a temperature in the range of from about 220 to about 350° C., wherein the vapor space pressure in said reactor is maintained in the range of from about 0 to about 300 torr.
  • 33. The process of claim 1, wherein said reactor comprises no mechanical mixing device.
  • 34. A process for making polyethylene terephthalate (PET), said process comprising: (a) introducing a polycondensation feed into a polycondensation reactor, wherein said polycondensation feed forms a predominately liquid reaction medium in said reactor, wherein said polycondensation feed comprises PET having an average chain length in the range of from about 5 to about 50;(b) subjecting said reaction medium to a polycondensation reaction in said reactor, wherein said reactor comprises a substantially straight downwardly sloped pipe and at least four spaced apart trays disposed at different elevations in said pipe, wherein said pipe is sloped downwardly at an angle in the range of from about 10 to about 60 degrees below horizontal, wherein said reaction medium flows primarily by gravity through said reactor, wherein each of said trays presents an upwardly facing surface across which at least a portion of said reaction medium flows as said reaction medium flows through said reactor, wherein said upwardly facing surface is sloped less than about 10 degrees from horizontal, wherein each of said trays defines a plurality of apertures through which at least a portion of said reaction medium passes as said reaction medium flows through said reactor; and(c) recovering a predominately liquid polycondensation product from said reactor, wherein said polycondensation product comprises PET having an average chain length that is at least about 10 greater than the average chain length of the PET in said polycondensation feed.
  • 35. The process of claim 34, wherein said upwardly facing surface is substantially planar and substantially horizontal.
  • 36. The process of claim 34, wherein each of said trays defines a terminal edge over which at least a portion of said reaction medium passes as said reaction medium flows through said reactor.
  • 37. The process of claim 36, wherein each of said trays is substantially flat and substantially horizontal, wherein each of said trays presents a coupling edge sealingly coupled to the inside wall of said pipe, wherein said terminal edge is spaced from the inside wall of said pipe to thereby provide a flow passageway between said terminal edge and the inside wall of said pipe, wherein at least a portion of said reaction medium flows downwardly through said flow passageway after passing over said terminal edge.
  • 38. The process of claim 37, wherein said polycondensation reaction causes the formation of a vapor byproduct in said reactor, wherein at least a portion of said vapor byproduct flows upwardly and/or downwardly through said flow passageway as said at least a portion of said reaction medium flows downwardly through said flow passageway.
  • 39. The process of claim 37, wherein each of said trays has a truncated oval shape with said coupling edge defining the curved portion of the truncated oval and said terminal edge defining the truncated portion of the truncated oval.
  • 40. The process of claim 34, wherein said polycondensation feed is introduced into said reactor via a feed inlet located near the top of said reactor, wherein a vapor byproduct of said polycondensation reaction is discharged from said reactor via a vapor outlet located near the top and/or bottom of said reactor, wherein said polycondensation product is recovered from a product outlet located near the bottom of said reactor.
  • 41. The process of claim 34, wherein said polycondensation feed comprises PET having an average chain length in the range of from about 8 to about 40, wherein said polycondensation product comprises PET having an average chain length that is at least about 25 greater than the average chain length of the PET in said polycondensation feed.
  • 42. The process of claim 34, wherein the temperature of said reaction medium in said reactor is maintained in the range of from about 220 to about 350° C., wherein the pressure of said reaction medium in said reactor is maintained in the range of from about 0 to about 30 torr.
  • 43. A reactor comprising: a downwardly sloped tubular member and a plurality of spaced apart trays disposed at different elevations in said tubular member, wherein said tubular member is elongated along a central axis of elongation that is oriented at a downward angle in the range of from about 5 to about 75 degrees below horizontal, wherein each of said trays presents an upwardly facing surface, wherein said upwardly facing surface is sloped less than about 25 degrees from horizontal.
  • 44. The reactor of claim 43, wherein at least one of said trays defines a plurality of apertures extending downwardly therethrough.
  • 45. The reactor of claim 43, wherein at least one of said trays defines a terminal edge that is spaced from the inside wall of said tubular member.
  • 46. The reactor of claim 43, wherein said reactor comprises at least four of said trays.
  • 47. The reactor of claim 43, wherein said tubular member is a substantially straight pipe.
  • 48. The reactor of claim 43, wherein said upwardly facing surface is sloped less than about 5 degrees from horizontal, wherein said downward angle of said tubular member is in the range of from about 10 to about 60 degrees below horizontal.
  • 49. The reactor of claim 43, wherein said upwardly facing surface is substantially planar and substantially horizontal.
  • 50. The reactor of claim 43, wherein said tubular member has a length-to-diameter (L:D) ratio in the range of from about 2:1 to about 50:1.
  • 51. The reactor of claim 50, wherein L is in the range of from about 10 to about 200 feet and D is in the range of from about 1 to about 20 feet.
  • 52. The reactor of claim 43, wherein said tubular member is a substantially straight downwardly sloping pipe, wherein each of said trays is substantially flat and substantially horizontal.
  • 53. The reactor of claim 52, wherein each of said trays presents a coupling edge and a terminal edge, wherein said coupling edge is sealingly coupled to the inside wall of said pipe, wherein said terminal edge is spaced from the inside wall of said pipe to thereby define a flow passageway between said terminal edge and the inside wall of said pipe.
  • 54. The reactor of claim 53, wherein each of said trays has a truncated oval shape with said coupling edge defining the curved portion of the truncated oval and said terminal edge defining the truncated portion of the truncated oval.
  • 55. The reactor of claim 50, wherein each of said trays defines a plurality of apertures extending downwardly therethrough.
  • 56. The reactor of claim 55, wherein said reactor comprises at least four of said trays.
  • 57. The reactor of claim 43, wherein said reactor defines a feed inlet located near the top of said reactor, a vapor outlet located near the top of said reactor, and a product outlet located near the bottom of said reactor.
  • 58. The process of claim 1, wherein said PET in said polycondensation feed has an It.V. in the range of from about 0.1 to about 0.5 dL/g.
  • 59. The process of claim 1, further comprising removing a polycondensation product from a product outlet of said reactor, wherein said reaction medium forms said polycondensation product in said reactor, wherein the It.V. of said PET in said polycondensation product is in the range of from about 0.3 to about 1.2 dL/g.
  • 60. The process of claim 24, further comprising removing a polycondensation product from a product outlet of said reactor, wherein said reaction medium forms said polycondensation product, wherein the It.V. of said PET in said polycondensation product is in the range of from about 0.3 to about 1.2 dL/g.
  • 61. The process of claim 34, wherein the It.V. of said PET in said polycondensation feed is in the range of from about 0.1 and about 0.5 dL/g.
  • 62. The process of claim 34, wherein the It.V. of said PET in said polycondensation product is in the range of from about 0.3 to about 1.2 dL/g.
US Referenced Citations (243)
Number Name Date Kind
1422182 Curme Jul 1922 A
2361717 Taylor Oct 1944 A
2614648 Wilson Oct 1952 A
2709642 Mann, Jr. et al. May 1955 A
2727882 Vodonik Dec 1955 A
2753249 Idenden et al. Jul 1956 A
2820815 Matuszak et al. Jan 1958 A
2829153 Vodonik Apr 1958 A
2905707 Hurt et al. Sep 1959 A
2973341 Hippe et al. Feb 1961 A
3044993 Tiemersma Jul 1962 A
3052711 Glogau et al. Sep 1962 A
3054776 Higgins Sep 1962 A
3110547 Emmert Nov 1963 A
3113843 Li Dec 1963 A
3161710 Turner Dec 1964 A
3174830 Watzl et al. Mar 1965 A
3185668 Meyer et al. May 1965 A
3192184 Brill et al. Jun 1965 A
3241926 Parker et al. Mar 1966 A
3250747 Mitchell, Jr. et al. May 1966 A
3251657 Bachmann et al. May 1966 A
3254965 Ogle Jun 1966 A
3376353 Tate Apr 1968 A
3385881 Bachmann et al. May 1968 A
3390965 Ditmar Jul 1968 A
3402023 Dobo Sep 1968 A
3427287 Pengilly Feb 1969 A
3438942 Scheller Apr 1969 A
3442868 Ogata et al. May 1969 A
3458467 Herrie et al. Jul 1969 A
3468849 Rothert Sep 1969 A
3480587 Porter Nov 1969 A
3487049 Busot Dec 1969 A
3496146 Mellichamp, Jr. Feb 1970 A
3496159 Spence Feb 1970 A
3496220 McCarty et al. Feb 1970 A
3497473 Kemkes Feb 1970 A
3507905 Girantet et al. Apr 1970 A
3509203 Michaelis et al. Apr 1970 A
3511615 Roget et al. May 1970 A
3522214 Crawford et al. Jul 1970 A
3534082 Armstrong et al. Oct 1970 A
3551396 Lanthier Dec 1970 A
3582244 Siclari et al. Jun 1971 A
3590070 Martin et al. Jun 1971 A
3590072 Leybourne Jun 1971 A
3595846 Rouzier Jul 1971 A
3600137 Girantet et al. Aug 1971 A
3609125 Fujimoto et al. Sep 1971 A
3639448 Matsuzawa et al. Feb 1972 A
3644096 Lewis et al. Feb 1972 A
3644294 Siclari et al. Feb 1972 A
3644483 Griehl et al. Feb 1972 A
3646102 Kobayashi et al. Feb 1972 A
3647758 Ryffel et al. Mar 1972 A
3651125 Lewis et al. Mar 1972 A
3676485 Lewis et al. Jul 1972 A
3684459 Tate et al. Aug 1972 A
3689461 Balint et al. Sep 1972 A
3697579 Balint et al. Oct 1972 A
3723391 Beer et al. Mar 1973 A
3740267 Haylock et al. Jun 1973 A
3781213 Siclari et al. Dec 1973 A
3787479 Grehl et al. Jan 1974 A
3819585 Funk et al. Jun 1974 A
3841836 Lunsford et al. Oct 1974 A
3849379 Jeurissen et al. Nov 1974 A
3867349 Heeg et al. Feb 1975 A
3892798 Heeg et al. Jul 1975 A
3927982 Chapman et al. Dec 1975 A
3927983 Gordon et al. Dec 1975 A
3960820 Pinney Jun 1976 A
3988301 Jeurissen et al. Oct 1976 A
4001187 Itabashi et al. Jan 1977 A
4008048 Hellemans et al. Feb 1977 A
4019866 Jaswal et al. Apr 1977 A
4020049 Rinehart Apr 1977 A
4028307 Ure Jun 1977 A
4032563 Harper et al. Jun 1977 A
4039515 Rebhan et al. Aug 1977 A
4046718 Mass et al. Sep 1977 A
4049638 Doerfel et al. Sep 1977 A
4056514 Strehler et al. Nov 1977 A
4064112 Rothe et al. Dec 1977 A
4077945 Heinze et al. Mar 1978 A
4079046 Brignac et al. Mar 1978 A
4089888 Tokumitsu et al. May 1978 A
4097468 James et al. Jun 1978 A
4100142 Schaefer et al. Jul 1978 A
4110316 Edging et al. Aug 1978 A
4118582 Walker Oct 1978 A
4122112 Koda et al. Oct 1978 A
4146729 Goodley et al. Mar 1979 A
4148693 Williamson Apr 1979 A
4196168 Lewis Apr 1980 A
4200145 Underwood Apr 1980 A
4204070 Suzuki et al. May 1980 A
4212963 Lehr et al. Jul 1980 A
4223124 Broughton et al. Sep 1980 A
4230818 Broughton, Jr. et al. Oct 1980 A
4235844 Sterzel et al. Nov 1980 A
4238593 Duh Dec 1980 A
4254246 Dicoi et al. Mar 1981 A
4289871 Rowan et al. Sep 1981 A
4289895 Burkhardt et al. Sep 1981 A
4339570 Muschelknautz et al. Jul 1982 A
4346193 Warfel Aug 1982 A
4361462 Fujii et al. Nov 1982 A
4365078 Shelley Dec 1982 A
4382139 Kapteina et al. May 1983 A
4383093 Shiraki et al. May 1983 A
4410750 Langer, Jr. Oct 1983 A
4424301 Klippert et al. Jan 1984 A
4440924 Kuze et al. Apr 1984 A
4452956 Moked et al. Jun 1984 A
4472558 Casper et al. Sep 1984 A
4499226 Massey et al. Feb 1985 A
4529787 Schmidt et al. Jul 1985 A
4542196 Morris et al. Sep 1985 A
4548788 Morris et al. Oct 1985 A
4550149 Morris et al. Oct 1985 A
4551309 Morris et al. Nov 1985 A
4551510 Morris et al. Nov 1985 A
4554343 Jackson, Jr. et al. Nov 1985 A
4555384 Morris et al. Nov 1985 A
4588560 Degnan et al. May 1986 A
4612363 Sasaki et al. Sep 1986 A
4670580 Maurer Jun 1987 A
4675377 Mobley et al. Jun 1987 A
4680345 Kobayashi et al. Jul 1987 A
4680376 Heinze et al. Jul 1987 A
4721575 Binning et al. Jan 1988 A
4952302 Leach Aug 1990 A
4952627 Morita et al. Aug 1990 A
4973655 Pipper et al. Nov 1990 A
5002116 Hoagland et al. Mar 1991 A
5037955 Dighton Aug 1991 A
5041525 Jackson Aug 1991 A
5064935 Jackson et al. Nov 1991 A
5110325 Lerner May 1992 A
5162488 Mason Nov 1992 A
5185426 Verheijen et al. Feb 1993 A
5194525 Miura et al. Mar 1993 A
5202463 Ruszkay Apr 1993 A
5236558 Buyalos et al. Aug 1993 A
5243022 Kim et al. Sep 1993 A
5245057 Shirtum Sep 1993 A
5254288 Verheijen et al. Oct 1993 A
5294305 Craft, Sr. et al. Mar 1994 A
5300626 Jehl et al. Apr 1994 A
5324853 Jones et al. Jun 1994 A
5340906 Shirokura et al. Aug 1994 A
5340907 Yau et al. Aug 1994 A
5384389 Alewelt et al. Jan 1995 A
5385773 Yau et al. Jan 1995 A
5413861 Gallo May 1995 A
5434239 Bhatia Jul 1995 A
5464590 Yount et al. Nov 1995 A
5466419 Yount et al. Nov 1995 A
5466765 Haseltine et al. Nov 1995 A
5466776 Krautstrunk et al. Nov 1995 A
5476919 Shaeffer Dec 1995 A
5478909 Jehl et al. Dec 1995 A
5480616 Richardson et al. Jan 1996 A
5484882 Takada et al. Jan 1996 A
5496469 Scraggs et al. Mar 1996 A
5519112 Harazoe et al. May 1996 A
5536856 Harrison et al. Jul 1996 A
5573820 Harazoe et al. Nov 1996 A
5594077 Groth et al. Jan 1997 A
5599900 Bhatia Feb 1997 A
5602216 Juvet Feb 1997 A
5648437 Fischer et al. Jul 1997 A
5650536 Dankworth et al. Jul 1997 A
5681918 Adams et al. Oct 1997 A
5688898 Bhatia Nov 1997 A
5739219 Fischer et al. Apr 1998 A
5750079 Ueda et al. May 1998 A
5753190 Haseltine et al. May 1998 A
5753784 Fischer et al. May 1998 A
5786443 Lowe Jul 1998 A
5811496 Iwasyk et al. Sep 1998 A
5816700 Starke, Sr. et al. Oct 1998 A
5830981 Koreishi et al. Nov 1998 A
5849849 Bhatia Dec 1998 A
5889127 Iiyama et al. Mar 1999 A
5898058 Nichols et al. Apr 1999 A
5902865 Gausepohl et al. May 1999 A
5905096 Lay et al. May 1999 A
5922828 Schiraldi Jul 1999 A
5932105 Kelly Aug 1999 A
6069228 Alsop et al. May 2000 A
6096838 Nakamoto et al. Aug 2000 A
6100369 Miyajima et al. Aug 2000 A
6103859 Jernigan et al. Aug 2000 A
6111035 Sakamoto et al. Aug 2000 A
6111064 Maurer et al. Aug 2000 A
6113997 Massey et al. Sep 2000 A
6127493 Maurer et al. Oct 2000 A
6174970 Braune Jan 2001 B1
6252034 Uenishi et al. Jun 2001 B1
6339031 Tan Jan 2002 B1
6355738 Nakamachi Mar 2002 B2
6359106 Nakamoto et al. Mar 2002 B1
6399031 Herrmann et al. Jun 2002 B1
6458916 Yamaguchi et al. Oct 2002 B1
6545176 Tsay et al. Apr 2003 B1
6551517 Sentagnes et al. Apr 2003 B1
6576774 Scardino et al. Jun 2003 B2
6590062 Yamaguchi et al. Jul 2003 B2
6623643 Chisholm et al. Sep 2003 B2
6631892 Erickson Oct 2003 B1
6642407 Rao et al. Nov 2003 B2
6703454 Debruin Mar 2004 B2
6723826 Yamaguchi et al. Apr 2004 B2
6814944 Matsui et al. Nov 2004 B1
6815525 Debruin Nov 2004 B2
6861494 Debruin Mar 2005 B2
6906164 Debruin Jun 2005 B2
6916939 Yamane et al. Jul 2005 B2
7008546 Edmondson Mar 2006 B2
7049462 Nagare et al. May 2006 B2
7074879 Debruin et al. Jul 2006 B2
7658817 Fukuoka et al. Feb 2010 B2
20020128399 Nakamoto et al. Sep 2002 A1
20020161166 Nakane et al. Oct 2002 A1
20020180099 Keillor, III Dec 2002 A1
20030037910 Smyrnov Feb 2003 A1
20030104203 Tam et al. Jun 2003 A1
20030133856 Le Jul 2003 A1
20030191326 Yamane et al. Oct 2003 A1
20040068070 Martan et al. Apr 2004 A1
20040197618 Harada et al. Oct 2004 A1
20040249111 Debruin Dec 2004 A1
20050059782 Andrist et al. Mar 2005 A1
20050222371 Wilhelm et al. Oct 2005 A1
20060008661 Wijesundara et al. Jan 2006 A1
20060251546 Yount et al. Nov 2006 A1
20060251547 Windes et al. Nov 2006 A1
20070037959 DeBruin Feb 2007 A1
20080139760 DeBruin Jun 2008 A1
20090016940 DeBruin et al. Jan 2009 A1
Foreign Referenced Citations (115)
Number Date Country
780142 Mar 1972 BE
7906279 Jul 1981 BR
2200832 Jan 1972 DE
125 798 May 1977 DE
126 073 Jun 1977 DE
146 298 Feb 1981 DE
206 558 Feb 1984 DE
229 415 Nov 1985 DE
4235785 May 1994 DE
195 25 579 Dec 1996 DE
195 37 930 Apr 1997 DE
103 36 164 Mar 2005 DE
10 2004 038 466 Oct 2005 DE
10 2004 034 708 Feb 2006 DE
0 070 707 Jan 1983 EP
0 105 111 Jul 1983 EP
0 105 111 Jul 1983 EP
0 850 962 Jul 1998 EP
0 999 228 May 2000 EP
1 065 193 Jan 2001 EP
2168990 Sep 1973 FR
2302778 Mar 1975 FR
777 128 Jun 1957 GB
777 628 Jun 1957 GB
1001787 Aug 1965 GB
1013034 Dec 1965 GB
1055918 Jan 1967 GB
1122538 Aug 1968 GB
1154538 Jun 1969 GB
1 277 376 Jun 1972 GB
1320769 Jun 1973 GB
2010294 Jun 1979 GB
2020194 Nov 1979 GB
2 052 535 Jan 1981 GB
2052535 Jan 1981 GB
42 4993 Mar 1967 JP
42 18353 Sep 1967 JP
47 39043 Apr 1971 JP
48 94795 Dec 1973 JP
49 28698 Mar 1974 JP
49 34593 Mar 1974 JP
49 105893 Oct 1974 JP
50 82197 Jul 1975 JP
51 29460 Mar 1976 JP
51 100036 Sep 1976 JP
51 136788 Nov 1976 JP
51 136789 Nov 1976 JP
52 51495 Apr 1977 JP
52 71432 Jun 1977 JP
52 78845 Jul 1977 JP
52 83424 Jul 1977 JP
52 87133 Jul 1977 JP
53 31793 Mar 1978 JP
53 34894 Mar 1978 JP
54 41833 Apr 1979 JP
54 76535 Jun 1979 JP
54 79242 Jun 1979 JP
54 100494 Aug 1979 JP
54 157536 Dec 1979 JP
55 43128 Mar 1980 JP
55 108422 Aug 1980 JP
55 135133 Oct 1980 JP
58 129020 Aug 1983 JP
59 47226 Mar 1984 JP
59 53530 Mar 1984 JP
59 68326 Apr 1984 JP
59 71326 Apr 1984 JP
60 15421 Jan 1985 JP
60 72845 Apr 1985 JP
60 115551 Jun 1985 JP
60 120839 Jun 1985 JP
60 163918 Aug 1985 JP
60 226846 Nov 1985 JP
62 207325 Sep 1987 JP
62 292831 Dec 1987 JP
64 56726 Mar 1989 JP
1 102044 Apr 1989 JP
3 192118 Aug 1991 JP
3 292323 Dec 1991 JP
5-78402 Mar 1993 JP
5 155994 Jun 1993 JP
6 247899 Sep 1994 JP
7 118208 May 1995 JP
7 173268 Jul 1995 JP
7 238151 Sep 1995 JP
7 313 865 Dec 1995 JP
8 198960 Aug 1996 JP
8 283398 Oct 1996 JP
10 36495 Feb 1998 JP
10 259244 Sep 1998 JP
11 092555 Apr 1999 JP
11 106489 Apr 1999 JP
11 217429 Aug 1999 JP
2000095851 Apr 2000 JP
2004 238329 Aug 2004 JP
1993-0005144 Jun 1993 KR
1994-0011540 Mar 1994 KR
6704303 Sep 1967 NL
136188 Aug 1987 PL
973552 Nov 1982 SU
9529752 Nov 1995 WO
WO 9622318 Jul 1996 WO
WO 9808602 Mar 1998 WO
WO 9810007 Mar 1998 WO
WO 9916537 Apr 1999 WO
9939815 Aug 1999 WO
WO 0226841 Apr 2002 WO
WO 0246266 Jun 2002 WO
WO 02096975 Dec 2002 WO
WO 03006526 Jan 2003 WO
2004111104 Dec 2004 WO
WO 2006 007966 Feb 2006 WO
WO 2006083250 Aug 2006 WO
2007065211 Jun 2007 WO
2007065211 Jun 2007 WO
Related Publications (1)
Number Date Country
20090016938 A1 Jan 2009 US