As the rules and regulations pertaining to automobile efficiency increase in severity, it is becoming increasingly important to consider sources of energy loss other than friction and other forces related to propulsion. For example, on a hot day, a vehicle's air-conditioning system may account for a noticeable fraction of the vehicle's energy use. To combat this loss of energy, certain steps are being taken to decrease the need for air-conditioning. One example of this is the use of solar control windows that reflect a substantial portion of incident solar radiation while maintaining substantial visible light transmittance.
While this applied layer may serve the noted function, i.e., reducing solar heating of the vehicle interior, the inventors have observed that it can also cause problems with vehicle radio and other RF performance. Specifically, solar reflective glazing blocks radio waves from entering the vehicle, and therefore conventional antennae cannot be placed on the glass or inside the vehicle, including cellular and GPS antennae. Conventional vehicle antennae are configured such that the vehicle chassis serves as the antenna ground. This configuration may seriously degrade the performance of on-glass antennas at microwave frequencies, including 1-10 GHz, due to electrical distance from the chassis to the antenna.
Thus, it is an object in part of this invention to take advantage of the solar-reflective glazing process by equipping vehicles with slot antennas, which can be patterned into a metallic solar-reflective glazing layer. Additionally, it is another object in part of the present invention to provide an antenna feed for a slot antenna capable of being adhered to solar-reflective glazing material with a virtual ground that is at a short electrical distance from the antenna.
However, while these objects underly certain implementations of the invention, it will be appreciated that the invention is not limited to systems that solve the problems noted herein. Moreover, the inventors have created the above body of information for the convenience of the reader and expressly disclaim all of the foregoing as prior art; the foregoing is a discussion of problems discovered and/or appreciated by the inventors, and is expressly not an attempt to review or catalog the prior art.
The invention provides an apparatus and method for providing an antenna feed to a slot antenna patterned or fabricated on a conductor layer sandwiched between dielectric layers, such as a solar-glazing conductor layer in a vehicle windshield, wherein the antenna feed may also provide a virtual ground without relying on either the vehicle chassis or an electrical connection to the conductor layer as the antenna ground.
In one implementation, the slot antenna is patterned into a conductive film that is sandwiched between two dielectric layers, and the antenna feed is attached to one of the dielectric layers using electrically insulating adhesive or some other suitable method such that it partially covers the slot. The antenna feed accepts a coaxial cable and electromagnetically couples it to the slot antenna. The feed may comprise a printed circuit board with a signal trace, a ground trace, and a means to connect the coaxial cable or other two-conductor transmission line. The printed circuit board may be either flexible or rigid, and the coaxial cable may be connected by means of a connector or directly soldered to it. The signal trace is electrically connected to the center conductor of the coaxial cable, and the ground trace is electrically connected to the ground/shield of the coaxial cable. The signal trace travels towards the slot antenna and crosses the slot at least once (either perpendicularly or obliquely), thereby coupling the coaxial center conductor to the slot antenna, and the signal trace is terminated in an open circuit.
In a further implementation, the ground trace may travel away from the slot and may take the form of a quarter-wave open circuited stub or a radial stub, thereby RF short-circuiting the coaxial shield to the ground plane and making the ground connection.
Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings.
Turning to
In one implementation, the antenna feed 107 (207) is a printed circuit board with a signal trace 109, a ground trace 111, and a connection point accepting a coaxial cable or other two-conductor transmission line 113. The signal trace 109 travels towards the slot antenna and crosses the slot at least once either perpendicularly or obliquely. The signal trace 109 is terminated in an open circuit. The printed circuit board may be either flexible (e.g. Kapton film) or rigid (e.g. FR-4 fiberglass epoxy laminate). It will be appreciated by one of ordinary skill in the art that the printed circuit board is not limited to these two materials and may consist of other flexible or rigid materials.
Turning now to
Turning back to
Turning to
The antenna feed may then be attached to the windshield at stage 507 using non-conductive adhesive (or another suitable method) such that the signal trace of the antenna feed crosses the slot at least once, either perpendicularly or obliquely, and the ground trace of the antenna feed travels away from the slot. A coaxial cable or other two-conductor cable is then connected to the connection point on the antenna feed at stage 509. The coaxial or other two-conductor cable may be attached to the connection point by a standard connection unit or may be directly soldered together.
It will be appreciated by one of ordinary skill in the art that some processes depicted by
It will be appreciated that the described system and method provide an antenna feed for a slot antenna that may be patterned into a solar-reflective glazing layer with a virtual ground that is a short electrical distance from the antenna. It will also be appreciated, however, that the foregoing methods and implementations are merely examples of the inventive principles, and that these illustrate only preferred techniques.
It is thus contemplated that other implementations of the invention may differ in detail from foregoing examples. As such, all references to the invention are intended to reference the particular example of the invention being discussed at that point in the description and are not intended to imply any limitation as to the scope of the invention more generally. All language of distinction and disparagement with respect to certain features is intended to indicate a lack of preference for those features, but not to exclude such from the scope of the invention entirely unless otherwise indicated.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.