The present invention relates to a slot antenna structure, and more particularly to a slot antenna structure for an electronic tag.
Radio frequency identification (RFID), also known as electronic tag, is a wireless communication technology that can be identified or perform data exchange with a read and write device through radio waves. An electronic tag mainly includes an antenna and an identification chip. In order to reduce the size and cost, many electronic tags use passive power design, which means that the power source of the identification chip is generated by microwave resonance or electromagnetic induction by using the antenna or coil to sense the radio waves or magnetic fields sent from the read and write devices.
Many industries use electronic tags. For example, electronic tags may be attached to a car in production, and therefore, the progress of the car in the production line can be tracked; through electronic tags, warehouse can track the location of items and logistics management can be facilitated; electronic tags may be set on the identification card for access control management, installed in the car for collecting road toll and parking fees, installed in livestock or wildlife for identification, or linked to electronic records of patients. The use of electronic tags is very broad.
For longer distance communications, an antenna is used for general wireless transmission. Specifically, radio waves produce microwave resonance first. The antenna, after receiving the radio waves from a read and write device, then transmits the radio waves to the modulation circuit and power control circuit in the identification chip. The power control circuit converts the transmitted AC into DC as the power sources of the components in the identification chip. After obtaining the power source, logic unit starts to process the received data. Once the processing is completed, the logic unit modulates the result by the modulation circuit, and then transmits back to the remote read and write device through the antenna. Thus, the power supply and data exchange functions are completed.
Design of the antenna of an electronic tag requires that the antenna has a frequency band matching with the radio waves, to generate sufficient power by induction, and to consider the gain effect and read field shape. Further, to consider the antenna impedance matching, increase the communication distance, optimize the read rate of data, and consider the application of miniaturization, the type of the antenna must be designed specific to such purposes.
Accordingly, one objective of the present invention to provide a slot antenna structure for use in an electronic tag, which achieves the above-mentioned objectives and solves the problems in the prior art.
One objective of the present invention is to provide a slot antenna structure for an electronic tag that produces a desired impedance matching in a slot design to achieve a desired communication effect and to minimize the overall volume.
The present invention relates to a slot antenna structure for an electronic tag. The electronic tag has an identification chip. The slot antenna structure includes a dielectric layer, a conductor layer, a slot area and a capacitance adjustment unit.
The conductor layer is disposed on the dielectric layer. The slot area is disposed in the conductor layer and includes an open slot, an open end and at least one closed slot. The open end is located at an edge of the conductor layer and extends inwardly to form the open slot for disposing the identification chip. The open slot has two sidewalls and the two sidewalls have at least one turning point at a bottom portion of the open slot to form the closed slot. The capacitance adjustment unit is disposed in the open slot or on a surface of the dielectric layer different from the conductor layer to correspond to the slot area, thereby generating a capacitance effect.
The aforementioned slot antenna structure can be presented in various embodiments. In the slot antenna structure according to one embodiment, the slot area includes two closed slots, the two sidewalls oppositely extend from the bottom portion of the open slot to form the two closed slots, the conductor layer between the two closed slots and the open slot forms a symmetrical dipole structure, and the capacitance adjustment unit is disposed on the surface of the dielectric layer different from the conductor layer to correspond to the dipole structure.
Further, each of the closed slots has an end and at least two of the turning points, and an area of the end of each of the closed slots is larger than a specific value so that a size of the dipole structure is identical to a size of the capacitance adjustment unit. Moreover, an end of each of the closed slots has a depressed portion so that the dipole structure has a symmetrical L-shape.
In the slot antenna structure according to one embodiment, the slot area further includes a through hole disposed adjacent to the open slot, the conductor layer between the open slot and the closed slot forms a part of the dipole structure, another part of the dipole structure is disposed on the surface of the dielectric layer different from the conductor layer as the capacitance adjustment unit, and the part of the dipole structure is electrically connected to the other part of the dipole structure via the through hole, so that a capacitance effect is formed between the part of the dipole structure and the other part of the dipole structure overlapping with the projection of the part of the dipole structure.
In one embodiment, the capacitance adjustment unit is a conductor structure. In another embodiment, the capacitance adjustment unit is a capacitive element, and the capacitive element is disposed in the opening slot.
Therefore, by utilizing the slot antenna structure for use in the electronic tag of the present invention having the open slot and the closed slot of various designs, the impedance of the slot antenna structure can be adjusted to match the desired impedance matching and the overall volume of the slot antenna structure can be further miniaturized in conjunction with the capacitance effect generated between the dipole structure and the capacitance adjustment unit and further in conjunction with the location of the identification chip.
The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
Please refer to
The slot area 24 is disposed in the conductor layer 22. The slot area 24 is manufactured in such a manner as to, for example, etch the conductor layer 22 to expose the dielectric layer 20, or avoid the slot area 24 to form the conductor layer 22 on the surface of the dielectric layer 20 by printing. The slot area 24 further includes an open slot 2402, an open end (which will be shown in
The capacitance adjustment unit 26 is disposed in the open slot 2402, or disposed on the surface of the dielectric layer 20 different from the conductor layer 22 to correspond to the slot area 24, thereby generating a capacitance effect. Further, the capacitance adjustment unit 26 is disposed on the dielectric layer of the other surface of the circuit board to correspond to the slot area 24, thereby generating a capacitance effect, so as to achieve impedance matching of the slot antenna structure 12, which benefits the miniaturized design of the slot antenna structure 12. The conductor layer 22 is a radiating element which, after receiving a radio wave from a read and write device, resonates to generate a current supply to operate the identification chip 14 and transmits the information of the identification chip 14 as a radio wave. The present invention provides a number of embodiments for the form and disposition of the capacitance adjustment unit 26, but is not limited thereto and may vary depending on the needs of the user.
Please refer to
In the present embodiment, the conductor structure 34 may be, for example, a metal sheet disposed on the surface of the dielectric layer 20 different from the conductor layer 22 and disposed in a range covered by the projection of the dipole structure 35, so that a capacitance effect is formed between the conductor structure 34 and the dipole structure 35 overlapping with the projection of the conductor structure 34. Further, the conductor structure 34 is disposed on the dielectric layer of the other surface of the circuit board to correspond to the dipole structure 35, thereby generating a capacitance effect between the conductor structure 34 and the dipole structure 35, so as to achieve impedance matching of the slot antenna structure 12 that benefits the miniaturized design of the slot antenna structure 12.
Please refer to
Please refer to
Please refer to
Please refer to
Thus, by utilizing the slot antenna structure 12 for use in the electronic tag 10 of the present invention having the open slot 2402 and the closed slot 2404 of various designs, the impedance of the slot antenna structure 12 can be adjusted to match the desired impedance matching and the overall volume of the slot antenna structure 12 can be further miniaturized in conjunction with the capacitance effect generated between the dipole structure 35 and the capacitance adjustment unit 26 and further in conjunction with the location of the identification chip 14.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
Number | Date | Country | |
---|---|---|---|
62280095 | Jan 2016 | US |