The present invention is related generally to antennas for wireless communications devices and specifically to slot antennas.
It is known that antenna performance is dependent on the size, shape and material composition of the antenna elements, the interaction between elements and the relationship between certain antenna physical parameters (e.g., length for a linear antenna and diameter for a loop antenna) and a wavelength of the signal received or transmitted by the antenna. These physical and electrical characteristics determine several antenna operational parameters, including input impedance, gain, directivity, signal polarization, resonant frequency, bandwidth and radiation pattern. Since the antenna is an integral element of a signal receive and transmit path of a communications device, antenna performance directly affects device performance.
Generally, an operable antenna should have a minimum physical antenna dimension on the order of a half wavelength (or a multiple thereof) of the operating frequency to limit energy dissipated in resistive losses and maximize transmitted or received energy. Due to the effect of a ground plane image, a quarter wavelength antenna (or odd integer multiples thereof) operative above a ground plane exhibits properties similar to a half wavelength antenna.
Communications device product designers prefer an efficient antenna that is capable of wide bandwidth and/or multiple frequency band operation, electrically matched (e.g., impedance matched) to the transmitting and receiving components of the communications system and operable in multiple modes (e.g., selectable signal polarizations and selectable radiation patterns). They also prefer a physically small antenna.
Consumer communications devices or devices incorporating a communications component, such as portable notebook computers, include antennas for various wireless communications services such as WLAN, WiMAX and cellular services. Due to the requirements for form and functionality, the physical space available for the antenna(s) is typically limited to narrow spaces close to and/or between conductive objects. But conventional antenna design approaches, such as PIFA-type antennas, work poorly in circumstances where the antenna is disposed in a narrow opening or gap (e.g., less than about 1/10 wavelength) between conductive objects. For example when the antenna is to be mounted between the display and keyboard portions of a notebook computer. Large areas of the screen and the keyboard are made from conductive metal, and the space between the two is effectively a long narrow gap between large conductive bodies. It appears that the geometric constraints of this antenna location allow effective propagation of only those modes with electric-field polarization across the gap (e.g., across the smaller dimension of the gap or between an edge of the screen and an adjacent edge of the keyboard). Commonly used antennas that work well in unbounded conditions, such as PIFA type antennas, may perform poorly when installed in the aforementioned gap location because of the electromagnetic constraints of the gap.
A slot antenna may consist of a conductive surface, usually a flat plate, with a hole or slot formed in the plate. The slot may be fed by connecting antenna feed conductors across the slot. For example, a coaxial cable shield is connected to a first edge of the slot (or bonded to the plate) while a center conductor is connected to a second slot edge (parallel to the first edge). Supplying a driving frequency between the coaxial cable shield and the center conductor, causes the slot antenna to radiate electromagnetic waves similar to a dipole antenna. The shape and size of the slot and the driving frequency determine the radiation pattern.
Slotted cylindrical antennas are known as first described by Andrew Alford in 1946 and discussed by John D. Kraus in Antennas: For all Applications, third edition 2002. The antenna comprises a hollow conductive cylinder with a single narrow rectangular slot formed therein. Generally the slot is longer than λ/2 at the operating frequency of the antenna. An antenna feed is connected across the small dimension of the slot (identical to the feed arrangement for a conventional slot antenna). In the Kraus description of slotted antennas, the cylinder is shown as a true circular cylinder, however in other references the term cylinder is applied to other cross-section shapes such as a rectangular cross section.
The impedance of the path around the circumference of the cylinder is sufficiently low so that most of the current tends to flow in horizontal loops around the cylinder. If the diameter of the cylinder is a sufficiently small fraction of a wavelength, for example less than about λ/8, an upright cylinder with a vertical slot radiates a horizontally polarized field with a radiation pattern that is substantially circular in the horizontal plane. As the cylinder diameter increases, the pattern in the horizontal plane tends to become more unidirectional with the maximum radiation from the side of the cylinder where the slot is located.
The present invention can be more easily understood and the advantages and uses thereof more readily apparent when the following detailed description of the present invention is read in conjunction with the figures wherein:
Before describing in detail the exemplary methods and apparatuses related to a slot antenna, it should be observed that the present invention resides primarily in a novel and non-obvious combination of elements and steps. So as not to obscure the disclosure with details that will be readily apparent to those skilled in the art, certain conventional elements and steps have been presented with lesser detail, while the drawings and the specification describe in greater detail other elements and steps pertinent to understanding the invention.
The following embodiments are not intended to define limits as to the structure or method of the invention, but only to provide exemplary constructions. The embodiments are permissive rather than mandatory and illustrative rather than exhaustive.
Antennas constructed according to the teachings of the present invention for use in space-limited platforms offer a significant advantage over prior art antennas due to their increased radiation efficiency. In one embodiment a radiation efficiency in excess of about 45% was measured on the same platform where a conventional PIFA type solution produced a radiation efficiency of only about 15%.
In one embodiment a slotted cylinder antenna 20 of the present invention is in the form of a tubular member having an outer conductive surface 24 disposed on an inner dielectric substrate 28, as shown in the cross-sectional views of
Referring to
The antenna 20 further defines a narrow gap 36 in the conductive surface 24 (but preferably not within the dielectric substrate 28) that extends a length of the cylinder. In one embodiment the gap width is about 0.5 mm, although other gap widths will allow the antenna to function properly. Generally, as the gap width decreases the antenna resonant frequency declines and the impedance match is affected. The antenna impedance is also influenced by other elements of the antenna, including the dielectric constant of the dielectric substrate 28, the slot length, width and location, the antenna gap width, the probe location relative to the slot, the probe impedance and the probe length.
In one embodiment of a rectangular cross-section antenna constructed according to the teachings of the present invention, the antenna is about 72 mm long, about 6.2 mm tall (thick) and about 8.5 mm wide. The antenna slot is about 30 mm long by about 1.5 mm wide.
On embodiment of the antenna 20 is fed through a coaxial cable from a signal source 38 of a communications device (not shown) operating with the antenna, for example, a laptop computer. A coaxial cable shield 40 conductively connects to a region of the conductive surface 24 (typically on an external surface of the antenna cylinder) and a center feed 42 of the coaxial cable conductively connects to a microstrip probe 46 that extends across the slot 32 (i.e., the probe 46 extends across a smaller (width) dimension of the slot). The probe 46 may be placed proximate the slot 32 either within the interior of the antenna cylinder (
The antenna does not require electrical connection to any other components (i.e. a ground plane or a counterpoise) to operate effectively, nor is antenna performance significantly degraded by contact with a conductive surface, especially proximate the gap. Thus its performance will not be degraded if the antenna inadvertently contacts a conductive surface or if such contact is required, for example to properly mount the antenna in the communications device, such as a laptop computer. In one embodiment the exposed conductive material of the antenna (i.e., the conductive surface 24) is coated with an insulating material to protect the conductive surface against corrosion.
When located in free space, the antenna produces an omnidirectional pattern about the long axis of the slot (which is parallel to the long axis of antenna) and the far-field polarization is orthogonal to the long axis. When installed in a cavity or opening of a laptop computer 59 (see
In one design the slot length is approximately half of the guided wavelength, that is, the wavelength of a wave traveling on the slot at an operating frequency of 2.4 GHz. The guided wavelength, which is shorter than the free space wavelength due to the higher dielectric constant of the antenna, is a function of the dielectric constant of the dielectric material within and outside the antenna's cylinder and the slot width. The guided wavelength is approximately equal to
λFREE SPACE/(SQRT[(∈INSIDE CYLINDER+∈OUTSIDE CYLINDER)/2])
where the dielectric constant values are taken to be average values inside and outside the cylinder. As can be seen from the equation, use of a material having a high dielectric constant (greater than about 10, for example) inside the cylinder results in a lower guided wavelength, which in turn allows use of a shorter slot. When space for the antenna is at a premium, a shorter slot length and thus a shorter antenna is advantageous.
Preferably the antenna length (i.e., a length of the cylinder or tubular member) is substantially longer than a half wavelength. The dielectric constant of the material of the cylinder, the length of the slot, the length of the cylinder, the width of the gap running the length of the cylinder, and the length, width and location of the probe serve as design variables to control impedance matching and resonant frequencies of the antenna. The probe serves as an impedance matching element to couple the antenna to a nominal 50 ohm feed. Matching is effected by extending the probe beyond the slot and using this extension as a microwave tuning stub, with the electrical length and characteristic impedance of the stub manipulated by changing the width and length of the extension.
In the desired mode of excitation, the antenna operates as a small loop antenna with the circumference of the cylinder representing the loop. Most of the current therefore flows circumferentially around the antenna cylinder.
The Q is high for this mode of operation and therefore one technique for achieving a wider bandwidth within an operating band of 2400-2500 MHz comprises selecting antenna parameters to create two closely spaced resonant frequencies within the operating band. In particular, the frequency of the resonant antenna modes are dependent on the length of the cylinder and the length of the slot. These two lengths can be adjusted to bring the two resonant frequencies closer at the desired operating frequency to provide increased bandwidth over that available from a single resonant frequency.
In the application where the antenna is disposed within the hinge gap (i.e., between the two hinges) between the laptop computer screen and the keyboard (as illustrated in
The WiFi protocol supports and is generally implemented with antenna diversity. For such WiFi applications, the two antennas of
An antenna 90 of
While the present invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalent elements may be substituted for the elements thereof without departing from the scope of the invention. The scope of the present invention further includes any combination of elements from the various described embodiments. In addition, modifications may be made to adapt a particular situation to the teachings of the present invention without departing from its essential scope. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims the benefit, under 35 U.S.C. 119(e), of the provisional patent application entitled Slot Antenna filed on Mar. 25, 2007 and assigned application No. 60/896,930.
Number | Name | Date | Kind |
---|---|---|---|
3852994 | Pereda | Dec 1974 | A |
4328502 | Scharp | May 1982 | A |
5489913 | Raguenet et al. | Feb 1996 | A |
5955997 | Ho | Sep 1999 | A |
6636181 | Asano et al. | Oct 2003 | B2 |
7079081 | Parsche | Jul 2006 | B2 |
20070194994 | Waltho | Aug 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080231522 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
60896930 | Mar 2007 | US |