The present invention relates to particle accelerator structures and more particularly to a continuous wave (CW) multi-cell accelerating cavity.
The side-coupling arrangement used in conventional accelerator cavities results in a large and complex assembly. Injectors using cavities of this type combined with thermionic cathodes typically exhibit an electron capture efficiency of less than 40%.
In order to reduce the performance limitations of side-coupled cavities, resonant coupling slots have been proposed in multi-cell accelerator structures. However, resonant slots require long slot openings and lead to high power losses and reduced efficiency.
This is important for industrial or medical applications requiring high average power beams. Unlike pulsed accelerators, where the thermal issues are less important, this invention is aimed at CW and high duty factor applications with high average beam power. The inclusion of the internal cooling is important in this regard and yields an additional advantage
Accordingly, it would be desirable to provide a more compact and simpler accelerator arrangement and method for increasing the electron capture efficiency. Improving the power efficiency of the accelerating structure and the electron capture efficiency leads to a more compact and cost effective device and reduces the amount of input power required to drive the accelerator. This is particularly important for Continuous wave (CW) and high duty factor accelerators where the input power and cooling requirements are significant.
It is therefore an object of the present invention to provide a more compact and simpler accelerator arrangement for a particle accelerator.
A further object of the invention is to provide a method for increasing the electron capture efficiency a particle accelerator.
Another object of the invention is to provide an accelerator arrangement that reduces the amount of input power required to drive the accelerator for a given output energy.
A further object is to provide an accelerator arrangement for Continuous Wave (CW) and high duty-factor accelerators that significantly reduces the input power and cooling requirements.
A further object of the invention is to provide cavities with internal slots that are symmetrical with respect to the cavity center axis and which do not introduce any transverse kicks to the accelerating beam and allow higher current operation.
The present invention is a compact, efficient CW standing wave multi-cell accelerating cavity. To achieve high electron capture efficiency a graded beta accelerating structure is used in which each cell in the multi-cell cavity may have different cell lengths. Alternatively, to achieve high efficiency of acceleration for particles with beta equal to 1 (i.e. already traveling close to the speed of light), each cell in the multi-cell cavity may have the same optimized cell design. The coupling between cells is realized with a plurality of kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slot lengths and less power loss.
a is a view of the x-shaped cooling channels in the cell-to-cell wall of the slot-coupled accelerator cavity.
a is a side view of a conventional side-coupling accelerator cavity such as used at the Jefferson National Accelerator Facility, Newport News, Va.
b is a sectional view of a conventional side-coupling accelerator such as used in the Varian 600C accelerator, available from Varian Medical Systems, Inc., Palo Alto, Calif.
a is a sectional view of a two-slot coupling for pill-box shaped cells such as used at the Large Electron-Positron Collider (LEP) at CERN in Geneva, Switzerland.
b is an isometric view of a two-slot coupling for pill-box shaped cells such as used in PEP at SLAC National Accelerator Laboratory at Stanford University, Palo Alto, Calif.
The present invention is a compact, efficient CW standing wave accelerating cavity. This is a multi-cell cavity that can be used for graded beta acceleration with different cell designs, or for beta equal to 1 acceleration with the same cell design for each single cell. The coupling between cells is realized with a plurality of kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface.
Referring to
With reference to
For operation in CW mode, the cooling is important. As shown in the left portion of
With reference to
Referring to
With reference to
The bounding box of the CEBAF capture cavity at Jefferson National Accelerator Facility, Newport News, Virginia, has a transverse dimension of 14.3×30 cm2. In a compact, efficient CW standing wave accelerating cavity with a slot-coupling arrangement according to the present invention, the bounding box has a transverse dimension of 13.4×13.4 cm2. Much less power is required to achieve same acceleration results; 7 kW is needed for the slot-coupling design, versus approximately 10 kW in the traditional side-coupling design. The shunt impedance of the new slot-coupling design is 22 MOhm/m, as compared to larger than 18.8 MOhm/m in the side-coupling design.
As a comparison with conventional side-coupling design accelerators, the electron capture efficiency of Varian's 600C, available from Varian Medical Systems, Inc., Palo Alto, Calif., is 37%, while the slot-coupling design provides nearly 100% capture efficiency. After being scaled to 2998 MHz, the slot-coupling design has a shunt impedance of 151 MOhm/m, as compared with 115 MOhm in the Varian 600C.
As a further comparison, the cavities at LEP (Large Electron-Positron Collider at CERN in Geneva, Switzerland) and PEP (SLAC National Accelerator Laboratory at Stanford University, Palo Alto, Calif.) used two-slot coupling for pill-box shaped cells. They operate at about 352 MHz. After being scaled to 352 MHz, the slot-coupling design of the present invention with better cell shape has a higher shunt impedance of 31 MOhm/m, as compared with 26 MOhm/m (LEP) and 21 MOhm/m (PEP).
The compact and axis-symmetric nature of the new structure greatly simplifies embedding in a solenoid magnet for focusing or for transporting magnetized beams. In the present invention, the slots are non-resonant, thereby enabling shorter slot lengths and less power loss. The symmetry of the interior slots about the central axis of the cavities does not introduce any transverse (dipole) kicks, as compared to prior art multi-cell accelerator cavities having resonant slots. In cavities with resonant slots, transverse kicks are produced and must be averaged out by flipping the slot from one side to the other in alternate cells. The symmetry allows the propagation and extraction (damping) of all unwanted transverse higher-order modes (HOMs) that can cause beam break-up instabilities. This allows higher beam current to be operated stably. This is not possible with prior art one- or two-slot designs.
The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiments herein were chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
This application claims the priority of Provisional U.S. Patent Application Ser. No. 62/011,920 filed Jun. 13, 2014.
This invention was made with government support under Management and Operating Contract No. DE-ACO5-060R23177 awarded by the Department of Energy. The United States Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62011920 | Jun 2014 | US |