1. Field of the Invention
The invention relates to electrical switching apparatus, such as, for example, circuit breakers and, more particularly, to circuit breakers including a slot motor.
2. Background Information
Circuit breakers are used to protect electrical circuitry from damage due to an overcurrent condition, such as an overload condition or a relatively high level short circuit or fault condition. Circuit breakers include at least one pair of separable contacts. A first contact is fixed within the circuit breaker housing and a second movable contact is coupled to an operating mechanism. These separable contacts are in electrical communication with either the line or the load coupled to the circuit breaker. The operating mechanism moves the movable contact between a first, open position wherein the movable contact is spaced from the fixed contact, and a second, closed position wherein the fixed and movable contacts are in contact and in electrical communication. The operating mechanism may be operated manually or by a trip mechanism.
In order to enhance the speed of separation of the separable contacts, the contacts may be disposed within a slot motor, which increases interruption performance. The slot motor is a ring-shaped, loop-shaped or U-shaped device made of magnetically permeable material (e.g., steel), which at least generally surrounds the separable contacts and a movable contact arm of the operating mechanism. When the circuit is live, an electrical arc may be drawn between the contacts during separation. The electrical current interacts electromagnetically with the slot motor to induce a magnetic field in the magnetic material of the slot motor, which, in turns, interacts with the separating contacts and the movable contact arm to accelerate the contact opening process. Examples of slot motors are disclosed in U.S. Pat. Nos. 4,375,021; 4,546,336; 4,546,337; 4,549,153; 4,970,482; 5,694,098, and 6,281,459.
Ring-shaped or loop-shaped slot motors typically have two assemblies, an upper assembly and a lower assembly. Both upper and lower assemblies include a corresponding housing and a plurality of plates composed of the magnetically permeable material. The lower assembly is disposed below the fixed contact.
Upon interruption of a short circuit or other fault condition by a circuit breaker, molten metal may be deposited throughout the internals of the circuit breaker, which may impair its performance.
Hence, there is room for improvement in electrical switching apparatus, such as circuit breakers, and in components therefor.
This need and others are met by embodiments of the invention, which provide a debris shield as part of an insulative slot motor housing. The debris shield obstructs debris from entering internal circuit breaker areas, such as the operating mechanism, where it could, otherwise, cause a functional problem. For example, extensions are disposed from a portion of the insulative slot motor housing proximate a number of the arc plates, in order to shield the internal environment of the operating mechanism from the arc chamber.
In accordance with one aspect of the invention, a circuit breaker comprises: a fixed contact; a movable contact; an operating mechanism comprising a movable arm carrying the movable contact; an arc chute comprising a plurality of spaced apart arc plates including a number of first arc plates and a number of second arc plates; and a slot motor comprising: a slot motor structure disposed about the fixed and movable contacts and a portion of the movable arm, and an insulative housing at least substantially covering the slot motor structure and insulating the slot motor structure from the movable arm and the fixed and movable contacts, the insulative housing comprising a base and a pair of arms disposed from the base, wherein each of the arms includes a first portion disposed proximate the first arc plates and a second portion disposed proximate the second arc plates, wherein a space extending from the first portion of the arms, which is not occupied by the second portion of the arms, is generally occupied by part of the arc chute including a portion of the second arc plates, and wherein the second portion of the insulative housing forms a debris shield between the second arc plates and the operating mechanism.
The first and second arc plates may include ends forming a generally arcuate path. The movable arm may have a first position wherein the fixed and movable contacts are closed and a second position wherein the fixed and movable contacts are open. The movable contact may generally follow the generally arcuate path from a position intermediate the first and second positions toward the second position. The second portion of the insulative housing may include an edge which approximates the arcuate path. The second portion of the insulative housing may obstruct debris from the second arc plates from entering the operating mechanism.
As another aspect of the invention, a slot motor comprises: a slot motor structure structured to be disposed about a fixed contact, a movable contact and a portion of a movable arm carrying the movable contact, and an insulative housing at least substantially covering the slot motor structure, the insulative housing being structured to insulate the slot motor structure from the movable arm and the fixed and movable contacts, the insulative housing comprising a base and a pair of arms disposed from the base, wherein each of the arms includes a first portion structured to be disposed proximate a number of first arc plates and a second portion structured to be disposed proximate a number of second arc plates, and wherein a space extending from the first portion of the arms, which is not occupied by the second portion of the arms, is structured to be generally occupied by part of an arc chute including a portion of the second arc plates.
As another aspect of the invention, a circuit breaker comprises: a housing; a fixed contact; a movable contact; an operating mechanism comprising a movable arm carrying the movable contact, the movable arm being pivotally mounted with respect to the housing, the movable arm having a first position wherein the fixed and movable contacts are closed and a second position wherein the fixed and movable contacts are open; an arc chute comprising a plurality of spaced apart arc plates including a number of first arc plates and a number of second arc plates; and a slot motor comprising: a slot motor structure disposed about the fixed and movable contacts and a portion of the movable arm, and an insulative housing at least substantially covering the slot motor structure and insulating the slot motor structure from the movable arm and the fixed and movable contacts, wherein the fixed contact includes a first end disposed toward the arc chute, a contact portion and a second end disposed toward the operating mechanism, wherein the movable contact includes a first end, a contact portion electrically contacting the contact portion of the fixed contact in the first position of the movable arm, a second end and a side opposite the contact portion of the movable contact, wherein the first arc plates include a first end distal from the operating mechanism and a second end facing the operating mechanism, wherein the second arc plates include a first end distal from the operating mechanism and a second end facing the operating mechanism, wherein at least one of the first arc plates is disposed proximate the first end of the fixed and movable contacts in the first position of the movable arm, wherein at least one of the second arc plates is proximate the first end of the movable contact in the second position of the movable arm, wherein a portion of at least one of the second arc plates is disposed distal from the fixed contact and beyond the side opposite the contact portion of the movable contact, wherein the insulative housing is generally disposed between the arc chute and the operating mechanism, wherein the insulative housing includes a first portion proximate the second end of the first arc plates, wherein the insulative housing includes a second portion proximate the second end of the second arc plates, and wherein the second portion is smaller than the first portion of the insulative housing.
A full understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:
As employed herein, the term “number” shall mean one or an integer greater than one (i.e., a plurality).
The invention is disclosed in association with a three-pole circuit breaker, although the invention is applicable to a wide range of circuit breakers having any number of poles.
Referring to
The fixed contact 4 includes a first end 24 disposed toward the arc chute 10, a contact portion 26 and a second end 28 disposed toward the operating mechanism 8. The movable contact 6 includes a first end 30, a contact portion 32 electrically contacting the contact portion 26 of the fixed contact 4 in the first closed position of the movable arm 14, a second end 34 and a side 36 opposite the contact portion 32 of the movable contact 6.
Also referring to
The first arc plates 20 include a first end 58 distal from the operating mechanism 14 and a second end 60 facing the operating mechanism. The second arc plates 22 include a first end 62 distal from the operating mechanism 14 and a second end 64 facing the operating mechanism. The second ends 60,64 of the first and second arc plates 20,22 form a generally arcuate path 66. The first end 30 of the movable contact 6 generally follows the generally arcuate path 66 from a position intermediate the first closed position (as shown in
As shown in
As shown in
As best shown in
A non-limiting example of the insulation material of the slot motor housing 40 is a suitable glass filled polyester. One example is Rosite®3550D, which is marketed by Industrial Dielectrics, Inc. of Noblesville, Ind. This material preferably provides some out-gassing responsive to an arcing event.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the claims appended and any and all equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3129304 | Hyink et al. | Apr 1964 | A |
3525959 | Ellsworth et al. | Aug 1970 | A |
3614865 | Widmer et al. | Oct 1971 | A |
3815059 | Spoelman | Jun 1974 | A |
3863042 | Nicol | Jan 1975 | A |
4077025 | Slade et al. | Feb 1978 | A |
4166205 | Maier et al. | Aug 1979 | A |
4540961 | Maier | Sep 1985 | A |
4642726 | Matsko et al. | Feb 1987 | A |
4710739 | Heyne et al. | Dec 1987 | A |
4963849 | Kowalczyk et al. | Oct 1990 | A |
5494255 | Pearson et al. | Feb 1996 | A |
5548261 | Ulerich et al. | Aug 1996 | A |
5565828 | Flohr | Oct 1996 | A |
6060674 | Malingowski et al. | May 2000 | A |
6281459 | Munsch et al. | Aug 2001 | B1 |
6831536 | Zindler | Dec 2004 | B1 |
6970059 | Mueller et al. | Nov 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20070241081 A1 | Oct 2007 | US |