The invention relates in general to heat generating structures, and more particularly to a relatively slow burning, heating element that may be utilized for various purposes such as a delay element or fuse that ignites an explosive device or material.
It is known that a heat generating structure composed of two dissimilar materials such as metals may be used as an ignitable delay element or fuse structure. The delay element may be used in varied applications to safely initiate the timed ignition or detonation of an explosive device or material. These heat generating structures can come in many different physical forms. For example, ignitable delay elements can be made of a compressed powder mixture. Other known heat generating structures that can be used as delay elements include a metallic device that is commercially available under the brand name Pyrofuze® provided by the Sigmund Cohn Corporation of Mount Vernon, N.Y. This device comes in wire or ribbon form and comprises two metallic elements in intimate contact with one another: an inner core of aluminum surrounded by an outer jacket of palladium. When the two metallic elements are brought to the initiating temperature by a sufficient amount of heat, the metals react by alloying rapidly resulting in instant deflagration without support of oxygen. Once the alloying reaction is started, the reaction will not stop until alloying is completed. Hence, a drawback with the Pyrofuze® delay element is that it typically burns at a relatively rapid rate.
Another commercially available heat generating structure that can be used as a delay element or fuse is provided under the brand name NanoFoil® by Reactive NanoTechnologies, Inc. of Hunt Valley, Md. The NanoFoil® device is a multilayer foil comprised of thousands of alternating nanoscale thin layers of aluminum and nickel. When initiated by an electrical, thermal, mechanical or optical source, the metals will mix or alloy and react to release heat energy. However, when used as a delay element or fuse, the NanoFoil® multilayer foil tends to have a burn rate that is relatively fast, and the burn rate is not easily variable. The NanoFoil® multilayer foil is also relatively expensive.
What is needed is a relatively slow burning, gasless, heat generating structure composed of two or more dissimilar materials, such as metals, distributed in a non-uniform three-dimensional manner along its propagation or burn path, where the structure is flexible and not subject to cracking, and when ignited exhibits an exothermic alloying reaction between the materials and can function as a delay element or fuse in providing for reliable propagation and, thus, accurate ignition of an explosive device.
According to an aspect of the invention, a heat generating structure includes a substrate, a coating and a polymeric material. The substrate comprises a first material. The coating comprises a second material that is different from the first material. The coating covers at least a portion of the substrate. The coating and substrate, upon being thermally energized to their minimum alloying temperature, react in a first exothermic reaction that is an alloying reaction. The relative quantities of the substrate and coating are such that the first exothermic reaction yields a first amount of exothermic energy, where the first amount of exothermic energy is insufficient to cause self-sustained propagation of the first exothermic reaction. The polymeric material covers substantially all of the substrate and coating. The polymeric material is different from the first material and the second material. The polymeric layer, upon being thermally energized, reacts with at least one of the substrate and coating in a second exothermic reaction. The second exothermic reaction yields a second amount of exothermic energy. The second amount of exothermic energy, when combined with the first amount of exothermic energy, is sufficient to propagate the first exothermic reaction in a self-sustained manner, thus enabling uninterrupted propagation from a first location within the structure along a travel path to a second location within the structure.
These and other objects, features and advantages of the present invention will become more apparent in light of the following detailed description of preferred embodiments thereof, as illustrated in the accompanying drawings.
Referring to
Referring to
The coating 26 is applied on at least a portion of each substrate wire 24, and preferably on the entirety of each substrate wire 24, to thereby form a substrate 22 of continuously-coated wires 24. As will be described below, the material of the coating 26 is chosen based on its characteristics and the characteristics of the substrate 22. Examples of acceptable coating materials include nickel, palladium, and alloys of either; e.g., the nickel coating 26 may include other materials including boron, phosphorus and/or palladium, or other metals, such as rhenium, that improve ductility. In those instances where the coating includes nickel with some amount of boron and/or phosphorous, the nickel alloy typically includes 0-15% by weight of boron, phosphorus, or some combination thereof.
The materials (e.g., metals) comprising the substrate 22 and the coating 26 are selected based on their individual characteristics (e.g., melting point and density), and based on the formation enthalpy of their alloys. Also, for reasons discussed further below, the materials comprising the substrate 22 and the coating 26 are selected such that the alloying reaction between the materials is highly exothermic. In a preferred embodiment, the substrate 22 is an aluminum mesh and the coating 26 is a nickel material. The nickel coating 26 may be applied onto the outer surface of each of the wires 24 of the aluminum substrate 22 by, for example, electroplating or other deposition methods such as vacuum sputtering or an electrochemical process or by mechanical means such as swaging
If aluminum is utilized as the substrate 22 material, any aluminum oxide that is present on the outer surface of the aluminum wires 24 prior to coating 26 deposition may be removed and a layer of zinc may be applied to the outer surface of the wires 24 prior to the deposition of the coating 26 (e.g., nickel). The layer of zinc may allow ignition of the delay element 14 at a lower temperature than if the layer of zinc were not present. The layer of zinc is not required, however.
An exothermic alloying reaction is initiated when the substrate 22 and coating 26 are subjected to an ignition source (e.g., a match or heating element) adequate to bring the substrate 22 and coating 26 to its minimum alloying temperature. Alloying reactions may in some instances propagate in a self-sustained manner if the alloying reaction between the materials is sufficiently exothermic. The degree to which an exothermic reaction may take place will depend, in part, on the materials used and the relative quantities thereof The '911 Publication discloses a delay element comprising an aluminum substrate 22 and a nickel coating 26, configured to produce a self-sustained propagating alloying reaction.
According to the present invention, the relative molar contents of the substrate 22 and coating 26 are such that the molar content of the coating 26 is less than the molar content of the substrate 22 for a given cross-section of the delay element 14. A relatively thin coating 26 gives the delay element 14 greater flexibility and makes the coating 26 less susceptible to cracking, which in turn makes the delay element 14 easier to work with and gives it greater utility. Using the above-described aluminum mesh substrate 22 and nickel coating 26 as an example, the molar content of the nickel 26 coating is chosen to be less than the molar content of the aluminum substrate 22. In fact, the molar content of the nickel coating 26 is purposefully chosen to be sufficiently low relative to the molar content of the aluminum substrate 22 that the alloying reaction between the substrate 22 and the coating 26 alone is unable to propagate in a self-sustained manner The propagation cannot self sustain because the exothermic energy developed by the quantity of nickel coating 26 alloying with the aluminum substrate 22 is insufficient to maintain the alloying reaction.
Because the aluminum substrate 22 and nickel coating 26, by themselves, cannot propagate in a self-sustained manner, the structure of the present invention further includes a polymeric layer 28 that enables self-sustained propagation. The substrate 22 and coating 26 are embedded or shrouded by the polymeric layer 28, which is in intimate physical and, thus thermal, contact therewith. The polymeric layer 28 preferably comprises a fluorinated or perfluorinated polymer; e.g., fluoroelastomers, fluorosurfactants, fluorinated organic substances, etc. An example of an acceptable polymeric layer 28 is a commercially available polytetrafluoroethylene tape (“PFTE tape”). The polymeric layer 28 enables self-sustaining propagation of the delay element 14 structure by reacting with the substrate 22 (e.g., aluminum) and/or coating 26 (e.g., nickel), and also may react with the alloyed material resulting from the alloying reaction between the substrate 22 and the coating 26. The chemical reaction between the polymeric layer 28 and aluminum substrate 22 can be expressed by the following equation:
2nAl+3[—(CF2)n—]→2nAlF3+3nC
where “n” is a number of molecules. In this chemical reaction, additional thermal energy is evolved, which energy sustains propagation of the exothermic alloying reaction between the aluminum substrate 22 and the nickel coating 26. In terms of a delay element 14 structure, the self-sustaining reaction may be described as propagating from a first point 42 (i.e., a starting point) within the delay element 14 structure and along a travel path to a second point 44 (i.e., a discharge point) within the delay element 14 structure, and preferably in a controlled and repeatedly manufacturable manner. For example, if the delay element 14 structure is of a three-dimensional, rectangular-shape, once ignited at a first point 42 of the delay element 14 structure, the thermal energization of the substrate 22, coating 26, and polymeric layer 28 comprising the delay element 14 structure will cause the propagation to continue through to the second point 44 at a consistent timed rate depending on the composition of the substrate 22, coating 26, and polymeric layer 28, as well as on the geometric configuration (e.g., thickness of wires, wire crossing frequency) of the delay element 14 structure. Located at the second point 44 of the delay element 14 structure can be some type of explosive material or device 16 (e.g., fireworks, blasting caps, etc.) that is ignited when the propagation reaches the second point 44 of the delay element 14 structure. Thus, by controlling the composition and the configuration of the reactive materials comprising the delay element 14, the propagation rate can be controlled (that is, the reaction rate or time period for propagation from the first point 42 to the second point 44 along the travel path of the reactive material can be selected). The propagation rate may alternatively be controlled by altering the three-dimensional characteristics of the substrate 22. One of the advantages of the present invention heat generating structure is that the polymeric material is a relatively poor heat transfer medium. As a result, the exothermic energy developed during the exothermic reaction is impeded from transferring away from the reaction site, and is therefore available to facilitate the propagation of the reaction. For this reason, the polymeric material may be described as having a “thermal insulative” quality that facilitates the propagation of the exothermic reaction even when surrounded and in contact with metals or other thermal conductors.
Although the present invention has been illustrated and described with respect to several preferred embodiments thereof, various changes, omissions and additions to the form and detail thereof, may be made therein, without departing from the spirit and scope of the invention. For example, the present invention has been described as a heat generating structure that includes a substrate, a coating applied to the substrate, and a polymeric material covering substantially all of the substrate and coating. The aforesaid structure can be used in a variety of different configurations (e.g., folded over, stacked, etc.) for use in different applications.
Number | Name | Date | Kind |
---|---|---|---|
3086894 | Baggett et al. | Apr 1963 | A |
3111396 | Ball | Nov 1963 | A |
3188210 | Gerhard et al. | Jun 1965 | A |
3319520 | Stefano et al. | May 1967 | A |
3430564 | Silvia et al. | Mar 1969 | A |
3503814 | Helms, Jr. et al. | Mar 1970 | A |
3509822 | Rice et al. | May 1970 | A |
3730093 | Cummings | May 1973 | A |
3744427 | Good et al. | Jul 1973 | A |
3768409 | Menz et al. | Oct 1973 | A |
4053337 | Collins | Oct 1977 | A |
4101352 | Poulin et al. | Jul 1978 | A |
4349612 | Baldi | Sep 1982 | A |
4429632 | Yunan | Feb 1984 | A |
4696231 | Bryan | Sep 1987 | A |
4815386 | Dillard et al. | Mar 1989 | A |
5031538 | Dufrane et al. | Jul 1991 | A |
5046425 | Gibbons, Jr. et al. | Sep 1991 | A |
5182417 | Rontey et al. | Jan 1993 | A |
5495819 | Marion | Mar 1996 | A |
5547715 | Barbee et al. | Aug 1996 | A |
5843538 | Ehrsam et al. | Dec 1998 | A |
6006671 | Yunan | Dec 1999 | A |
6010610 | Yih | Jan 2000 | A |
6170398 | Rabotinsky et al. | Jan 2001 | B1 |
6863992 | Weihs et al. | Mar 2005 | B2 |
6886327 | Nathal et al. | May 2005 | B1 |
7383775 | Mock, Jr. et al. | Jun 2008 | B1 |
20040244890 | Cesaroni et al. | Dec 2004 | A1 |
20050067072 | Vavrick | Mar 2005 | A1 |
20050142404 | Boucher et al. | Jun 2005 | A1 |
20070202304 | Golovko et al. | Aug 2007 | A1 |
20090031911 | Kellett et al. | Feb 2009 | A1 |
20090090440 | Kellett | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
102006001838 | Jul 2007 | DE |
2224729 | May 1990 | GB |
9424074 | Oct 1994 | WO |
2004106268 | Dec 2004 | WO |
2006086274 | Aug 2006 | WO |
2007095303 | Aug 2007 | WO |
Entry |
---|
Miziolek, Andrzej: “Nanoenergetics: An Emerging Technology Area of National Importance”, The Amptiac Newsletter, vol. 6, No. 1, Spring 2002. |
Fischer et al.: “A Survey of Combustible Metals, Thermites and Intermetallics for Pyrotechnic Applications”, Joint Propulsion Conference and Exhibit, July 103, 1996. |
Fischer et al.: “Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals”, 24th International Pyrotechnics Seminar, Jul. 1998. |
Sigmund Cohn Corp.: “Pyrofuze”, www.sigmundcohn.com. |
Reactive NanoTechnologies: “RNT NanoFoil product”, www.rntfoil.com. |
Number | Date | Country | |
---|---|---|---|
20120055594 A1 | Mar 2012 | US |