Pumps.
Fluid transfer devices with a rotor in rotor configuration are known from U.S. Pat. Nos. 7,111,606 and 7,479,000. However, these devices are not particularly designed for use in slurry pumping where the slurry might include breakable particulates.
In an embodiment of a rotor in rotor configuration, a pump has inward projections on an outer rotor and outward projections on an inner rotor. The outer rotor is driven and the projections mesh to create variable volume chambers. The outer rotor may be driven in both directions. In each direction, the driving part (first inward projection) of the outer rotor is sealed to by contact with or sealing proximity to a sealing surface on one side of an outward projection of the inner rotor, while a gap is left between a sealing surface of the other side of the outward projection and a second inward projection. The gap may have uniform width along its length in the radial direction, while in a direction parallel to the rotor axis it may be discontinuous or have variable size to create flow paths for gases.
Thus, in one embodiment there is disclosed a fluid transfer device comprising a housing having an inward facing surface, an outer rotor secured for rotation about an outer rotor axis that is fixed in relation to the housing, the outer rotor having inward projections, the outer rotor being arranged to be driven in operation by a drive shaft, an inner rotor secured for rotation about an inner rotor axis that is fixed in relation to the housing, the inner rotor axis being inside the outer rotor, the inner rotor having outward projections, the outward projections in operation meshing with the inward projections to define variable volume chambers as the inner rotor and outer rotor rotate, fluid transfer passages in a portion of the housing to permit flow of fluid into and out of the variable volume chambers; and each outward projection having a first sealing surface and a second sealing surface circumferentially opposed to each other for respective engagement with corresponding sealing surfaces of adjacent inward projections such that in an operational configuration in which the outer rotor is driven in a first direction, the first sealing surface seals against a first corresponding inward projection with a first continuous gap between at least part of the second sealing surface and a second corresponding inward projection and when the outer rotor is driven in a second direction opposed to the first direction, the second sealing surface seals against the second corresponding inward projection with a second continuous gap between at least part of the first sealing surface and the first corresponding inward projection.
In a further embodiment, there is provided a fluid transfer device comprising a housing having an inward facing surface, an outer rotor secured for rotation about an outer rotor axis that is fixed in relation to the housing, the outer rotor having inward projections, the outer rotor being arranged to be driven in operation by a drive shaft, an inner rotor secured for rotation about an inner rotor axis that is fixed in relation to the housing, the inner rotor axis being inside the outer rotor, the inner rotor having outward projections, the outward projections in operation meshing with the inward projections to define variable volume chambers as the inner rotor and outer rotor rotate, fluid transfer passages in a portion of the housing to permit flow of fluid into and out of the variable volume chambers; and each outward projection having a lateral width and a trailing face and a leading face, and at least one or both of the trailing face and leading face is discontinuous across at least a portion of the lateral width of the outward projection.
In various embodiments, there may be included any one or more of the features set forward in the claims or disclosed herein.
Embodiments will now be described with reference to the figures, in which like reference characters denote like elements, by way of example, and in which:
Referring to
An inner rotor 24 is secured for rotation about an inner rotor axis 26 that is fixed in relation to the housing 12 by any suitable means as for example by being secured to a casing 17 forming part of the housing. In the embodiment of
Fluid transfer passages 32 are provided in a portion of the housing 12 to permit flow of fluid into and out of the variable volume chambers 30.
As better seen in
The gap is explained further as follows with reference to
“non sealing” is preferably defined as a large enough gap for enough of the width of the inner rotor that the pressure which equalizes across this restriction is adequate to keep the trailing face of the inner rotor in acceptable sealing proximity to the leading sealing face of the outer rotor at the maximum design speed, pressure and fluid viscosity of the pump. For an inner rotor diameter of 2″, this has been shown to be preferably at 0.1″ or more for at least 50% of the width of the inner rotor with water at 1800 rpm and 100 psi, but greater or lesser gaps can be used with different effects.
As seen in
It should be noted that the preferred surface for an embodiment for trailing surface 34 is a semicircle about point 73. The preferred shape of leading surface 36 for at least part of the width of the inner rotor protrusion 28, is also a semicircle about point 81. These semicircular shapes for trailing surface 34 and leading surface 36 allow the fins 22 to have non-curved surfaces 38, 82 that are offset from the radial line 25 by a distance equal to the length of line 76.
For this geometry to provide a seal between trailing surface 34 and leading surface 38, the ratio between the number of outer rotor fins 22 and inner rotor protrusions 28 must be two to one.
The housing includes an inward facing surface 90 of revolution defined by the outermost surface 92 of the outward projections 28 of the inner rotor 24. This internal surface 90 provides a seal between the outward projections 28 of the inner rotor 24 and the inward facing surface of the housing 12 such that a seal is maintained at all times in this area between the high pressure side of the pump and the low pressure side of the pump. This seal is a greater radial distance from the center of the inner rotor than the seal between the trailing surface 34 of the inner rotor projection trailing surface seal with outer rotor leading surfaces 38. As a result, the high pressure fluid on the discharge side 94 of the pump acts on a greater surface area 97 of the inner rotor 28 to generate a torque in the opposite direction of inner rotor rotation than the torque on the inner rotor resulting from the surface area 96 of the inner rotor 24 exposed to the high pressure fluid which results in a torque on the inner rotor 24 in the same direction of rotation. This provides enough contact pressure between the rotors to create a seal but not enough, in many applications, to result in a high level of wear.
Port are sealed from each other by the OD of the outer rotor and ID of the housing, the seal between the inner and outer rotors, and the seal between the inner rotor OD and the housing. The seal between the inner rotor OD and the housing may comprise a sealing surface fixed to the housing in sealing proximity to the outward facing surface of the inner rotor over a portion of the circumference of the inner rotor inward of the inward projections. There are also side seals which also contribute to sealing the inlet port from the outer port and from the outside of the device.
As seen in
The first gap 42 may extend along a first path defined by the second sealing surface 36 as the corresponding outward projection 28 moves in relation to the second corresponding inward projection 22 and the first gap has uniform width along the first path as illustrated by the gaps 42, 42A and 42B.
Likewise, the second gap may extend along a second path defined by the first sealing surface as the corresponding outward projection moves in relation to the first corresponding inward projection and the second gap has uniform width along the second path.
As shown in
As indicated in
Referring to
Benefits of this design include the ability of the inner rotor to rotationally “retreat” (as opposed to the more commonly used term “advance”) in relation to the outer rotor 16 as the inner rotor 24 and/or outer rotor contact surfaces 34, 36, 38, 40 wear. This will, in effect, allow the pump to “wear in” for a period of time rather than wear out.
Other advantages of driving the outer rotor 16 include the ability to drive subsequent stages with a drive shaft 19 that extends from both ends of one or more outer rotors 16 to drive multiple similarly constructed outer rotors 16, as shown in
As Ice Pump
In one configuration of the pump, it is designed to handle the admission and pumping of breakable solids such as but not limited to methane hydrate ice crystals. It does this with a combination of features such as sharp leading edges (for example, item 44) on spinning components and sharp trailing edges on stationary components which will slice the ice as it flows into and through the pump. It is also designed to minimized areas where ice could become wedged and restrict the flow by using increasing cross sections along the flow path (passages 32 for example).
As Hydraulic Motor
By providing fluid pressure to the outlet port of the pump configuration described above and shown in the drawings, the device can also be used in reverse rotation as a hydraulic motor. In this case, the leading convex edges 36 of the inner rotor feet contact the flat or substantially flat trailing surface 40 of the outer rotor 16 which drives the output shaft.
As Multi Phase Pump
The pump is ideally suited to pump gases entrapped in a compressible fluid as follows: Gas bubbles that enter the pump will be centrifuged to the innermost area 50 (
In the case of entrained gas, it may be preferable to not push all of the gas out of the chamber at once. This will reduce torque and pressure variations for smoother operation and longer service life.
As shown in
The multiple seal of the cylinder wall outer surfaces and casing wall inner surface allows the perimeter area (where the sand will be sliding) to have a larger gap clearance while still preventing high leakage rates.
Many other configurations of the pump described here are possible and conceived by the inventor. Various features and advantages of the pump design are shown in the figures as described below.
In
In
In
As shown in
In
In
The housing surface of revolution may be a conical or cylindrical or partially cylindrical surface. The outer rotor rotates around a shaft that defines the axis of rotation of the outer rotor and the shaft is fixed in relation to the housing, by any suitable means, including the shaft being secured by one or both of its ends to a portion of the housing or a carrier or other intermediate part or parts that ultimately connect to the housing.
The outer rotor has radially inward projections, each having a trailing face and leading face. The leading face may be, along any plane perpendicular to the outer rotor axis, offset from a radial line radiating from the outer rotor rotational axis as disclosed for example in U.S. Pat. No. 7,111,606. The outer rotor may be connected to be driven with a rotary shaft input. In another embodiment, convex trailing contact surfaces of the outward projections of the inner rotor contact the leading contact surfaces of the inward projections, the leading surface of each inner rotor outward projection does not seal and can be any shape as long as it prevents the rotors from locking up when the pump is freespinning or backturning. For establishing the gaps disclosed between the sealing surfaces of the inward projections and the outward projections, the paths of the sealing surfaces of the outward projections may first be analyzed and then the contour of the sealing surfaces of the inward projections machined to generate the gaps. Alternatively, for example, the contour of the inward projections may be computed from the geometry of the outward projections, the inner rotor and the outer rotor as disclosed for example in U.S. Pat. No. 7,111,606. The fluid transfer pump may be used to pump breakable solids such as but not limited to methane hydrate ice crystals, for example with one or more features such as sharp leading edges on spinning components and sharp trailing edges on stationary components which will slice the breakable solids, for example ice, as it flows into and through the pump. It is also designed to minimize areas where ice could become wedged and restrict the flow by using increasing cross sections along the flow path. In an embodiment, by providing fluid pressure to the outlet port of the pump configuration described above and shown in the drawings, the device can also be used in reverse rotation as a hydraulic motor. In this case, the leading convex edges of the inner rotor feet contact the flat or substantially flat trailing surface of the outer rotor which drives the output shaft. The respective gaps on either side of each outward projection, depending on whether the outer rotor is driven normally or in reverse are preferably relatively small to provide a proximity seal.
As shown in
In a gas compatible design the flow relief may be asymmetrical, on one side only of each inward projection. The rotational axis of the inner rotor is preferably (but not necessarily) vertical and the inner rotor has a flow relief (which exists between the leading convex contact surfaces of each subsequent inner rotor foot) only on the bottom of the inner rotor so gravity can bias the higher density liquid to the bottom of the chamber and the gas to the top of the rotating chamber as it moves from the input to the output area of the pump; the top sealing surface of the inner rotor is therefore more adequately sealed against gas leakage (by virtue of it spanning a greater circumferential span of the chamber) and is capable of pushing at least part of the entrained gas out of each chamber during each rotation.
In the case of entrained gas, it is preferable to not push all of the gas out of the chamber at once, this will reduce input torque and pressure variations for smoother operation and longer service life. This can be achieved by the discontinuous sealing surface.
The pump is also ideally suited to pump grit such as sand. In this case, the port leading up to a pumping stage is preferably curved along an arced or helical path to centrifuge the heavier sand to the outer surface of the flow path. The will bias the higher density sand and/or other abrasives away from the intake rotor sliding interaction with the outer rotor. The sand then travels around the outer perimeter of the casing and cylinder volume to the discharge port where centripetal force ejects and biases it away from the rotor sliding interaction. The multiple seal of the cylinder wall outer surfaces and casing wall inner surface allows the perimeter area (where the sand will be sliding) to have a larger gap clearance while still preventing high leakage rates.
In another embodiment, the radius of the trailing convex surface on the inner rotor is substantially equal to the offset distance of the leading face of the radial projections on the outer rotor from the radial line from the axis of the outer rotor.
In another embodiment, the outward projections of the inner rotor each having a leading surface and trailing surface and the leading surface of the inner rotor projections has a larger gap clearance than the trailing surface such that fluid pressure is allowed to communicate with the chamber ahead of it.
In another embodiment, the leading surface of the inner rotor projections has a larger gap clearance than the trailing surface such that fluid pressure is allowed to communicate with the chamber ahead of it up to the contact between the trailing convex surface of the preceding inner rotor projection contact with the leading offset radial surface of the preceding radial projection of the outer rotor.
In another embodiment, the outer surface of each projection of the inner rotor is at least partially substantially circular along any plane perpendicular to the center axis of the inner rotor and in sealing proximity to the inward facing surface of the carrier for part of the rotation.
Preferably, the forward-most leading convex surface of the inner rotor has a consistent gap through a portion of the rotation such that rotation of the outer rotor at a constant speed with the leading surface of the inner rotor in contact with the trailing surface of the outer rotor inward projection would allow/cause the inner rotor to rotate at a constant speed. This geometry would allow reverse operation and also defines a consistent gap clearance that will provide enough of a “seal” (even though it is a gap, it will still serve to push the gas in front of the inner rotor foot if the air is restricted from going anywhere else) to eject entrained gas from the pump. In an embodiment, the variable volume chambers may be partially defined by planar side faces of the outer rotor or by planar faces of the outer rotor on both axial ends of the inner rotor/s.
In a further embodiment shown in
Immaterial modifications may be made to the embodiments described here without departing from what is covered by the claims.
In the claims, the word “comprising” is used in its inclusive sense and does not exclude other elements being present. The indefinite articles “a” and “an” before a claim feature do not exclude more than one of the feature being present. Each one of the individual features described here may be used in one or more embodiments and is not, by virtue only of being described here, to be construed as essential to all embodiments as defined by the claims.
Number | Date | Country | |
---|---|---|---|
Parent | 14779004 | Sep 2015 | US |
Child | 16126867 | US |