This invention relates generally to coin hopper equipment for storing a plurality of coins in a loose condition, and for sending out or issuing coins one by one. The invention relates more particularly to a coin hopper that is used for vending machines including token and medal and machines as well as coin currency based machines and money changers with a very small coin hopper which is suitable for change equipment in changers used in retail stores, gamming establishments and so on. The term “coin” in this specification is used to refer to coins which are currency as well as small disk medals and tokens used in games.
A small coin hopper equipment is disclosed in Japanese Patent Application 10-333332 by this applicant. The Japanese Patent Application 10-333332 is laid-open in public as Japanese Patent Disclosure 2000-132723.
In the conventional coin hopper as described above, a level base board 31 was used for miniaturizing the overall construction. The hopper used an electric motor placed at the corner of base board 31. The gear train is placed under the base board 31. However, in the prior configuration there was a limit to the degree of miniaturization of the overall coin hopper.
It is an object of the invention to further miniaturize a coin hopper and particularly to decrease the size of the coin hopper as a whole.
It is a further object of the invention to possibly decrease the number of open holes for accepting and discharging coins.
According to the invention a coin hopper is provided with at least: a head or container of a generally cylindrical form, for storing a plurality of coins in a bulk condition. A disk is disposed freely rotatably arranged within the bottom of this head, for releasing the coins. An opening or open hole is provided in the disk, for accepting and releasing said coins. The open hole has two opening passages formed around or adjacent to the rotation axis of the disk.
The two open holes are closed with respect to each other. Particularly, the two open holes have wall defining side surfaces separating the two open holes from each other.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which a preferred embodiment of the invention is illustrated.
In the drawings:
Referring to the drawings in particular, a small coin hopper which is a practical example according to this invention is shown in FIG. 1. As a whole, the small coin hopper has a cube like shape. The small coin hopper has a container or head 11 of a large angle cylindrical form. The container or head 11 is for storing a plurality of coins in a loose condition. The container or head 11 is made of synthetic resin molded to provide the shape. The container or head 11 has an upper edge 12 formed at a level. The entire bottom surface 13 of the container or head 11 is formed extending obliquely relative to the level of the upper edge 12 and is round in shape (see FIG. 2).
The container or head 11 has a slope plane 15 formed above the inside of whole bottom opening surface 13. When this container 11 is removed, a synthetic resin molded base 21 shaped as a tilted trapezoidal is exposed as shown in FIG. 2. This hollow base 21 has a prismatic shape. The hollow base 21 has an upper surface formed in an extensive oblique base plane 22. At the center of the base plane 22, a large circular indent surface 23 is formed, as shown on FIG. 3. The indent surface 23 partially delimits a large metallic ring surface 26. The ring surface 26 forms a sliding surface for the coins.
An exit 20 for the coins is formed at a part of base plane 22 which is surrounding this ring 26. This is an interruption of the indent surface 23. A guide pin 27 for releasing the coin is placed near the coin exit 20. The guide pin 27 is positioned to project at the inside margin of ring 26 for a spring (not shown). A part of the base plane 22 which forms the coin exit 20 is formed by means of metallic adjustment board 29. This triangular adjustment board 29 is fixed by a screw and can be changed, when the coin size/type is changed. An appropriate adjustment board 29 may be replaced with an new appropriate adjustment board 29 to change the size/type of the coin. At the central portion of indent surface 23, a hole 25 is provided. The hole receives penetrating rotating shaft 36 shown in FIG. 5.
At the center of
On the underside of disk 31 two projection divisions 33 are formed for issuing the coin (see FIG. 5). Each projection division 33 is formed so that it may act appropriately corresponding to each open hole 32, respectively. Further, on projection division 33, arc grooves 34 are provided for passing through the guide pin 27 (see FIG. 2). A small circular and metallic axial plate 35, which is shown at the lower part on
A short and metallic rotating shaft 36, which is shown at the most-lower part in FIG. 5, is fixed into the center hole of axial plate 35, by means of staking, etc. The axial plate 35 is fixed on the underside of disk 31 by screws (not shown) via existing screw holes 39 shown in
Each of three support tips 53 of bearing 52 is fixed on the back or lower surface of base plane 22. The bearing 52 freely rotatable retains the rotating shaft 36. More particularly, each of the support tips 53 of the bearing 52 is fixed by means of screw holes 55 (see
An assembly with a rectangular base, which is shown at the lower part of
A shaft gear 60, which engages with a helical gear 51, extends up at the edge part of base plate portion 62 and is mounted freely rotatable as seen in FIG. 7. At the corner of base plate portion 62 between this shaft gear 60 and standing portion 63, a stepped spur gear 65 is freely rotatably arranged. In addition, a stepped gear 66 is arranged extending in a level manner and freely rotatable, nearly at the center of base plate portion 62. The small gear under stepped spur gear 65 and the large gear under stepped gear 66 are engaged together as shown in FIG. 8. Near the stepped gear 66 at the center of base plate portion 62, a spur gear 67 is disposed and freely rotatably arranged.
The spur gear 67 engages with the small gear on stepped gear 66. A part of the stepped spur gear 65 which is arranged on the corner of base plate portion 62 protrudes therefrom as shown in FIG. 6. That is, a part of stepped spur gear 65 protrudes at the bottom corner portion of the coin hopper.
This embodiment described above is used, as shown on
When stepped the spur gear 65 is rotated, shaft gear 60 is rotated by intervening with stepped gear 66 and spur gear 67 as shown in FIG. 8. When shaft gear 60 is rotated, helical gear 51 is rotated (see FIG. 7). When helical gear 51 is rotated, disk 31 is rotated (see FIG. 9). As disk 31 rotates, the coins (not shown) with in the open holes 32 are discharged to the exit 20 (see FIG. 2). That is, the coins which fell into open holes 32 are pushed to the direction of exit 20, by means of projection part 33. The coin which is pushed by projection part 33 of disk 31 is discharged from exit 20, by means of guide pin 27.
As two open holes 32 are provided in the practical example, one hole is filled with a coin while the coin remains in the other hole. Only one open hole 32 may be formed in disk 31.
As an example of this another embodiment of the invention is provided with the structure as discussed above wherein as disk 31 as shown in
Still, the small hemispherical protrusion 37 on the upper surface of disk 31 is for stirring the coins. The protrusion 37 is fixed on the disk 31, for example, by a screw connection (not shown). Also, though two open holes 32 were made in the practical example, it is of course possible for three and more open holes 32 to be formed. In this case, though the illustration was omitted, three and more open holes 32 may be formed to be at regular intervals around the rotation axis 30 of disk 31. Also, disk 31 is manufactured from metallic thick plate in the practical example. The disk 31 may be made of worked sheet metal or the like. The disk 31 may be made from a synthetic resin molded product and the abrasion position may be covered with a metallic thin plate. Though gears of the practical example are made as synthetic resin molded products, it is of course possible to make the gears from a metallic thin sheet.
As described above, this invention provides the ability to decrease the number of open holes for coin acceptance of the disk for coin emission. The effect of this is a simplified structure for a coin hopper and a miniaturization of the dimensions of the coin hopper. The invention presents the advantage that the size of the whole coin hopper can be very much reduced.
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
2000-321537 | Oct 2000 | JP | national |
This is a Divisional of application Ser. No. 09/982,706 filed Oct. 18, 2001, now U.S. Pat. No. 6,695,690 and the entire disclosure of this prior application is considered to be part of the disclosure of the accompanying application and is hereby incorporated by reference therein.
Number | Name | Date | Kind |
---|---|---|---|
4881919 | Dabrowski | Nov 1989 | A |
4997405 | Dabrowski | Mar 1991 | A |
5017176 | Swierczek | May 1991 | A |
5098339 | Dabrowski | Mar 1992 | A |
5316517 | Chiba et al. | May 1994 | A |
5330384 | Shapley et al. | Jul 1994 | A |
5607352 | Tani | Mar 1997 | A |
6273809 | Bell et al. | Aug 2001 | B1 |
Number | Date | Country |
---|---|---|
0044 640 | Jan 1982 | EP |
0 831 430 | Mar 1998 | EP |
3-130893 | Jun 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20040005852 A1 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09982706 | Oct 2001 | US |
Child | 10423446 | US |