This application claims priority to European application EP 131601197, filed Mar. 20, 2013, the contents of which are hereby incorporated herein by reference in their entirety.
The disclosure relates to a mobile drilling apparatus for producing bores in the ground.
From DE 36 25 577 A1 a small drilling apparatus is known for producing bores in the ground. The small drilling apparatus has a drill mast, on which a drill slide is vertically guided, a feed device, connected detachably to the drill slide, a drill drive, a rope winch with a rope and a rope guide via a diverting device at the upper end of the drill mast.
From DE 1 483 853 A1 a drill rig with a mast, held adjustably concerning its inclination or angular position, and drive means for a drill tool or drill rods, is known.
From the product leaflet “KR 702-1” of the company Klemm Bohrtechnik a small drilling apparatus is known, which has a telescopic drill mast.
Especially in tight spaces, for example in rooms or in corridors, which are limited by their room width or room height, it is difficult to carry out ground bores. To adapt the drill rod length to the room height, it can be necessary, to exchange the drill mast, which means a considerable effort for the retooling.
Starting therefrom, a small drilling apparatus is disclosed, which enables a variable adaptation to different space conditions, such as passing through width or room height without retooling.
A solution is a small drilling apparatus for producing bores in the ground, comprising: a main carrier, a telescopic mast with an adjustable length, and a rotating device, by which the telescopic mast is pivotable relative to the main carrier around a vertical axis (A1). The drilling apparatus may also be referred to as drill rig.
According to the present disclosure, a drill tool attached to the telescopic mast can quickly be moved into different drill positions because of the combination of telescopability and pivotability of the mast around a vertical axis. Thus bores close to building walls can be produced with the small drilling apparatus, without having to move the drill rig. Because of the telescopability of the mast, longer drill rods can be used, so that the setting up time and thus the drill time can overall be reduced.
According to the present disclosure, a small drilling apparatus has relatively compact dimensions, so that it can be used in tight space conditions. The dimensions of the small drilling apparatus are selected such, that it can be moved through doors with standard dimensions. In one example, the small drilling apparatus has a maximum width of 760 mm and a maximum height of 1900 mm in the folded-in position of the individual assembly units. Thus, the device can be used in buildings, for example for producing foundation underpinnings For this, the drilling apparatus is moved into the building to the required position. Then, it drills through the foundation of the building and a bore is sunk into the ground arranged below. Then a curable suspension is injected through the drill rods into the ground. According to an example, the small drilling apparatus is constructed as a mobile device, i.e. a self-propelled vehicle with a drive for moving.
According to one example, the length of the telescopic mast is continuously adjustable such, that drill rods with a length of 0.5 m up to a maximum of 2.5 m can be accommodated, wherein in principle also other lengths may be considered. For producing bores with a depth, which is larger than the length of the drill rod, several drill rod elements are connected to each other and are sunk one after the other, until the required overall depth is achieved.
The telescopic mast is rotatable relative to the main carrier, starting from a center position, around the vertical axis of rotation across an angle range of up to ±90°. In the center position, the telescopic mast is positioned substantially in the center plane of the drilling apparatus, whereas the telescopic mast is moved out of the center plane in the pivoted position. When the telescopic mast is aligned vertically, the distance of the axis of rotation of the rotary head to the vertical pivot axis is larger than the largest half-width of the drilling apparatus. In this manner, also bores can be produced laterally next to the drilling apparatus in a position of the telescopic mast, pivoted around the vertical axis. The drilling apparatus does not need to be moved for this.
According to one example, the rotating device, which can also be designated as a first pivot device, has a rotary element as well as a rotary drive, by which the rotary element is rotatingly driveable relative to the main carrier. The rotary drive can be designed in the form of a hydraulic rotary drive, by which the rotary element can be rotated, starting from a center position, clock-wise or anti-clock-wise. In this case, the telescopic mast, when turning clock-wise, is pivoted to the right and, when turning anti-clock-wise, it is turned to the left side of the drilling apparatus. The rotary element carries the telescopic mast, because of which it can also be designated as a support element. The rotary element can have a flange-like plate and, projecting therefrom, two holding portions for supporting the mast assembly. The holding portions can be formed as two side walls which are arranged opposite to each other and extend from the plate.
According to one example, a tilting device is provided, by which the telescopic mast is pivotable around a horizontal tilting axis (A2). The tilting device can also be referred to as a second pivot device and the tilting axis can also be referred to as a second pivot axis. The tilting device is mounted on the rotating device, so that the tilting device rotates with the latter around the vertical axis. The connection is achieved, in one example, via a bearing, through which a tilting element of the tilting device is pivotably supported relative to the rotary element of the rotary device around the horizontal tilting axis. The tilting device comprises further a tilting drive, which is supported relative to the rotary element and serves for pivoting the tilting element.
Furthermore, according to one example, a third pivot device is provided, by which the telescopic mast is pivotable around a third pivot axis (A3), wherein this third pivot axis extends at a right angle to the horizontal tilting axis. The third pivot axis is formed by a pivot bearing on the tilting element, i.e. during the pivoting of the tilting element around the tilting axis (A2), the third pivot axis (A3) is pivoted together with the tilting element.
Through the use of three pivot devices, the telescopic mast can be pivoted around altogether three axes (A1, A2, A3). In this manner, bores with any deliberately selected alignment can be produced or the drill tool can be positioned, without having to move the vehicle. In one example, the pivot device has a carrier element, which is rotatably supported relative to the tilting element around the third pivot axis, as well as a pivot drive, which is supported relative to the tilting element and serves for pivoting the carrier element. The telescopic mast is mounted on the carrier element.
The telescopic mast can be pivoted or tilted, respectively, from a generally horizontal rest position, in which the mast rests on the device, into a for example vertical operational position. The tilting device comprises, in one example, a hydraulic cylinder as a drive, which is arranged with a distance to the tilting bearing, to produce a torque around the tilting axis (A2) when actuated. The hydraulic cylinder is, in one example, connected in an articulated manner via an intermediate element, which is supported in an articulated manner to the rotary element of the rotating device. In this case, a first joint enables a tilting movement of the hydraulic cylinder when tilting the mast around the tilting axis (A2), while a second joint enables the pivoting movement of the hydraulic cylinder during lateral pivoting of the mast around the pivot axis (A3). The hydraulic cylinder is pivotably supported with its second end on the carrier element for the telescopic mast.
In one example, at least one of the rotary drive for the rotating device, the tilting drive for the tilting device and/or the pivot drive for the pivot device are hydraulically actuated, and comprise more particularly one or more hydraulic cylinders.
According to one example, the telescopic mast comprises a first mast portion and a second mast portion, which is telescopic thereto, wherein a first hydraulic cylinder is provided for moving the second mast portion relative to the first mast portion. According to a further example, a slide with a rotary head is mounted for driving the drill rods on the telescopic mast portion, wherein the slide is moveable along the telescopic mast portion by a second hydraulic cylinder. In particular, the first hydraulic cylinder for displacing the telescopic mast portion and the second hydraulic cylinder for displacing the slide are configured such that they move with the same feed rate. This is advantageous for an accurate control of the drill speed as well as the extracting speed, so that a bore can be drilled and a suspension can be injected evenly into the ground at a unitary feed rate.
In one example, the drilling apparatus comprises an independently driveable undercarriage, especially a crawler or chain chassis. The undercarriage is expandable according to an exemplary embodiment in the width direction, wherein each side of the undercarriage can be expandable separately. Because of the expandability, an improved support and an increased stability are achieved during driving.
Support elements, which can be unfolded before the drill procedure and which provide a safe standing of the main carrier during the drill procedure and for a good support, are foldably or hingedly mounted on the main carrier, which is mounted on the carriage. In one example, the front support elements are individually controllable and extendable, each via a respective hydraulic cylinder. The two rear support elements are, in one example, together controllable and extendable via respectively one hydraulic cylinder. These hydraulic cylinders for the rear support elements are connected to each other via a hydraulic duct, so that a hydraulic balancing takes place automatically in the two hydraulic cylinders. Thus, it is prevented, that the small drilling apparatus lifts off on one side during the support procedure at uneven ground conditions.
Following, exemplary embodiments are described by using the drawings.
a is a first side view of a small drilling apparatus for producing bores in the ground.
b is a front view of the small drilling apparatus of
c is a second side view of the small drilling apparatus of
d is a rear view of the small drilling apparatus of
e is a top view of the small drilling apparatus of
a is a side view of the small drilling apparatus of
b is a front view of the small drilling apparatus of
c is a top view of the small drilling apparatus of
a is a side view of the small drilling apparatus according to
b is a front view of the small drilling apparatus of
c is a top view of the small drilling apparatus of
a is a side view of the small drilling apparatus according to
b is a front view of the small drilling apparatus of
a to 1e, which are described together, show a small drilling apparatus 2 for producing bores in the soil. In this disclosure, small drilling apparatus means that the same can drive through doors with standard dimensions. It is especially provided, that a machine width is smaller or equal to 760 mm in the folded condition of the individual machine elements and the maximum height is approximately 1900 mm. In this manner, it is ensured, that the small drilling apparatus 2 can pass through a door opening, so that it is especially also suitable for producing the underpinning of foundations in buildings below the foundations of the building.
The small drilling apparatus 2 comprises a driveable undercarriage 3 with a crawler chassis, respectively carriage. A main carrier 4 is mounted on the undercarriage, which can be supported relative to a stationary ground via in total four support elements 5, 5′, which are each pivotable around a respective vertical axis and adjustable in their heights. In this case, it is provided that the front support elements 5 are individually controllable, without a hydraulic balancing amongst each other. In contrast thereto, the rear support elements 5′ are hydraulically connected to each other, so that these can be extended and refracted together.
A rotating device 6 is mounted on the main carrier 4, with which the telescopic mast 7 is pivotable relative to the main carrier 4 around a vertical axis A1. Furthermore, a control cabinet 8 as well as a measuring system 9 are visible. The small drilling apparatus comprises further measuring devices 10, like a manometer or hydraulic measuring devices for the service drives as well as measuring devices for suspensions injected into the bore, if necessary.
The telescopic mast 7 is adjustable in its length and has for this a first mast portion 11 as well as a second mast portion 12 longitudinally displaceable relative thereto. A head carriage 13 is mounted longitudinally movably on the second mast portion 12, on which a rotary head 14 is mounted for accommodating and driving drill rods. The rotary head 14 can also be referred to as a drill head. The length L7 of the telescopic mast 7 is continuously adjustable such, that drill rods with a length of 0.5 m up to a maximum of 2.0 m can be accommodated.
The tilting drive 16 is formed in the form of a hydraulic cylinder, wherein other tilting drives are not excluded. The hydraulic cylinder 16 is pivotably supported via an intermediate element 24 in an articulated manner around two axes C1, C2 relative to the rotary element 17. The first bearing 20 forms a first joint which enables a pivot movement of the intermediate element 24 relative to the holding elements 19, 19′ around an axis C1, said axis C1 arranged parallel to the horizontal axis A2. A second joint 25 enables a pivot movement of the hydraulic cylinder 16 relative to the intermediate element 24 around a second axis C2, which is arranged at a right angle to the first axis C1. The upper end of the hydraulic cylinder 16 is pivotably supported via a further joint 26 around a pivot axis C3 on the carrier element 27, on which the mast 7 is mounted.
The tilting movement is achieved by extending the hydraulic cylinder 16. As the two bearing points C1 and C3 are arranged distanced from the tilting axis A2, a torque around the tilting axis A2 is produced by extending the hydraulic cylinder 16, which leads to a raising of the carrier element 27 and of the telescopic mast 7 connected thereto. During the raising movement the hydraulic cylinder 16 pivots around the upper and lower bearing assemblies 20, 26. The bearing assembly 20 of the hydraulic cylinder 16 and the bearing assembly 22 of the tilting element 23 are both arranged on the rotary element 17, i.e. on different sides in relation to the vertical axis A1. As a whole, the rotating device 6, the tilting device 15 and the carrier element 27, connected thereto, form an assembly unit, which has only one connection point relative to the undercarriage, namely the rotating device.
The carrier element 27 is pivotably supported in relation to the tilting element 23 by a pivot device 28 around a pivot axis A3. The pivot axis A3, which extends at a right angle to the horizontal tilting axis A2, is formed by a pivot bearing 36 between the carrier element 27 and the tilting element 23. For pivoting the carrier element 27 around the bearing 36, a pivot drive 29 is provided, which mainly comprises a hydraulic cylinder. A first end of the hydraulic cylinder 29 is pivotably supported on the tilting element 23 by a bearing assembly 30. The second end of the hydraulic cylinder 29 is pivotably supported on the carrier element 27 by a bearing assembly 32. By an extending movement of the hydraulic cylinder 29, the carrier element 27 is moved clockwise relative to the tilting element 23. By retracting the hydraulic cylinder 29, the carrier element 27 is moved anti-clockwise in opposite direction of rotation.
The pivot movement is achieved by extending the hydraulic cylinder 29. As the two bearing assemblies 30, 32 are arranged distanced to the pivot axis A3, a torque around the pivot axis A3 is produced by extending or retracting the hydraulic cylinder 29, which leads to a pivoting of the carrier element 27 and of the telescopic mast 7 connected thereto. When extending the hydraulic cylinder 29, the carrier element 27 is pivoted clockwise, when seen in driving direction of the drilling apparatus; when retracting it is pivoted anti-clockwise. The point of attack of the bearing 30 is arranged on a radial projection on the pivot element 23. The pivot axis A3 extends at a right angle to the tilting axis A2, i.e.—in vertical operational position of the telescopic mast 7—with a small distance above the tilting axis A2. When the rotating device is not activated, i.e. the mast assembly being in a straight forward position (α=0°), the tilting axis A2 is positioned between the axis of rotation A1 and a pivot plane, which is formed by the pivot bearing 36 between the tilting element 23 and the support element 27.
The first mast portion 11 is held longitudinally displaceably via a guiding mechanism 31 on the carrier element 27. For moving the mast portion 11, respectively the telescopic mast 7, relative to the carrier element 27, a servo drive 34 is provided, which is mounted at the upper end on the mast portion 11 and is supported with a lower end relative to the carrier element 27. The telescopic second mast portion 12 is mounted longitudinally displaceably on the first mast portion 11, which again supports the slidable carriage 13 of the rotary head 14. The two mast portions 11, 12 are formed as support profiles.
a to 3c, which are described together, show the small drilling apparatus 2 in an operational position, in which the tilting element 23 and therewith the carrier element 27 as well as the mast 7 are pivoted around the tilting axis A2 by an angle β of 90° from the horizontal. In this position, the mast 7 has a vertical alignment. The carriage 13 is in an upper position, so that drill rods 33 (shown in a dotted line) can be accommodated in the rotary head 14. In
In
a to 4c, which are described in the following together, show the drilling apparatus 2 in a position with the telescopic mast 7 pivoted clockwise by an angle α of 90° relative to the position shown in
The comparison of
a and 6b are described in the following together. They show the drilling apparatus 2 in a position, corresponding to that of
Number | Date | Country | Kind |
---|---|---|---|
13160119.7 | Mar 2013 | EP | regional |