This invention relates to a small electric appliance such as an electric shaver or an electric toothbrush, having a drive mechanism for generating an oscillatory motion.
Devices have been developed for creating oscillatory motion in phase opposition in dry shaving apparatus. For example, DE 1 151 307 A describes an oscillating armature drive for dry shaving apparatus with reciprocating working motion. The oscillating armature drive includes a U-shaped electromagnet formed fast with the housing of the shaving apparatus. Arranged in the proximity of the poles of the stationary electromagnet are a working armature and on either side of the working armature in mass symmetry a respective oscillatory compensating armature.
In operation, the working armature, which drives the shaving cutter, oscillates parallel to the pole faces of the electromagnet, and the compensating armatures perform an oscillatory motion in phase opposition.
Another example, DE 196 80 506 T1 discloses an electric shaving apparatus having a linear oscillating motor with a stationary electromagnet and several movable components that are set in oscillation in phase opposition to each other by means of the electromagnet. The electromagnet is fixedly screwed to the chassis of the shaving apparatus. The movable components are movably suspended on the chassis by means of a leaf spring. The leaf spring has a plurality of slits to enable the individual movable components to move in relatively opposing directions.
Various aspects of the invention feature a small electric appliance with a drive mechanism for generating an oscillatory motion of at least one working unit of the small electric appliance. The drive mechanism has a first drive component, a second drive component, and a coil for producing a magnetic field that extends from the first drive component and acts on the second drive component that is movably arranged in the small electric appliance, in such a way that the second drive component is set in an oscillatory motion. The first drive component is movably arranged in the small electric appliance in order to execute an oscillatory motion in phase opposition to the second drive component, and the drive mechanism is fastened to the small electric appliance by means of at least one first spring element.
As the result of the phase opposition in the oscillatory motion of the two drive components, a significantly higher relative speed of the drive components is achieved than with a conventional drive in which only one drive component moves and the other drive component is at rest. As the efficiency of such drives increases with the relative speed of the drive components, it is possible to achieve higher degrees of efficiency with the drive mechanism being disclosed than with comparable drives known in the art. The suspension by means of a spring element is practically friction free. In addition, the spring element largely decouples the remaining parts of the small appliance, in particular the housing, from the drive mechanism in terms of oscillations.
The first drive components and the second drive component may be interconnected by means of at least one second spring element. This enables a largely friction-free relative movement of the two drive components. At the same time the restoring forces required for operating the drive mechanism are also generated. The spring constant of the second spring element is may be greater than the spring constant of the first spring element. This enables, on the one hand, a relatively stiff coupling between the two components and, on the other hand, a relatively slack coupling of the drive mechanism to the housing of the small appliance.
In one embodiment of the small appliance, the first and/or the second spring element is/are constructed as a leaf spring. A leaf spring is elastically yielding in respect of only one spatial direction. In respect of the two other spatial directions it acts like a rigid body and may thus perform additional static functions in these spatial directions. Other advantages of the leaf spring are that its space requirements are extremely low and it is available as a low-cost item.
The first and the second spring element may be constructed as an integral unit. This enables the number of individual parts of the small appliance to be reduced. In particular, the first spring element and the second spring element may be constructed as a common leaf spring in the form of a cross.
The second spring elements may be arranged in stack form one above the other. The advantage of this arrangement is that very high spring constants and hence a very stiff coupling of the two drive components can be realized. To keep friction as low as possible, it is an advantage in this context to provide spacers for maintaining the second spring elements in spaced relation to each other.
Provision may be made for a third spring element to define a position of rest for the drive mechanism.
In a another embodiment, the mass centers of gravity of the first drive component and of the second drive component, including parts co-moving with the first drive component or the second drive component, move on a common straight line. It is thereby possible to prevent the generation of a resulting angular momentum. Furthermore, the drive mechanism is preferably constructed such that the linear momentums of the first drive component and of the second drive component, including parts co-moving with the first drive component or the second drive component, are opposite and equal so that no linear momentum is generated. Such provisions make it possible to dimension the second spring element very weakly and hence to accomplish a nearly complete decoupling of the drive mechanism from the housing of the small appliance.
At least one of the two drive components may have one or more permanent magnets. Furthermore, at least one of the two drive components may have a core around which the coil is wound. With this arrangement it is possible, with relatively small dimensions, to obtain a powerful drive whose power consumption is sufficiently low to permit, for example, a battery-powered operation of the small electric appliance.
Another embodiment is directed to an electric hair cutting appliance. In this embodiment a pair of hair cutting elements includes a set of cutting blades. The hair cutting elements are driven by a drive mechanism. The drive mechanism comprises two drive components. Each of the drive components carries one of the hair cutting elements. A coil is used to produce a magnetic field that extends between the first and second drive components. This magnetic field acts on the second drive component is set in an oscillatory motion. Further, the first drive component executes an oscillatory motion in phase opposition the said second drive component. While both the first and second drive components execute their respective motion an air gap between the two drive components remains essentially constant.
The present invention will be explained in the following with reference to the embodiments illustrated in the accompanying drawings. The embodiments relate in each case to an electric shaver. However, it will be understood that the concepts disclosed herein are also suitable for utilization in connection with other small electric appliances such as an electric toothbrush.
Like reference symbols in the various drawings indicate like elements.
To start and maintain the oscillations, an electric current is caused to flow through the coils 5. The coils 5 act as electromagnets and, assisted by the iron core 3, produce a magnetic field that acts on the permanent magnets 6 and results in a relative movement of the coils 5 and the permanent magnets 6. Through suitable activation it is possible to reverse the polarity of the magnetic field produced with the coils 5, causing the first and the second motor component 1 and 2 to be set in oscillations of opposite phase. In this context, both the first motor component 1 and the second motor component 2 moves, i.e., the linear motor has no stator which is used to drive a rotor, but two counter-oscillating motor components 1 and 2 which drive each other.
One of these motor components 1 or 2 corresponds to the rotor of a conventional linear motor. The other motor component performs the functions of, but it is not static like the stator of a conventional linear motor. Under otherwise identical conditions, this results, in the first and second motor component 1 and 2 of the linear motor moving at a relative speed that is twice as high as the relative speed of a stator and a rotor of a conventional linear motor. Thus, a relatively high degree of efficiency can be achieved. The frequency of the oscillating movements of the two motor components 1 and 2 is predetermined by the activation of the coils 5 and set so that it corresponds to the resonant frequency of the oscillatory system formed by the two motor components 1 and 2 and the leaf springs 9. Under resonant conditions, there results a highly robust oscillatory action, which requires comparatively little energy input.
The leaf springs 9 shown in
Essentially, the design of the motor components 1 and 2 corresponds to
Four separate oscillating bridges 17 are provided to suspend the linear motor on the housing 10. The oscillating bridges 17 are constructed as strips with a tapering section and are generally fabricated from a spring steel, similar to the leaf springs 9.
At one end the oscillating bridges 17 are screwed to one of the motor components 1 or 2 together with the leaf springs 9. At the other end the oscillating bridges 17 are screwed to the housing 10.
In operation, the two motor components 1 and 2, and with them the shaving cutters 12, perform each a linear oscillation in phase opposition to each other. As this occurs, the two stacks of leaf springs 9 are subjected to continuous elastic bending, causing their narrow sides to be deflected in opposite direction, with the direction of the deflection reversing periodically. With the deflection of the narrow sides of the leaf springs 9, the ends of the oscillating bridges 17 fastened thereto are also deflected periodically. When the oscillating bridges 17 are very weakly dimensioned, these deflections are practically not transmitted to the housing 10. In this case, however, the oscillating bridges 17 are also not in a position to absorb an appreciable angular or linear momentum. Therefore, the geometry of the linear motor is to be designed to prevent as far as possible a resulting angular momentum and as far as possible a resulting linear momentum from occurring. This can be accomplished in that the mass center of gravity of the first motor component 1, including all co-moving parts, and the mass center of gravity of the second motor component 2, including all co-moving parts, move along the same straight line. Furthermore, the linear momentums of the first and the second motor components 1 and 2, including the respective co-moving parts, should be opposite and equal.
Number | Date | Country | Kind |
---|---|---|---|
102 42 091 | Sep 2002 | DE | national |
This application is a continuation of PCT application number PCT/EP2003/009152, filed Aug. 19, 2003, which claims priority from German application serial no. 102 42 091.2, filed Sep. 11, 2002. The entire contents of the above PCT application are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3296468 | Townshend | Jan 1967 | A |
6559563 | Shimizu et al. | May 2003 | B1 |
7015602 | Kraus et al. | Mar 2006 | B2 |
7065877 | Stevens | Jun 2006 | B2 |
7180254 | Klemm et al. | Feb 2007 | B2 |
20020047325 | Hente | Apr 2002 | A1 |
Number | Date | Country |
---|---|---|
265598 | Dec 1949 | DE |
1 463 988 | Jul 1969 | DE |
1463988 | Jul 1969 | DE |
1 162 721 | Dec 2001 | EP |
1 193 844 | Mar 2004 | EP |
2 212 673 | Jul 1974 | FR |
Number | Date | Country | |
---|---|---|---|
20050212633 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP03/09152 | Aug 2003 | US |
Child | 11078096 | US |