The present invention relates generally to lighting techniques. More particularly, the present invention provides a method and device using a plasma lighting device having a small form factor and durability for indoor and more preferably street lamp applications in high crime rate regions or other regions that lead to breakage or damage of convention street lamps. Merely by way of example, the street lamp applications can include various configurations for parking lots, buildings, stadiums, fields, industrial regions, parks, beaches or water ways, and others.
From the early days, human beings have used a variety of techniques for lighting. Early humans relied on fire to light caves during hours of darkness. Fire often consumed wood for fuel. Wood fuel was soon replaced by candles, which were derived from oils and fats. Candles were then replaced, at least in part by lamps. Certain lamps were fueled by oil or other sources of energy. Gas lamps were popular and still remain important for outdoor activities such as camping. In the late 1800, Thomas Edison, who is one of the greatest inventor of all time, conceived the incandescent lamp, which uses a tungsten filament within a bulb, coupled to a pair of electrodes. Many conventional buildings and homes still use the incandescent lamp, commonly called the Edison bulb. Although highly successful, the Edison bulb consumed much energy and was generally inefficient.
Fluorescent lighting replaced incandescent lamps for certain applications. Fluorescent lamps generally consist of a tube containing a gaseous material, which is coupled to a pair of electrodes. The electrodes are coupled to an electronic ballast, which helps ignite the discharge from the fluorescent lighting. Conventional building structures often use fluorescent lighting, rather than the incandescent counterpart. Fluorescent lighting is much more efficient than incandescent lighting, but often has a higher initial cost.
Conventional lighting and more particularly sodium lamps have been used for outdoor lighting applications. Such outdoor applications include parking lots, streets, stadiums, buildings, and others. Although highly successful, street lamps and in particular sodium lamps are often prone to breakage and damage from mechanical shock. Such mechanical shock may be derived from an automobile crashing into a lamp post or multiple types of vandalism. As an example, street gangs and the like may often damage street lamps using hard objects such as rocks or even bullets shot from a firearm. In certain high crime areas, street lamps are often broken and never replaced since it is difficult to maintain them in working order.
From the above, it is seen that improved techniques for lighting are highly desired.
According to the present invention, techniques related generally to lighting are provided. More particularly, the present invention provides a method and device using a plasma lighting device having a small form factor and durability for indoor and more preferably street lamp applications in high crime rate regions or other regions that lead to breakage or damage of convention street lamps. Merely by way of example, the street lamp applications can include various configurations for parking lots, buildings, stadiums, fields, industrial regions, parks, beaches or water ways, and others.
In a specific embodiment, the present invention provides a shock resistant outdoor lamp comprising a lamp apparatus, which is capable of withstanding an impact of a bullet or other hard object. In a specific embodiment, the apparatus has a housing having an inner region and an outer region. An inner cavity is formed from the inner region. A reflector is provided within a portion of the inner region. An rf power source is disposed within the inner cavity. In a specific embodiment, the rf power source is coupled to an AC source. In a preferred embodiment, the lamp has a small form factor bulb assembly coupled to the rf power source. The bulb assembly includes a base member, which has an outer region capable of being coupled to first AC potential and an inner region capable of being coupled to a second AC potential. The bulb assembly also has a support body coupled to the base member and a shock resistant gas filled vessel having a transparent or translucent body having an inner surface and an outer surface and a sealed cavity formed within the inner surface. In a preferred embodiment, the gas filled vessel includes a first end region, a second end region, and the length defined between the first end region and the second end region. The small form factor is provided by an overall length ranging from about 3 millimeters to about 15 millimeters characterizing the gas filled vessel and a thickness of at least about 0.5 millimeters to about 2 millimeters characterizing a distance between the inner surface and the outer source of the transparent or translucent body in a specific embodiment. In a specific embodiment, the gas filled vessel can have a diameter ranging from about 1 millimeter to about 15 millimeters, but can be others. Of course, there can also be other dimensions depending upon the specific application. In a specific embodiment, at least one or more coupling members is operably coupled to the gas filled vessel such that the outer surface of the gas filled vessel is substantially free from mechanical damage caused with the one or more coupling members and substantially free from any openings in the thickness. In a preferred embodiment, the apparatus has a transparent cover comprising a polycarbonate material, which is capable of withstanding an impact of bullet from a conventional handgun or rifle, such as calibers ranging from about 22, 38, 45, 44 Magnum, 357 Magnum, and 7 mm, 9 mm, and others, including shot shells and/or pellets. A supporting member is coupled the housing. The supporting member has a vertical height of greater than fifteen feet, but can be others.
In an alternative specific embodiment, the present invention provides a shock resistant outdoor lamp comprising a lamp apparatus, which is capable of withstanding an impact of a bullet or other hard object. In a specific embodiment, the apparatus has a housing having an inner region and an outer region. An inner cavity is formed from the inner region. A reflector is provided within a portion of the inner region. An rf power source is disposed within the cavity. In a specific embodiment, the rf power source is coupled to an AC source. In a preferred embodiment, the lamp has a small form factor bulb assembly coupled to the rf power source. The bulb assembly includes a base member, which has an outer region capable of being coupled to first AC potential and an inner region capable of being coupled to a second AC potential. The bulb assembly also has a support body coupled to the base member and a shock resistant gas filled vessel having a transparent or translucent body having an inner surface and an outer surface and a cavity formed within the inner surface. In a preferred embodiment, the gas filled vessel includes a first end region, a second end region, and the length defined between the first end region and the second end region. In a specific embodiment, the small form factor is provided by an overall length ranging from about 3 millimeters to about 15 millimeters characterizing the gas filled vessel and a thickness of at least about 0.5 millimeters to about 2 millimeters characterizing a distance between the inner surface and the outer source of the transparent or translucent body. In a specific embodiment, the gas filled vessel can have a diameter ranging from about 1 millimeter to about 15 millimeters, but can be others. Of course, there can also be other dimensions depending upon the specific application. In a specific embodiment, at least one or more coupling members is operably coupled to the gas filled vessel such that the outer surface of the gas filled vessel is substantially free from mechanical damage caused with the one or more coupling members and substantially free from any openings in the thickness.
Benefits are achieved over pre-existing techniques using the present invention. In a specific embodiment, the present invention provides a method and apparatus using a small form factor electroless bulb for a street lamp application requiring shock or impact resistance. In a preferred embodiment, the present invention provides a method and configurations with an arrangement that provides for improved manufacturability as well as design flexibility. Other embodiments may include a substantially impact resistant cover, which would also help make the present apparatus shock proof or generally shatterproof upon impact with certain objects. In a preferred embodiment, the present apparatus can be used in a geographic area having high rates of vandalism without compromising the present apparatus. In a specific embodiment, the present apparatus and bullet proof fixture can also lead to lower crime rates. In a preferred embodiment, the bulb is substantially free from internal electrodes and/or external mechanical stress that leads to breakage and the like. Depending upon the embodiment, one or more of these benefits may be achieved. These and other benefits may be described throughout the present specification and more particularly below.
The present invention achieves these benefits and others in the context of known process technology. However, a further understanding of the nature and advantages of the present invention may be realized by reference to the latter portions of the specification and attached drawings.
According to the present invention, techniques related generally to lighting are provided. More particularly, the present invention provides a method and device using a plasma lighting device having a small form factor and durability for indoor and more preferably street lamp applications in high crime rate regions or other regions that lead to breakage or damage of convention street lamps. Merely by way for parking lots, buildings, stadiums, fields, industrial regions, parks, beaches or water ways, and others.
As shown, the lamp and plate are often prone to damage or breakage. That is, hard objects such as a rock 19 or ball impacts the plate, which can often break and/or cause damage to the lamp. As shown, vandals 15 often throw rocks or shoot out the plate and lamp. A firearm 21 is often a choice apparatus for shooting, although there can be others. In city areas with high crime rates, street lamps are often broken from vandalism causing even higher rates of crime and other socially undesirable activities. Additionally, in certain suburban or country areas, street lamps are also damaged from vandalism leading to more vandalism and other undesirable activities. These and other limitations with conventional street lamps have been overcome by way of the present street lamp and related methods, which have been described throughout the present specification and more particularly below.
In a specific embodiment, the head structure also includes a plate 119 covering the lamp 110. In a specific embodiment, the plate is suitable made of a durable material, such as polycarbonate or other like materials. In a specific embodiment, the plate is optically transparent, but has suitable strength upon impact. The plate can be a single layered structure, molded, extruded, or a single homogeneous material, including any combinations and the like. In a specific embodiment, the term “bullet proof” glass is often a type of polycarbonate material that is suitable for the present small form factor apparatus. Further details of the present lamp are provided below.
In a specific embodiment, the head is mounted to a pole 111 coupled to a base 13 that is secured to a ground or other building structure. In a specific embodiment, the pole can be made of a metal material, wood, or plastic, as well as others. In a specific embodiment, the pole has a length of at least about 15 feet or others. In other embodiments, the pole can be replaced by a building structure or a combination of a mounting member and the building structure. The building structure can be a house, commercial building, bill board, stadium, tree, pole, bridge, street, or others. Of course, there can be other variations, modifications, and alternatives.
As shown, the present lamp and plate are often not prone to damage or breakage. That is, hard objects such as a rock 119 or ball impacts the plate, which remains intact and does not break and/or cause damage to the lamp. As shown, vandals 115 would attempt to throw rocks or shoot out the plate and lamp, but will be generally unsuccessful. A firearm 121 is often a choice apparatus for shooting, although there can be others. In city areas with high crime rates, street lamps would not be broken from certain types vandalism and remain working and intact. Additionally, in certain suburban or country areas, street lamps would also not be damaged from certain types of vandalism leading to more vandalism and other undesirable activities. Further details of the present street lamp can be found throughout the present specification and more particularly below.
In a preferred embodiment, the small form factor lamp is an electroless lamp or the like. The small form factor lamp is often an electroless lamp such as those described in U.S. patent application Ser. No. 12/484,933 (Attorney Docket No. 027562-00011US), filed on Jun. 15, 2009 and PCT Application Serial No. PCT/US2009/048171, filed on Jun. 22, 2009, commonly assigned, and hereby incorporated by reference. Alternatively, such lamp can be described in U.S. Pat. No. 6,737,809, among others, which are incorporated by reference according to a specific embodiment. As shown, the lamp occupies a small spatial region of the head structure. In a specific embodiment, the present lamp often has a length of 10 millimeters and a width of 3 millimeter, which are much smaller than conventional sodium based lamp devices. In a preferred embodiment, the small form factor lamp is generally shock proof since it is free from internal electrodes, has a small form factor, and no external mechanical stress/stain. Unlike the conventional lamps, the present small form factor lamp is generally not fragile and not prone to breakage upon impact.
In a specific embodiment, the head structure also includes a bullet proof plate 411 covering the lamp 401. In a specific embodiment, the plate is suitable made of a durable material, such as polycarbonate or other like materials. In a specific embodiment, the plate is optically transparent, but has suitable strength upon impact. The plate can be a single layered structure, molded, extruded, or a single homogeneous material, including any combinations and the like. In a specific embodiment, the term “bullet proof” glass is often a type of polycarbonate material that is suitable for the present small form factor apparatus. In one or more embodiments, the bullet proof glass is often constructed using a strong but transparent material such as polycarbonate thermoplastic or by using layers of laminated glass. The desired result is a material with an appearance and light-transmitting behavior of standard glass but offers varying degrees of protection from small arms fire. See, for example, http://en.wikipedia.org/wiki/Bulletproof_glass#Recent_advances_in_bullet-resistant—glass_composition. Of course, there can be other variations, modifications, and alternatives.
One of ordinary skill in the art would recognize other variations, modifications, and alternatives. As shown, failure is provided on the vertical axis, while impact is on the horizontal axis. As can be seen, failure for the conventional lamp occurs at a selected region, which is often from impact of hard objects, bullets, or other things. Failure for the present lamp occurs at a much higher impact or may not occur at all. Indications for impacts from bullets fired from a 22 caliber rifle, 12 gauge shot gun, automobiles, and rocks are also illustrated. Of course, there can be other variations, modifications, and alternatives.
While the above is a full description of the specific embodiments, various modifications, alternative constructions and equivalents may be used. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended claims.
This application claims priority to U.S. Provisional Application No. 61/158,6181, filed on Mar. 9, 2009, commonly assigned, and incorporated by reference herein for all purpose. This application is also related to U.S. patent application Ser. No. 12/484,933 (Attorney Docket No. 027562-00011US), filed on Jun. 15, 2009 and PCT Application Serial No. PCT/US2009/048171, filed on Jun. 22, 2009, commonly assigned, and incorporated by reference herein for all purpose.
Number | Date | Country | |
---|---|---|---|
61158618 | Mar 2009 | US |