Small form factor fiber optic connector with resilient latching mechanism for securing within a hook-less receptacle

Information

  • Patent Grant
  • 11340406
  • Patent Number
    11,340,406
  • Date Filed
    Monday, April 20, 2020
    4 years ago
  • Date Issued
    Tuesday, May 24, 2022
    2 years ago
Abstract
A small form factor optical connector holding two or more LC-type optical ferrules is provided. The optical connector includes an outer body, an inner front body accommodating the two or more LC-type optical ferrules, a pair a resilient latches and corresponding recess for the resilient latch, ferrule springs for urging the optical ferrules towards a mating receptacle, and a back body for supporting the ferrule springs. The outer body and the inner front body are configured such that four LC-type optical ferrules are accommodated in a small form-factor pluggable (SFP) transceiver footprint or eight LC-type optical ferrules are accommodated in a quad small form-factor pluggable (QSFP) transceiver footprint. A mating receptacle (transceiver or adapter) includes a receptacle hook and a housing with an opening that accommodates the receptacle hook in a flexed position as the optical connector makes connection with the mating receptacle by introducing the receptacle hook into an optical receptacle hook recess.
Description
FIELD OF THE INVENTION

The present disclosure relates generally to ultra-small form factor optical connectors secured with an adapter or optical transceiver both generally called a receptacle.


BACKGROUND

The prevalence of the Internet has led to unprecedented growth in communication networks. Consumer demand for service and increased competition has caused network providers to continuously find ways to improve quality of service while reducing cost.


Certain solutions have included deployment of high-density interconnect panels. High-density interconnect panels may be designed to consolidate the increasing volume of interconnections necessary to support the fast-growing networks into a compacted form factor, thereby increasing quality of service and decreasing costs such as floor space and support overhead. However, room for improvement in the area of data centers, specifically as it relates to fiber optic connections, still exists: For example, manufacturers of connectors and adapters are always looking to reduce the size of the devices, while increasing ease of deployment, robustness, and modifiability after deployment. In particular, more optical connectors may need to be accommodated in the same footprint previously used for a smaller number of connectors in order to provide backward compatibility with existing data center equipment. For example, one current footprint is known as the small form-factor plug able transceiver footprint (SFP). This footprint currently accommodates two LC-type ferrule optical connections. However, it may be desirable to accommodate four optical connections (two duplex connections of transmit/receive) within the same footprint. Another current footprint is the quad small form-factor pluggable (QSFP) transceiver footprint. This footprint currently accommodates four LC-type ferrule optical connections. However, it may be desirable to accommodate eight optical connections of LC-type ferrules (four duplex connections of transmit/receive) within the same footprint.


In communication, networks, such as data centers and switching networks, numerous interconnections between mating connectors may be compacted into high-density panels. Panel and connector producers may optimize for such high densities by shrinking the connector size and or the spacing between adjacent connectors on the panel. While both approaches may be effective to increase the panel connector density, shrinking the connector size and/or spacing may also increase the support cost and diminish the quality of service.


In a high-density panel configuration, adjacent connectors and cable assemblies may obstruct access to the individual release mechanisms. Such physical obstructions may impede the ability of an operator to minimize the stresses applied to the cables and the connectors. For example, these stresses may be applied when the user reaches into a dense group of connectors and pushes aside surrounding optical fibers and connectors to access an individual connector release mechanism with his/her thumb and forefinger. Overstressing the cables and connectors may produce latent defects, compromise the integrity and/or reliability of the terminations, and potentially cause serious disruptions to network performance.


While an operator may attempt to use a tool, such as a screwdriver, to reach into a dense group of connectors and activate a release mechanism, adjacent cables and connectors may obstruct the operator's line of sight, making it difficult to guide the tool to the release mechanism without pushing aside the adjacent cables. Moreover, even when the operator has a clear line sight, guiding the tool to the release mechanism may be a time-consuming process. Thus, using a tool may not be effective at reducing support time and increasing the quality of service.


SUMMARY OF THE INVENTION

An optical connector holding a ferrule assembly the assembly may contain two or more LC-type optical ferrules or a single optical ferrule, basis with a spring, and each ferrule having one or more optical fiber therein is provided. The optical connector includes an outer body, an inner front body accommodating the optical ferrule assembly, the inner front body has open sidewalls, resilient metal latches configured to be secured between the inner front body and outer housing, ferrule springs for urging the optical ferrules and flanges within the inner body, and a back body for supporting the ferrule springs. The outer body and the inner front body are configured such that four LC-type optical ferrules are accommodated in a small form-factor pluggable (SFP) transceiver footprint or eight LC-type optical ferrules are accommodated in a quad small form-factor pluggable (QSFP) transceiver footprint. A mating receptacle (transceiver or adapter) includes does not have an internal receptacle hook configured, as in U.S. Pat. No. 10,281,669B2 to Takano the subject matter of which is fully incorporated herein by reference, and an outer housing with an opening that accommodates the receptacle hook in a flexed position as the optical connector makes connection with the mating receptacle by introducing the receptacle hook into a receptacle hook recess.


Other aspects and features will be apparent hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a prior art exploded view of an adapter assembly;



FIG. 1B is a perspective side view of an adapter of FIG. 1A;



FIG. 1C is a front view of an adapter of FIG. 1A;



FIG. 1D.1 is a cross-section view along section line A-A of snap-in hooks secured within the adapter of FIG. 1A;



FIG. 1D.2 is a zoomed view of a snap-in hook secured within the adapter port;



FIG. 1D.3 is side view of a snap-in hook;



FIG. 2A is an exploded view of a small form factor connector with a latch recess formed as part of the inner housing configured to be secured within the adapter assembly of FIG. 1A;



FIG. 2B is a perspective view of the FIG. 2A small form connector with a push-pull boot release;



FIG. 3A is a perspective side view of a small form factor connector and housing;



FIG. 3B is a perspective angled view of a small form factor connector and housing;



FIG. 3C is a front view of FIG. 3B assembled;



FIG. 3D is a cross section view along section line B-B of a small form connector;



FIG. 4A is a cross section view along section line C-C of an assembled inner front body with a ferrule assembly;



FIG. 4B.1 is a front view of FIG. 4A along section line A-A;



FIG. 4B.2 is a side view of FIG. 4B.1;



FIG. 4C is a cross-section view along section line C-C of FIG. 4B.1;



FIG. 5A is an exploded view prior to inserting the small form factor connector into the adapter port with latch hooks;



FIG. 5B is a side view of inserting the small form factor connector into the adapter port using the push/pull boot;



FIG. 5C is a cross-section view of the small form factor connector secured or latched within the adapter;



FIG. 5D is across-section view of the small form factor connector release from the adapter;



FIG. 6A is a perspective view of a small form factor connector according to an embodiment of the present invention;



FIG. 6B is an exploded view of FIG. 6A;



FIG. 7A is side view of connector housing and boot of the FIG. 6A connector;



FIG. 7B is a front, side view of FIG. 7A;



FIG. 7C is a front view of FIG. 7A assembled with section line A-A;



FIG. 7D is a cross-section view along section line A-A of FIG. 7C;



FIG. 8A is an exploded view of inner sub-assembly of connector of FIG. 10A without resilient metal latches;



FIG. 8B is front, side view of FIG. 8A assembled along line B-B;



FIG. 8C is a side view of FIG. 8A assembled;



FIG. 8D is a cross-section along line B-B of FIG. 8B;



FIG. 9A is an exploded view of the connector of FIG. 10A with resilient metal latches;



FIG. 9B is a zoomed view of FIG. 9A inner front body with resilient metal latches;



FIG. 9C is an exploded view of FIG. 10A with resilient metal latches;



FIG. 9D is an assembled view of FIG. 10A;



FIG. 10A is a side view of the FIG. 9D;



FIG. 10B is a top view of FIG. 10A with line C-C;



FIG. 10C is a cross-section view along section line C-C of FIG. 10B in a first configuration;



FIG. 10D is a cross-section view along section line CS-C of FIG. 10B in a second configuration;



FIG. 11A is an exploded view of a hook-less adapter and small form factor connector of FIG. 10 prior to insertion into an adapter port;



FIG. 11B is an exploded, side view of FIG. 11A;



FIG. 11C is a cross section view of a partial insertion of the connector of FIG. 10A into a hook-less adapter;



FIG. 12 is a cross section of view the connector of FIG. 10A fully inserted (PI) via the push/pull hoot into a hook-less adapter port;



FIG. 13 is a cross section view of the connector of FIG. 10A being released (PO) using the push/pull boot from a hook-less adapter port, and





Corresponding reference numbers indicate corresponding parts throughout the drawings.


DETAILED DESCRIPTION

This disclosure is not limited to the particular systems, devices and methods described, as these may vary. The terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope.


As used in this document, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. Nothing in this disclosure is to be construed as an admission that the embodiments described in this disclosure are not entitled to antedate such disclosure by virtue of prior invention. As used in this document, the term “comprising” means “including, but not limited to.”


The following terms shall have, for the purposes of this application, the respective meanings set forth below.


A connector, as used herein, refers to a device and/or components thereof that connects a first module or cable to a second module or cable. The connector may be configured for fiber optic transmission or electrical signal transmission. The connector may be any suitable type now known or later developed, such as, for example, a ferrule connector (FC), a fiber distributed data interface (FDDI) connector, an LC connector, a mechanical transfer (MT) connector, a square connector (SC) connector, a CS connector, or a straight tip (ST) connector. The connector may generally be defined by a connector housing body. In some embodiments, the housing body may incorporate any or all of the components described herein.


A “fiber optic cable” or an “optical cable” refers to a cable containing one or more optical fibers for conducting optical signals in beams of light. The optical fibers can be constructed from any suitable transparent material, including glass, fiberglass, and plastic. The cable can include a jacket or sheathing material surrounding the optical fibers. In addition, the cable can be connected to a connector on one end or on both ends of the cable.


Various embodiments described herein generally provide a remote release mechanism such that a user can remove cable assembly connectors that are closely spaced together on a high density panel without damaging surrounding connectors, accidentally disconnecting surrounding connectors, disrupting transmissions through surrounding connectors, and/or the like. Various embodiments also provide narrow-pitch LC duplex connectors and narrow-width multi-fiber connectors, for use, for example, with future narrow-pitch LC SFPs and future narrow width SFPs. The remote release mechanisms allow use of the narrow-pitch LC duplex connectors and narrow-width multi-fiber connectors in dense arrays of narrow-pitch LC SFPs and narrow-width multi-fiber SFPs.



FIG. 1A depicts a prior art adapter (10) configured to receive and secured snap-in hooks (12) with a ferrule alignment sleeve, with one snap-in hook per an adapter port. This forms an adapter port with a hook (12) to receive and secure a small-form factor connector as depicted 2B. FIG. 1B is a top view of the adapter (10) of FIG. 1A through cut-outs (10a) that help to secure snap-in hooks within the adapter port. FIG. 1C is a front view of the snap-in hooks (12) within a port defined by spaced apart inner channels within the outer housing wall of the adapter and section line A-A. FIG. 1D.1 is a cross section along line A-A with snap-in hook clip (16) (refer to FIG. 1D.3) secured by an adapter housing internal rib (14), as depicted in FIG. 1D.2 snap-in hook latches. A set of opposing latch hooks (12a, 12b) secure a connector upon insertion of the connector into a port of the adapter. The snap-in hook assembly of FIG. 1D.3 has flexible latch (18) arms to secure the connector.



FIG. 2A depicts an exploded view of a small form factor connector configured to be secured within the adapter (10) of FIG. Snap-in hook latches are secured within opposing recesses a, b) of the inner front body or housing (refer to FIG. 4A) secured within the sliding outer housing (20). FIG. 2A depicts a strain relief boot (32) with opposing boot hooks (32.1, 32.2) (refer to FIG. 3B) to form a push/pull boot, a crimp ring (30) with heat shrink tubing at a distal end, a back-post and spring (28) pushed configured to accept the crimp ring at a proximal end of the crimp, ring (30), a pair of basis springs (26) to bias forward a corresponding flanged ferrules (24) with at least one optical fiber within, the ferrule, and open sidewall, inner housing (22) that accepts and secured the back-post and spring pusher (28) at a distal end of the inner housing (22) with a pair of opposing protrusions on the back-post secured with a pair of corresponding openings at a distal end of the inner housing (22), and a sliding outer housing (20) that accepts the above mentioned assembly when the push/pull boot is secured to the outer housing at a distal end of the housing. The push/pull boot has a pair of opposing hoot hooks (32.1, 32.2) that are secured within a pair of opposing openings (20.1, 20.2) at the distal of the housing (refer to FIG. 3B), and when the hoot hooks (32.1, 32.2) are secured within the housing openings, the connector assembled as shown in FIG. 2B. FIG. 2B depicts the assembled connector (100) with opposing recesses (38) formed within the inner front body and accessible at a proximal end of the connector, the distal end defined by the push/pull boot with opposing boot hooks (32.1, 32.2). The connector outer housing has opposing alignment keys (35a) that align and guide the connector into an adapter port.



FIG. 3A depicts outer housing (20) (sometimes called a slider outer housing) and strain relief boot (32) (also called a push/pull boot) that is secured by the opposing boot latches (32.1, 32.2) (refer to FIG. 3B) at a proximal end of the push/pull boot into latch openings (20.1, 20.2) at a distal end of the of slider outer housing (20) (refer to FIG. 38). FIG. 3C is a front view of the small form factor connector along section line B-1B, FIG. 3D is a cross-section view, along section line B-B of FIG. 3C after boot is secured to distal end of slider housing (20) and depicts boot latches (32.1, 32.2) within openings at a distal end of sliding outer housing. The assembly connector of FIG. 3D is a push/pull boot connector similar disclosed in U.S. Pat. Application 2019/0243072A1 to Takano, the subject matter of which is fully disclosed in the present invention.



FIG. 4A depicts an exploded view of inner housing (22), flanged ferrules (24), ferrule springs (26) and back body and backpost spring pusher (28), which is the back post to receive the crimp ring to secure the fiber optic cable at a first end or distal end, and a spring push to secure ferrules with bias springs within inner body after assembly at a second end or proximal end. FIG. 4B.1 is a front view of the assembled inner assembly along section line C-C. FIG. 4B.2 is a cross section view along line C-C of FIG. 481FIG. 4C depicts ferrule springs (26a, 26b) compressed under force created by securing backpost spring pusher within inner front body (22) via opposing backpost-spring pusher latches (27a, 27b) within openings at a distal end of inner front body.



FIG. 5A depicts adapter housing (10) with ports (10a-10d) each having snap-in hook assembly secured therein, and prior to insertion of an assembled small form factor connector (100) within an adapter port. FIG. 5B is an exploded view of the adapter (10) with snap-in hook assembly using the push/pull boot to insert the connector (100) into an adapter port. FIG. 5C is the connector inserted into adapter port where the opposing latch hooks (18) are secured with the opposing inner front body recesses secured within the connector housing, thereby latching the connector within the adapter port. FIG. 5D depicts the connector being released from the adapter port when a user pulls distally or rearward on the push/pull boot or strain relief. When the user pulls the push/pull boot in the direction of arrow A or in the distal/rearward direction, the latch hook (12a) is moved out of recess (38), as depicted in the Takano and FIG. 5D.



FIG. 6A depicts assembled small form factor connector (200) according to an embodiment of the present invention. As described in the figures below, the connector outer housing has a pair of opposing openings nearer a proximal end of the outer housing configured to allow pair of resilient latches secured with the inner front body to protrude through openings. The resilient latches protrude through a pair of opposing openings formed in a top wall portion and bottom wall portion of the receptacle housing, as depicted at FIG. 11A. FIG. 6B depicts an exploded view of the small form factor connector (200) depicted in FIG. 8A, further comprises an outer housing (36), an inner front body (38.1) with opposing recesses formed on a top portion (23a) and a bottom portion (23b) of the inner front body (refer to FIG. 8A), the latch holes (38a, 38a) are configured to accept, a resilient latch (42) within the recess. The resilient latch (42) is formed from a metal or a plastic which is characterized by being flexible with breaking when bent from an angle less than ninety (90) degrees about zero (0) degrees relative to a normal formed with the longitudinal bore (L-L′) (refer to FIG. 6B) of the outer housing. The inner front body (38.1) accepts a pair of opposing LC-type optical ferrules (44) biased by a corresponding spring (46) at a distal end of the flanged LC-type optical ferrules. Backpost-spring pusher (48) applies a pre-determined load to ensure the springs bias the LC-type optical ferrules forward. The backpost-spring pusher (48) has a pair of opposing latch hooks (37a, 37b) (refer to FIG. 8A) that are accepted into a pair of opposing latch holes (38a, 38b) formed at a distal end of the inner front body (refer to refer to FIG. 8A). The backpost-spring pusher (48) forms an inner front body assembly or inner housing assembly. Referring to FIG. 6B a crimp ring (51) with a heat shrink tubing is crimped onto a post formed at a distal end of the backpost-spring pusher (48). A push/pull boot, is secured to a distal end of the connector outer housing. As depicted in FIG. 7B, a pair of opposing boot latches (32.1, 32.2) are received in a corresponding latch holes (36a, 36b) at the distal end of the connector outer housing (36). Once the push/pull boot is secured to the outer housing (36), with the inner front body assembly, the small form factor connector (200) is assembled according to the present invention with the resilient latch protruding from the proximal opening formed in the outer housing, as depicted in FIG. 9D.



FIG. 7A depicts an exploded view of connector outer housing (36) positioned to accept push/pull boot (32) at a distal end of the outer housing (36). FIG. 7B depicts opposing boot latches (32.1, 32.2) on the push/pull boot prior to being secured to housing via latch holes (36a, 36b), at a distal end of the outer housing (36), configured to accept and secure the boot latches (32.1, 32.2). FIG. 7C is a cross-section of connector assembly (200) along section line A-A. FIG. 7D depicts angled openings (36c, 33d) for the resilient latches (42) secured to the inner front body. Angled opening (36c, 36d) allows for a full travel of the spring latch (42) without binding or jamming within the connector outer housing (36), and further allows for a reduced profile or extension, of the resilient latch (42) beyond the outer housing itself. The angled surface is less than ninety (90) degrees (40a, 40b) to a normal formed with the longitudinal bore of the connector outer housing.



FIG. 8A depicts an exploded view of inner front body (38.1), flanged ferrules (44) holding a LC-type optical ferrule, ferrule bias springs (46) and backpost-spring pusher (48) with opposing latch hooks (37a, 37b) to secure and compress springs when backpost-spring pusher (48) is secured within the latch holes (38a, 38b) at a distal end of inner front body housing. FIG. 8B is a front view along section line B-B of the inner front body assembled (50). FIG. 8C is a side view of the inner front body assembly with LC-type optical ferrules protruding from within the inner front body, FIG. 81) depicts assembled FIG. 8A. The backpost-spring pusher latch hooks (37a, 37b) secured within latch holes (38a, 38b) at a distal end of inner front body thereby compressing ferrule springs (26a, 26b) and thus ferrules as shown. The backpost-spring pusher compresses the ferrule bias springs to a desired pre-load force necessary to maintain the LC-type optical ferrules in a biased or forward position.



FIG. 9A depicts an exploded view of small form factor connector further illustrating the assembly of the resilient latches (42a, 42b) with the top and bottom portions of the inner front body having a recess therein (39a, 39b). The connector is assembled in the direction of arrow A, after the resilient latches are installed with inner front body as depicted in FIG. 9B. FIG. 9B is a zoomed view of spring resilient latches (42a, 42b) prior to securing to inner front body. FIG. 9C depicts assembling the small form factor connector in the direction of arrow A1 and arrow A2, after resilient latches secured to inner front body. FIG. 9D depicts the push/pull boot or sometimes called a strain relief for the incoming fiber optic cable is attached and secured to distal end of connector outer housing with resilient latches (42a, 42b) protruding through outer housing.



FIG. 10A depicts a side view of small form factor connector according to the present invention, with the resilient latches (42a, 42b) protruding through the connector outer housing. FIG. 10B is a top view of the connector of FIG. 10A with resilient latch (42a). FIG. 10C is a cross-section view alone section line C-C of FIG. 10B. FIG. 10C depicts push-pull boot latched to connector outer housing at a distal end, with resilient latches (42a, 42b) protruding through the outer housing at a proximal end. FIG. 10D depicts a view along section line C-C of FIG. 10B, and shows pulling, back the push/pull boot in direction of the arrow while connector outer housing depresses the resilient latches (42a, 42b) into a corresponding recess (39a, 39b) formed in the inner housing or inner front body.



FIG. 11A depicts inserting the connector (200) of FIG. 10 into port of a receptacle (60). The receptacle port (60) does not contain snap-in hooks. The receptacle port (60) is configured to accept and secure resilient latches, for example, by an opening through a top wall portion (60a.1) and a bottom wall portion (60b.1) of the receptacle outer housing. FIG. 11B depicts inserting connector (200) of FIG. 10 via connector push/pull boot into a receptacle port by pushing on the push/pull boot in a forward or proximal direction PI. FIG. 11C depicts an inner edge (52) of receptacle outer housing depressing resilient latch into recess of inner front body (refer to FIG. 10B) upon insertion into the receptacle port Openings (60a, 60b) at distal end of the housing (60) are sized in width to correspond to the width of openings (38a, 38b) in the inner front body (38.1) to limit the horizontal travel of the push/pull boot and thus the travel of outer housing (60) over the inner front body assembly (50) with backpost-spring pusher (48). The limited travel ensure the resilient latches are within the recess (39a, 39b) without binding the resilient latches in those recesses. Binding the recesses can result in damaging the resilient latch spring constant or force.



FIG. 12 depicts resilient latch (42a, 42b) entering a port or an opening in receptacle housing or receptacle (60). As the small form factor connector (200) is fully inserted into the receptacle port (PI), resilient latch (42a, 42b) expand into corresponding openings formed in the top wall portion (60a.1) or bottom wall portion (60b. 1) of the receptacle housing. So when the small form factor connector (200) is frilly seated in the receptacle (60), the resilient latches protrude through the opening's in the receptacle walls. The opening in the receptacle wall is angled more than ninety (90) degrees from a normal to the longitudinal bore of the small form factor connector (60a, 60b). The angle at ninety (90) degrees or greater guides the resilient latch through the opening of the receptacle wall without binding or jamming. FIG. 13 depicts releasing the small form factor connector (200) from the receptacle port by pulling (PO) the push/pull boot release in a distal direction. As the small form factor connector is pulled distally, the resilient latch (42a 42b) travels down the angled inner wall of openings (60a, 60b) formed in the receptacle housing (60) configured to receive the resilient latch, as depicted in FIG. 12, and when the outer housing is pulled distally by the push/pull boot, the outer housing wall (36e) traps or secures the resilient latch in the recesses (39a, 39b) formed in the inner front body as shown in FIG. 13, as the outer housing (36) slides over the resilient latch (42a, 42b) thereby pushing the resilient latch through the openings (60a, 60b) and into the recesses (39a, 39b). Still referring to FIG. 13, the size or width of the opening (60a, 60b) at the distal of the connector outer housing (refer to FIG. 11C) or the latch hole width or angled opening (36c, 36d) (FIG. 7B) limits the travel of the connector outer housing so the outer housing depresses the resilient latch within the recess of the front body.


Various of the above-disclosed and other features and functions, or alternatives thereof, may be combined into man other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, each of which is also intended to be encompassed by the disclosed embodiments.

Claims
  • 1. A small form factor connector for holding two or more LC-type optical ferrules, comprising: an outer housing having a longitudinal bore;at least one inner front body removably received in the outer housing longitudinal bore,the inner front body supporting two LC-type optical ferrules,top and bottom resilient latches;the inner front body further comprising top and bottom portions, the top and bottom portions are configured to accept the top and bottom resilient latches;the outer housing configured such that the top and bottom resilient latches protrude from the top and bottom portions of the inner front body out of the outer housing;the small form factor connector configured to be plugged into a receptacle such that a portion of the outer housing is received in the receptacle and the top and bottom resilient latches protrude out of the outer housing latch with the receptacle.
  • 2. The small form factor connector for holding two or more LC-type optical ferrules according to claim 1, wherein the top portion and the bottom portions each further comprise a recess to accept a portion of the top and bottom resilient latches.
  • 3. The small form factor connector for holding two or more LC-type optical ferrules according to claim 2, wherein the top and bottom resilient latches protrude through openings formed proximally in the outer housing.
  • 4. The small form factor connector for holding two or more LC-type optical ferrules according to claim 3, wherein the openings in the outer housing are angled.
  • 5. The small form factor connector for holding two or more LC-type optical ferrules according to claim 3, wherein connector housing has a longitudinal axis and wherein the openings in the outer housing each have at least one of a front end and a rear end that slopes at a non-perpendicular angle with respect to the longitudinal axis.
  • 6. The small form factor connector for holding two or more LC-type optical ferrules according to claim 1, wherein the inner front body further comprises partially open sidewalls between the top and bottom portions.
  • 7. The small form factor connector for holding two or more LC-type optical ferrules according to claim 1, wherein a receptacle port does not contain a snap-in hook assembly to secure the small form factor connector within the receptacle port.
  • 8. The small firm factor connector for holding two or more LC-type optical ferrules according to claim 1, where the resilient latch is formed from a metal or a plastic.
  • 9. The small form factor connector for holding two or more LC-type optical ferrules according to claim 1, further comprising a backpost-spring pusher configured to secure to a distal end of the inner front body and ferrule springs resiliently compressed by the backpost-spring pusher being secured to the inner front body.
  • 10. The small form factor connector for holding two or more LC-type optical ferrules according to claim 1, further comprising a push/pull boot secured to a distal end of the outer housing thereby securing the inner front body within the outer housing, and further wherein the push/pull boot is configured to release the small form factor connector from the receptacle when the push/pull boot is pulled rearward.
  • 11. The small form factor connector for holding two or more LC-type optical ferrules according to claim 10, wherein pulling the push/pull boot rearward slides outer housing over the top and bottom resilient latches, thereby depressing the top and bottom resilient latches to unlatch the small form factor connector from the receptacle.
  • 12. The small form factor connector for holding two or more LC-type optical ferrules according to claim 11, wherein the push/pull boot is usable to secure the small form factor connector in the receptacle when the push/pull boot is pushed in a forward direction such that a leading edge of the receptacle depresses the top and bottom resilient latches as the small form factor connector is inserted into the receptacle.
  • 13. The small form factor connector for holding two or more LC-type optical ferrules according to claim 12, wherein when the small form factor connector is fully pushed into the receptacle, the top and bottom resilient latches are configured to resiliently rebound and protrude into respective latch recesses of the receptacle.
  • 14. A small form factor connector for holding two or more LC-type optical ferrules, comprising: an outer housing having a longitudinal bore;at least one inner front body removably received in the outer housing longitudinal bore,the inner front body supporting two LC-type optical ferrules,the inner front body further comprising top and bottom portions, the top and bottom portions are configured to accept a resilient latch;wherein the top portion and the bottom portion each further comprise a recess to accept a portion of the resilient latch;wherein the resilient latch protrudes through an opening formed proximally in the outer housing; andwherein the proximal opening in the outer housing is angled.
  • 15. The small form factor connector for holding two or more LC-type optical ferrules according to claim 14, wherein the angle of the proximal opening is less than ninety (90) degrees relative to a normal formed with the longitudinal bore.
  • 16. A small form factor connector for holding two or more LC-type optical ferrules, comprising: an outer housing having a longitudinal bore;at least one inner front body removably received in the outer housing longitudinal bore,the inner front body supporting two LC-type optical ferrules,the inner front body further comprising top and bottom portions, the top and bottom portions are configured to accept a resilient latch;wherein the inner front body top and bottom portions further comprises partially open sidewalls;wherein a backpost-spring pusher is configured to secure to a distal end of the inner front body, and further wherein the inner front body is configured to accept the two or more LC-type optical ferrules each biased by a ferrule spring when the backpost-spring pusher is secured to the inner front body by a pair of opposing latch hooks within a pair of openings formed at a distal end of the inner front body thereby forming, an inner front body assembly.
  • 17. The small form factor connector for holding two or more LC-type optical ferrules according to claim 16, wherein the inner front body assembly is secured within the outer housing.
  • 18. The small form factor connector for holding two or more LC-type optical ferrules according to claim 17, wherein a push/pull boot is secured to a distal end of the outer housing thereby securing the inner front body within the outer housing, and further wherein the push/pull boot is configured to release the small form factor connector from the receptacle port when the push/pull boot is pulled rearward.
  • 19. The small form factor connector for holding two or more LC-type optical ferrules according to claim 18, wherein pulling the push/pull boot rearward, the outer housing slides over resilient latch retracting the resilient latch from the opening in the receptacle outer housing thereby allowing the small form factor connector to be removed from the receptacle port.
  • 20. The small form factor connector for holding two or more LC-type optical ferrules according to claim 19, wherein the push/pull boot is used to secure the small form factor connector in the receptacle port when the push/pull boot is pushed in a forward direction thereby allowing the resilient latch to return to its original position and protrude through the receptacle outer housing opening once the small form factor connector is fully inserted into the receptacle port.
  • 21. The small form factor connector for holding two or more LC-type optical ferrules according to claim 20, wherein a leading edge of the receptacle outer housing depresses the resilient latch as the small form factor connector is inserted into the receptacle port.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of priority under 35 U.S.C. 119(e) to the filing date of U.S. Provisional Patent Application 62/836,155 filed Apr. 19, 2019, titled, “SMALL FORM FACTOR FIBER OPTIC CONNECTOR WITH RESILIENT LATCHING MECHANISM FOR SECURING TO RECEPTACLE”, The contents of which is fully incorporated herein by reference in its entirety.

US Referenced Citations (360)
Number Name Date Kind
681132 Norton Aug 1901 A
3721945 Hulls Mar 1973 A
4150790 Potter Apr 1979 A
4240695 Evans Dec 1980 A
4327964 Haesly et al. May 1982 A
4478473 Frear Oct 1984 A
4611887 Glover Sep 1986 A
4762388 Tanaka et al. Aug 1988 A
4764129 Jones et al. Aug 1988 A
4840451 Sampson et al. Jun 1989 A
4872736 Myers et al. Oct 1989 A
4979792 Weber et al. Dec 1990 A
5011025 Lacey Apr 1991 A
5016968 Hammond May 1991 A
5026138 Boudreau Jun 1991 A
5031981 Peterson Jul 1991 A
5041025 Haitmanek Aug 1991 A
5073045 Abendschein Dec 1991 A
D323143 Ohkura et al. Jan 1992 S
5101463 Cubukciyan et al. Mar 1992 A
5146813 Stanfill, Jr. Sep 1992 A
5159652 Grassin D'Alphonse et al. Oct 1992 A
5212752 Stephenson et al. May 1993 A
5265181 Chang Nov 1993 A
5289554 Cubukciyan et al. Feb 1994 A
5315679 Baldwin et al. May 1994 A
5317663 Beard et al. May 1994 A
5321784 Cubukciyan et al. Jun 1994 A
5335301 Newman et al. Aug 1994 A
5348487 Marazzi et al. Sep 1994 A
5418875 Nakamo et al. May 1995 A
5444806 De Marchi et al. Aug 1995 A
5481634 Anderson et al. Jan 1996 A
5506922 Grois et al. Apr 1996 A
5521997 Revenolt et al. May 1996 A
5570445 Chou et al. Oct 1996 A
5579425 Lampert Nov 1996 A
5588079 Tanabe et al. Dec 1996 A
5602951 Shiota Feb 1997 A
5684903 Kyomasu et al. Nov 1997 A
5687268 Stephenson et al. Nov 1997 A
5781681 Manning Jul 1998 A
5845036 De Marchi Dec 1998 A
5862282 Matsuura et al. Jan 1999 A
5879173 Poplawski Mar 1999 A
5915987 Reed Jun 1999 A
5930426 Harting et al. Jul 1999 A
5937130 Amberg et al. Aug 1999 A
5953473 Shimotsu et al. Sep 1999 A
5956444 Duda et al. Sep 1999 A
5971626 Knodell et al. Oct 1999 A
6041155 Anderson et al. Mar 2000 A
6049040 Biles et al. Apr 2000 A
6095862 Doye et al. Aug 2000 A
6134370 Childers et al. Oct 2000 A
6178283 Weigel Jan 2001 B1
RE37080 Stephenson et al. Mar 2001 E
6206577 Hall, III et al. Mar 2001 B1
6206581 Driscoll et al. Mar 2001 B1
6227717 Ott et al. May 2001 B1
6238104 Yamakawa et al. May 2001 B1
6240228 Chen et al. May 2001 B1
6247849 Liu Jun 2001 B1
6250817 Lampert et al. Jun 2001 B1
6318903 Lampert et al. Jun 2001 B1
6267606 Poplawski Jul 2001 B1
6276840 Weiss Aug 2001 B1
6364537 Maynard Apr 2002 B1
6379052 de Jong Apr 2002 B1
6422759 Kevern Jul 2002 B1
6450695 Matsumoto Sep 2002 B1
6461054 Iwase Oct 2002 B1
6471412 Belenkiy et al. Oct 2002 B1
6478472 Anderson et al. Nov 2002 B1
6485194 Shirakawa Nov 2002 B1
6527450 Miyachi et al. Mar 2003 B1
6530696 Ueda et al. Mar 2003 B1
6572276 Miyachi et al. Mar 2003 B1
6551117 Poplawski et al. Apr 2003 B2
6565262 Childers et al. May 2003 B2
6579014 Melton et al. Jun 2003 B2
6585194 Brushwood Jul 2003 B1
6634796 de Jong et al. Oct 2003 B2
6634801 Waldron et al. Oct 2003 B1
6648520 McDonald et al. Nov 2003 B2
6668113 Togami et al. Dec 2003 B2
6682228 Rathnam et al. Jan 2004 B2
6685362 Burkholder et al. Feb 2004 B2
6695486 Falkenberg Feb 2004 B1
6719927 Sakurai Apr 2004 B2
6811321 Schmalzigaug et al. Nov 2004 B1
6817272 Holland Nov 2004 B2
6854894 Yunker et al. Feb 2005 B1
6869227 Del Grosso et al. Mar 2005 B2
6872039 Baus et al. Mar 2005 B2
6935789 Gross, III et al. Aug 2005 B2
7036993 Luther et al. May 2006 B2
7052186 Bates May 2006 B1
7077576 Luther et al. Jul 2006 B2
7090407 Melton et al. Aug 2006 B2
7091421 Kukita et al. Aug 2006 B2
7111990 Melton et al. Sep 2006 B2
7113679 Melton et al. Sep 2006 B2
D533504 Lee Dec 2006 S
D534124 Taguchi Dec 2006 S
7150567 Luther et al. Dec 2006 B1
7153041 Mine et al. Dec 2006 B2
7198409 Smith et al. Apr 2007 B2
7207724 Gurreri Apr 2007 B2
D543146 Chen et al. May 2007 S
7258493 Milette Aug 2007 B2
7264402 Theuerkorn et al. Sep 2007 B2
7281859 Mudd et al. Oct 2007 B2
D558675 Chien et al. Jan 2008 S
7315682 En Lin et al. Jan 2008 B1
7325976 Gurreri et al. Feb 2008 B2
7325980 Pepe Feb 2008 B2
7329137 Martin et al. Feb 2008 B2
7331718 Yazaki et al. Feb 2008 B2
7354291 Caveney et al. Apr 2008 B2
7371082 Zimmel et al. May 2008 B2
7387447 Mudd et al. Jun 2008 B2
7390203 Murano et al. Jun 2008 B2
D572661 En Lin et al. Jul 2008 S
7431604 Waters et al. Oct 2008 B2
7463803 Cody et al. Dec 2008 B2
7465180 Kusuda et al. Dec 2008 B2
7473124 Briant et al. Jan 2009 B1
7510335 Su et al. Mar 2009 B1
7513695 Lin et al. Apr 2009 B1
7534128 Caveney et al. May 2009 B2
7540666 Luther et al. Jun 2009 B2
7561775 Lin et al. Jul 2009 B2
7588373 Sato et al. Sep 2009 B1
7591595 Lu et al. Sep 2009 B2
7594766 Sasser et al. Sep 2009 B1
7641398 O'Riorden et al. Jan 2010 B2
7695199 Teo et al. Apr 2010 B2
7699533 Milette Apr 2010 B2
7712970 Lee May 2010 B1
7717625 Margolin et al. May 2010 B2
7824113 Wong et al. Nov 2010 B2
7837395 Lin et al. Nov 2010 B2
D641708 Yamauchi Jul 2011 S
8083450 Smith et al. Dec 2011 B1
8152385 De Jong et al. Apr 2012 B2
8186890 Lu May 2012 B2
8192091 Hsu et al. Jun 2012 B2
8202009 Lin et al. Jun 2012 B2
8221007 Peterhans et al. Jul 2012 B2
8251733 Wu Aug 2012 B2
8267595 Lin et al. Sep 2012 B2
8270796 Nhep Sep 2012 B2
8408815 Lin et al. Apr 2013 B2
8414196 Lu et al. Apr 2013 B2
8550728 Lu et al. Apr 2013 B2
8465317 Gniadek et al. Jun 2013 B2
8534928 Cooke et al. Sep 2013 B2
8556645 Crain Oct 2013 B2
8559781 Childers et al. Oct 2013 B2
8622634 Arnold et al. Jan 2014 B2
8636424 Kuffel et al. Jan 2014 B2
8651749 Dainese Junior et al. Feb 2014 B2
8676022 Jones Mar 2014 B2
8678670 Takahashi et al. Mar 2014 B2
8727638 Lee et al. May 2014 B2
8757894 Katoh Jun 2014 B2
8764308 Katoh Jun 2014 B2
8770863 Cooke et al. Jul 2014 B2
8869661 Opstad Oct 2014 B2
9052474 Jiang et al. Jun 2015 B2
9063296 Dong et al. Jun 2015 B2
9250402 Ishii et al. Feb 2016 B2
9310569 Lee Apr 2016 B2
9366829 Czosnowski et al. Jun 2016 B2
9411110 Barnette, Jr. et al. Aug 2016 B2
9448370 Xue et al. Sep 2016 B2
9465172 Shih Oct 2016 B2
9494744 De Jong Nov 2016 B2
9548557 Liu Jan 2017 B2
9551842 Theuerkom Jan 2017 B2
9557495 Raven et al. Jan 2017 B2
9829653 Raven et al. Jan 2017 B1
9568686 Fewkes et al. Feb 2017 B2
9581768 Baca et al. Feb 2017 B1
9599778 Wong et al. Mar 2017 B2
9658409 Gniadek et al. May 2017 B2
9678283 Chang et al. Jun 2017 B1
9684130 Veatch et al. Jun 2017 B2
9684136 Cline et al. Jun 2017 B2
9684313 Chajec Jun 2017 B2
9709753 Chang et al. Jul 2017 B1
9778425 Nguyen et al. Oct 2017 B2
9829644 Nguyen et al. Nov 2017 B2
9829645 Nguyen et al. Nov 2017 B2
9869825 Bailey et al. Jan 2018 B2
9880361 Childers et al. Jan 2018 B2
9946035 Gustafson et al. Apr 2018 B2
9971103 De Jong et al. May 2018 B2
9989711 Ott et al. Jun 2018 B2
10031296 Good Jul 2018 B2
10067301 Murray et al. Sep 2018 B2
10114180 Murray et al. Sep 2018 B2
10107972 Gniadek Oct 2018 B1
10146011 Nhep Dec 2018 B2
10281668 Takano et al. May 2019 B2
10281669 Takano et al. May 2019 B2
20020168148 Gilliland et al. Nov 2002 A1
20020172467 Anderson et al. Nov 2002 A1
20020191919 Nolan Dec 2002 A1
20030053787 Lee Mar 2003 A1
20030063862 Fillion et al. Apr 2003 A1
20030157825 Kane Aug 2003 A1
20030215171 Lampert Nov 2003 A1
20030215190 Lampert Nov 2003 A1
20040052473 Seo et al. Mar 2004 A1
20040109646 Anderson et al. Jun 2004 A1
20040136657 Ngo Jul 2004 A1
20040141693 Szilagyi Jul 2004 A1
20040161958 Togami Aug 2004 A1
20040234209 Cox Nov 2004 A1
20040247252 Ehrenreich et al. Dec 2004 A1
20050036744 Caveney et al. Feb 2005 A1
20050111796 Matasek May 2005 A1
20050141817 Yazaki Jun 2005 A1
20060013539 Thaler et al. Jan 2006 A1
20060076061 Bush Apr 2006 A1
20060089049 Sedor Apr 2006 A1
20060127025 Haberman Jun 2006 A1
20060153503 Suzuki et al. Jul 2006 A1
20060160429 Daweidczyk et al. Jul 2006 A1
20060193562 Theuerkorn Aug 2006 A1
20060269194 Luther et al. Nov 2006 A1
20060274411 Yamauichi Dec 2006 A1
20070025665 Dean, Jr. et al. Feb 2007 A1
20070028409 Yamada Feb 2007 A1
20070079854 You Apr 2007 A1
20070098329 Shimoji et al. May 2007 A1
20070149028 Yu et al. Jun 2007 A1
20070149062 Long et al. Jun 2007 A1
20070230874 Lin Oct 2007 A1
20070232115 Burke et al. Oct 2007 A1
20070243749 Wu Oct 2007 A1
20080008430 Kewitsch Jan 2008 A1
20080044137 Luther et al. Feb 2008 A1
20080056647 Margolin et al. Mar 2008 A1
20080064334 Hamadi et al. Mar 2008 A1
20080069501 Mudd et al. Mar 2008 A1
20080101757 Lin et al. May 2008 A1
20080226237 O'Riorden et al. Sep 2008 A1
20080267566 En Lin Oct 2008 A1
20090022457 De Jong et al. Jan 2009 A1
20090028507 Jones et al. Jan 2009 A1
20090046981 Margolin Feb 2009 A1
20090047818 Irwin et al. Feb 2009 A1
20090092360 Lin et al. Apr 2009 A1
20090176401 Gu Jul 2009 A1
20090196555 Lin et al. Aug 2009 A1
20090214162 O'Riorden et al. Aug 2009 A1
20090220197 Gniadek et al. Sep 2009 A1
20090220200 Sheau Tung Wong et al. Sep 2009 A1
20090290839 Lin et al. Nov 2009 A1
20090290938 Asaoka et al. Nov 2009 A1
20100034502 Lu et al. Feb 2010 A1
20100054668 Nelson Mar 2010 A1
20100061069 Cole Mar 2010 A1
20100092136 Nhep Apr 2010 A1
20100220961 de jonge et al. Sep 2010 A1
20100247041 Szillagyi Sep 2010 A1
20100284656 Morra et al. Nov 2010 A1
20100322561 Lin et al. Dec 2010 A1
20110044588 Larson et al. Feb 2011 A1
20110058773 Peterhans et al. Mar 2011 A1
20110129186 Lewallen Jun 2011 A1
20110131801 Nelson et al. Jun 2011 A1
20110155810 Taniguchi et al. Jun 2011 A1
20110177710 Tobey Jul 2011 A1
20110239220 Gibson et al. Sep 2011 A1
20120099822 Kuffel et al. Apr 2012 A1
20120155810 Nakagawa Jun 2012 A1
20120189260 Kowalczyk et al. Jul 2012 A1
20120237177 Minota Sep 2012 A1
20120269485 Haley et al. Oct 2012 A1
20120301080 Gniadek Nov 2012 A1
20120308183 Irwin et al. Dec 2012 A1
20120328248 Larson et al. Dec 2012 A1
20130019423 Srutkowski Jan 2013 A1
20130071067 Lin Mar 2013 A1
20130089995 Gniadek et al. Apr 2013 A1
20130094816 Lin et al. Apr 2013 A1
20130101258 Hikosaka et al. Apr 2013 A1
20130121653 Shitama et al. May 2013 A1
20130170797 Ott Jul 2013 A1
20130183012 Cabanne Lopez et al. Jul 2013 A1
20130216185 Klavuhn et al. Aug 2013 A1
20130259429 Czosnowski et al. Oct 2013 A1
20130308915 Buff et al. Nov 2013 A1
20130322825 Cooke et al. Dec 2013 A1
20140016901 Lambourn et al. Jan 2014 A1
20140023322 Gniadek Jan 2014 A1
20140050446 Chang Feb 2014 A1
20140056562 Limbert et al. Feb 2014 A1
20140133808 Hill et al. May 2014 A1
20140153878 Mullaney Jun 2014 A1
20140169727 Veatch et al. Jun 2014 A1
20140219621 Barnette, Jr. et al. Aug 2014 A1
20140226946 Cooke et al. Aug 2014 A1
20140241644 Kang et al. Aug 2014 A1
20140241678 Bringuier et al. Aug 2014 A1
20140241688 Isenhour et al. Aug 2014 A1
20140334780 Nguyen et al. Nov 2014 A1
20140348477 Chang Nov 2014 A1
20150003785 Raven Jan 2015 A1
20150003788 Chen et al. Jan 2015 A1
20150111417 Vanderwoud Apr 2015 A1
20150177463 Lee et al. Jun 2015 A1
20150198766 Takahashi et al. Jul 2015 A1
20150212282 Lin Jul 2015 A1
20150241644 Lee Aug 2015 A1
20150301294 Chang et al. Oct 2015 A1
20150331201 Takano et al. Nov 2015 A1
20150355417 Takano et al. Dec 2015 A1
20150362686 Wang Dec 2015 A1
20150370021 Chan Dec 2015 A1
20150378113 Good et al. Dec 2015 A1
20160131849 Takano et al. May 2016 A1
20160139343 Dean, Jr. et al. May 2016 A1
20160161681 Banal, Jr. et al. Jun 2016 A1
20160172852 Tamura et al. Jun 2016 A1
20160178852 Takano et al. Jun 2016 A1
20160195682 Takano et al. Jul 2016 A1
20160231512 Seki Aug 2016 A1
20160259135 Gniadek et al. Sep 2016 A1
20160266326 Gniadek Sep 2016 A1
20160291262 Chang et al. Oct 2016 A1
20160320572 Gniadek Nov 2016 A1
20160349458 Murray et al. Dec 2016 A1
20160370545 Jiang et al. Dec 2016 A1
20170003458 Gniadek Jan 2017 A1
20170160496 De Jong et al. Jun 2017 A1
20170205587 Chang et al. Jul 2017 A1
20170205590 Bailey et al. Jul 2017 A1
20170205591 Takano et al. Jul 2017 A1
20170212313 Elenabaas et al. Jul 2017 A1
20170212316 Takano Jul 2017 A1
20170254961 Kamada et al. Sep 2017 A1
20170276275 Beemer et al. Sep 2017 A1
20170276887 Allen Sep 2017 A1
20170277059 Miura et al. Sep 2017 A1
20170343740 Nguyen Nov 2017 A1
20180003910 Menguy Jan 2018 A1
20180128988 Chang et al. May 2018 A1
20180156988 Gniadek et al. Jun 2018 A1
20180172923 Bauco et al. Jun 2018 A1
20180252872 Chen Sep 2018 A1
20180341069 Takano et al. Nov 2018 A1
20190064447 Chang et al. Feb 2019 A1
20190204513 Davidson et al. Jul 2019 A1
20200183097 Chang et al. Jun 2020 A1
20200285001 Childers Sep 2020 A1
Foreign Referenced Citations (36)
Number Date Country
2495693 Apr 2004 CA
2836038 Nov 2006 CN
201383588 Jan 2010 CN
2026500189 Dec 2013 CN
19507669 Sep 1996 DE
202006011910 Mar 2007 DE
102006019335 Oct 2007 DE
1074868 Jul 2001 EP
1 211 537 Jun 2002 EP
1211537 Jun 2002 EP
1245980 Oct 2002 EP
1566674 Aug 2005 EP
2111240 Jun 1983 GB
2000089059 Mar 2000 JP
03752331 Mar 2006 JP
2009229545 Oct 2009 JP
2009276493 Nov 2009 JP
04377820 Dec 2009 JP
1371686 Mar 2014 KR
200821653 May 2008 TW
200179904 Oct 2001 WO
20010799042 Oct 2001 WO
2004027485 Apr 2004 WO
2006007120 Jan 2006 WO
2008112986 Sep 2008 WO
2009135787 Nov 2009 WO
2010024851 Mar 2010 WO
2012136702 Oct 2012 WO
2012162385 Nov 2012 WO
2014028527 Feb 2014 WO
2014182351 Nov 2014 WO
2015103783 Jul 2015 WO
2015191024 Dec 2015 WO
2016019993 Feb 2016 WO
2016148741 Sep 2016 WO
2019126333 Jun 2019 WO
Non-Patent Literature Citations (21)
Entry
International Search Report and Written Opinion; Application No. PCT/US2018/042202, dated Dec. 7, 2018, pp. 17.
International Search Report and Written Opinion, Application No. PCT/US2019/013861, dated Apr. 8, 2019, pp. 15.
Fiber Optic Connectors Tutorial, 2018, pp. 20.
Fiber Optic Glossary, Feb. 29, 2016, pp. 93.
Fiber Optic Interconnect Solutions, Tactical Fiber Optical Connectors, Cables and Termini 2006, Glenair, Inc., Glendale, California, www.mps-electronics.de, pp. 232.
Fiber Optic Products Catalog Nov. 2007, Tyco Electronics Corporation, Harrisburg, Pennsylvania, www.ampnetconnect.com, pp. 204.
Fiber Optic Connectors and Assemblies Catalog 2009, Huber & Suhner Fiver Optics, Herisau, Switzerland, www.nubersuhner.com, pp. 104.
International Search Report and Written Opinion for Application No. PCT/US2018/62406 dated Mar. 18, 2019, 12, pages, United States.
PCT/US2018/062405 International Search Report dated Apr. 3, 2019.
PCT /US2018/062405 The written Opinion dated Apr. 3, 2019.
PCT/IB2018/056133 Written Opinion dated Jan. 3, 2019.
PCY/IB/056133 Search Report dated Jan. 3, 2019.
Non-Final Office Action, U.S. Appl. No. 16/035,695, dated Sep. 28, 2018, pp. 7.
International Search Report and Written Opinion, Application No. PCT/US19/24718, dated Jun. 26, 2019, pp. 7.
International Search Report and Written Opinion for Application No. PCT/US2019/40700 dated Sep. 27, 2019, 12, pages, United States.
International Search Report and Written Opinion for Application No. PCT/US2019/50895 dated Jan. 6, 2020, 12, pages, United States.
International Search Report and Written Opinion for Application No. PCT/US2019/50909 dated Dec. 17, 2019, 11, pages, United States.
International Search Report and Written Opinion for Application No. PCT/US2019/56564 dated Jan. 14, 2020, 14, pages, United States.
International Search Report and Written Opinion, Application No. PCT/US19/46397, dated Nov. 12, 2019, pp. 6.
International Preliminary Report on Patentability for PCT/US2019/022940 dated Oct. 1, 2020, 11 pages.
International Preliminary Report on Patentability, Application No. PCT/US2019/013861, dated Oct. 8, 2020 13 pages.
Related Publications (1)
Number Date Country
20200333537 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
62836155 Apr 2019 US