FIELD OF THE INVENTION
The present invention is related to fiber optic connectors and more specifically to small form factor multi-fiber connectors.
BACKGROUND
The Next Generation Data Center Connector (NGDC) is a 12 fiber MPO connector with a small form factor. The design allows for a connector with 12 fibers to fit into an adapter which fits into approximately the same size opening as a simplex LC adapter. As shown in FIG. 1, with this design, 144 NGDC adapters 1 can fit into a 1RU patch panel 2, providing 1728 fibers per RU.
FIGS. 2-5 show the NGDC adapter and connector. Pins 3 held in each Male NGDC adapter 4 align the connectors inside the Male NGDC adapter when interacting with holes 5 located in the Female NGDC ferrule 6. With this design, the female features are located on the NGDC ferrule and the male features are located inside the NGDC adapter. The pins are held in the Male adapter using a metal bracket 7 and supported by circular molded features 8. The metal bracket does not offer much support to the pins, leaving the pins and bracket susceptible to bending during connector insertion and pin cleaning with swabs, possibly causing misalignment and or damage to the connector's ferrule alignment holes.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 is an isometric view of a 1 RU patch panel using Next Generation Data Center (NGDC) adapters.
FIG. 2 is a front view of an NGDC adapter.
FIG. 3 is an isometric view of the NGDC adapter of FIG. 2.
FIG. 4 is an isometric view of an NGDC connector.
FIG. 5 is a front view of the NGDC adapter of FIG. 2 with one of the pins removed to show the features used to hold the pins in the adapter.
FIG. 6 is a front isometric view of a front half of a Female Split Sleeve Adapter (FSSA).
FIG. 7 is a rear isometric view of the front FSSA half of FIG. 6.
FIG. 8 is a rear view of the front FSSA half highlighting the cylindrical holes used to hold the split sleeves.
FIG. 9 is a front isometric view of a rear FSSA half.
FIG. 10 is a rear isometric view of the rear FSSA half of FIG. 10.
FIG. 11 is an isometric view of a split sleeve to be used in the FSSA.
FIG. 12 is an isometric view of a metal clip to be used with the FSSA.
FIG. 13a is an isometric view showing the assembly of an FSSA and specifically showing a completely disassembled state.
FIG. 13b is an isometric view showing the assembly of an FSSA and specifically showing the split sleeves being placed in the front half of the FSSA.
FIG. 13c is an isometric view showing the assembly of an FSSA and specifically showing the front half of the FSSA being secured to the rear half of the FSSA.
FIG. 13d is an isometric view showing the assembly of an FSSA and specifically showing a fully assembled FSSA.
FIG. 14 is a front isometric view of a Male NGDC Ferrule (MNF).
FIG. 15 is a front isometric view of a connector using the MNF of FIG. 14
FIG. 16 shows that the alignment towers of the MNF should not be proud of the ferrule.
FIG. 17 is an isometric view of two connectors with MNF ferrules installed in a FSSA.
FIG. 18 shows a cross section view of 2 MNFs installed in a FSSA using split sleeves.
FIG. 19 is an isometric view of a first alternative MNF.
FIG. 20 is an isometric view of a keyed split sleeve to go with the alternate MNF of FIG. 19.
FIG. 21 is a cross-sectional view of an alternative FSSA with keying features for the keyed split sleeve of FIG. 20.
FIG. 22 is an isometric view of a second alternative MNF.
FIG. 23 is a cross-sectional view of two alternate MNFs of FIG. 22 installed in a FSSA.
DETAILED DESCRIPTION OF THE DRAWINGS
The new design described in this application offers more support for the connectors, and, eliminates the possibility of pin or support bracket damage and misalignment by using split sleeves or similar devices in the adapter to align male features on the multi-fiber ferrule. For the following design, the female features would be located in the NGDC adapter and the male features would be located on the NGDC ferrule. Currently, LC and SC connectors utilize similar designs.
The first part included in the FSSA is the front adapter half 9 shown in FIGS. 6, 7, and 8. Cylindrical holes 10 will be used to hold 2 separate split sleeves 15 (see FIG. 11). A plastic lip 11 will be used to keep the split sleeve from falling out of the adapter. Windows 12 will be used to attach the rear adapter half of the FSSA to the front half.
The second part included in the FSSA is the rear adapter half 13, shown in FIGS. 9 and 10. Male latch features 14 allow the rear half and front half of the FSSA to be secured together. Similar to the front half, the rear half of the FSSA includes the cylindrical holes 10 and plastic lips 11 to prohibit movement of the split sleeves when assembled.
The third part included in the FSSA is the split sleeve 15 shown in FIG. 11. The split sleeve will be similar to the ceramic split sleeve seen in LC and SC adapters, but could be made from another material or incorporated into an adapter half. Two split sleeves can be placed in each adapter.
The final part, the metal clip 16 included in the FSSA is seen both in the Male NGDC adapter and the preferred Female Split Sleeve Adapter. The metal clip is placed around the adapter to allow the adapter to be snapped into patch panels using flexible fingers 17.
To assemble the FSSA, as shown in FIGS. 13a-d, split sleeves 15 must be placed into the front half of the FSSA 9. The plastic lips will stop the split sleeves from falling out of the cylindrical holes. The rear half of FSSA 13 will be attached to the front half of the FSSA, utilizing the latching features located on both halves of the FSSA. The plastic lips located on the front and rear halves of the FSSA will prohibit movement of the split sleeves after attachment is complete. The metal clip 16 will be placed around the FSSA to complete the assembly of the FSSA.
FIG. 14 shows an MNF 18. The MNF 18 has a base portion 34 with an endface portion 35 protruding from the base portion. Two cylindrical alignment towers 19 also protrude from the base portion 34 parallel and on either side of the endface portion 35. In order to use the FSSA, the MNF 18 (FIG. 14) must have male features to interact with the split sleeves (not shown) located in the FSSA. The male features are the two cylindrical alignment towers 19 located on each side of the MNF. The two towers can be designed as an integral part of the ferrule, or could be separate components which can be inserted into the ferrule within receiving hole or insert molded. In a preferred embodiment, the towers 19 are not proud of the endface of the ferrule. The NGDC connector 20 with the MNF ferrule (FIG. 15) can be used with the FSSA to properly align 12 fibers inside each FSSA when two connectors are mated such that the opposing fiber makes physical contact (FIGS. 17 and 18).
As shown in FIGS. 19-21, a first alternative embodiment shows molded webs 21 which can be added to provide additional support to the cylindrical alignment towers located on the NGDC ferrule 22. A split sleeve slot 23 fits around the web to properly hold the ferrule. Keying features 26 must be added to a possibly molded split sleeve 27 to ensure no rotation of the split sleeve within the adapter (See FIGS. 20 and 21).
As shown in FIGS. 22 and 23, a second alternative embodiment has instead of having two towers in the ferrule, one cylindrical tower 24 can be used to properly center the NGDC ferrule 25 inside of the FSSA. When mated to another ferrule, the cylindrical towers 24 will be on opposite sides of each other, allowing the ferrules to align properly within the split sleeves 15. A modified polishing machine would be needed to properly polish the ferrule as the cylindrical tower 24 stands proud of the ferrule endface.
While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations may be apparent from the foregoing without departing from the spirit and scope of the invention as described.