The present application claims priority to Korean Patent Application No. 10-2021-0040852, filed Mar. 30, 2021, the entire contents of which is incorporated herein for all purposes by this reference.
The present disclosure relates generally to a small lens system consisting of six lenses and, more particularly, to a small lens system for developing a close tolerance by presetting the refractive power of each lens.
Recently, a demand for high-definition, high-performance, miniaturization and weight reduction of electronic devices with a camera function, particularly smartphones has been increased. Therefore, research to realize the above demand is in progress by improving performance of an ultra-small lens optical system.
However, the conventional ultra-small lens optical system has very high sensitivity, and thus is not suitable for high-resolution performance.
As shown in
Furthermore, a second lens has negative refractive power and is formed close to the first lens, and thus has a structure with high sensitivity.
Furthermore, the conventional small lens system is configured such that power is largely focused on the first lens and the second lens and dependence on the power of the first lens and the second lens is high, so the sensitivity of the lens is high and the lens is sensitive to tolerance.
Specifically, when tolerance of the small lens system is sensitive, performance of each product is changed. Therefore, research to improve the product performance reproducibility in an easy method by relieving the sensitivity to the tolerance of the entire small lens system is needed.
Accordingly, the present disclosure has been made keeping in mind the above problem occurring in the related art, and the present disclosure is intended to provide a small lens system for developing a close tolerance by configuring the small lens system with six lenses and presetting refractive power and shape of each lens.
In order to achieve the above objective, according to one aspect of the present disclosure, there is provided a small lens system for developing a close tolerance, the small lens system including a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens that may be arranged in order along an optical axis from an object, wherein refractive power P1 of the first lens may satisfy −0.01<P1<0.01, the second lens may be shaped with opposite convex surfaces, and refractive power P2 of the second lens may satisfy P2>0.4, the third lens may have negative refractive power, and a rear surface curvature C6 of the third lens may satisfy −0.01<C6<0.01, refractive power P4 of the fourth lens may satisfy −0.1<P4<0.1, refractive power P5 of the fifth lens may satisfy P5>0.7, and refractive power P6 of the sixth lens may satisfy P6<−0.7, an object-side surface of the sixth lens may have at least one inflection point and amount of sag may be increased and reduced in response to height of the sixth lens, and an image-side surface of the sixth lens may have at least one inflection point and amount of sag may be increased and reduced in response to the height thereof.
The small lens system may have a stop located at the first lens.
An absolute value |P5| of the refractive power of the fifth lens and an absolute value |P6| of the refractive power of the sixth lens may satisfy −0.1<|P5|−|P6|<0.1.
A lens thickness et1 at a height of a front effective diameter and a center thickness ct1 of the first lens may satisfy |et1−ct1|<0.07 mm.
A lens thickness et4 at a height of a front effective diameter and a center thickness ct4 of the fourth lens may satisfy |et4−ct4|<0.05 mm.
A lens thickness et5 at a height of a front effective diameter and a center thickness ct5 of the fifth lens may satisfy |et5−ct5|>0.15 mm.
An Abbe number V1 of the first lens, an Abbe number V2 of the second lens, an Abbe number V3 of the third lens, an Abbe number V4 of the fourth lens, an Abbe number V5 of the fifth lens, and an Abbe number V6 of the sixth lens may satisfy 50<V1<60, 50<V2<60, 15<V3<30, 15<V4<30, 50<V5<60, and 50<V6<60, respectively.
Each of the first lens to the sixth lens may have only aspherical surfaces, and the first lens to the sixth lens may be made of plastic.
The present disclosure relates to the small lens system consisting of the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and the sixth lens that are arranged in order along the optical axis from an object. According to the present disclosure, the refractive power, the shape, etc. of each lens are properly designed, so that there is an effect of providing the small lens system that is small and lightweight and is less sensitive to tolerance.
Specifically, the sensitivity to a tolerance of the lens is relieved by presetting the refractive power of each lens, locating stop at the first lens, reducing the refractive power of the first lens as small as possible, and forming the second lens with opposite convex surfaces and giving the strong positive refractive power to the second lens, so that there is an effect of improving the product performance reproducibility.
Furthermore, there is an effect of providing the small lens system configured such that the fifth lens has the strong positive refractive power to reduce the length of the lens, the absolute value of the refractive power of the fifth lens and the absolute value of the refractive power of the sixth lens are similar to each other, and a distance between the lenses is reduced while the sag amount of the sixth lens is increased and reduced in response to the height thereof.
The above and other objectives, features, and other advantages of the present disclosure will be more clearly understood from the following detailed description when taken in conjunction with the accompanying drawings, in which:
The present disclosure relates to a lens system consisting of six lenses and, more particularly, to a lens system with a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens that are arranged in order along an optical axis from an object.
Furthermore, chromatic aberration of the lens is corrected and the lens is small and lightweight by properly designing the refractive power, shape, etc. of the lens, and the lens may be easily applied in a small camera module, particularly, in a smartphone.
Specifically, the sensitivity to a tolerance of the lens is relieved by presetting the refractive power of each lens and locating a stop at the first lens and reducing the refractive power as small as possible, and forming the second lens with opposite convex surfaces and giving the strong positive refractive power to the second lens.
Furthermore, the small lens system is provided such that the fifth lens has the strong positive refractive power to reduce the length of the lens, the absolute value of the refractive power of the fifth lens and the absolute value of the refractive power of the sixth lens are similar to each other, a distance between the lenses is reduced while the sag amount of the sixth lens is increased and reduced in response to the height thereof.
Hereinbelow, the present disclosure will be described in detail with reference to accompanying drawings.
As shown in the drawings, the small lens system of the present disclosure includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6 that are arranged in order along an optical axis from an object.
Herein, refractive power P1 of the first lens L1 satisfies −0.01<P1<0.01. The second lens L2 is shaped with opposite convex surfaces, and refractive power P2 of the second lens L2 satisfies P2>0.4. The third lens L3 has negative refractive power, and a rear surface curvature C6 of the third lens L3 satisfies −0.01<C6<0.01. Refractive power P4 of the fourth lens L4 satisfies −0.1<P4<0.1. Refractive power P5 of the fifth lens L5 satisfies P5>0.7. Refractive power P6 of the sixth lens L6 satisfies P6<−0.7, an object-side surface of the sixth lens L6 has at least one inflection point and the sag amount is increased and reduced in response to height of the lens, and an image-side surface of the sixth lens L6 has at least one inflection point and the sag amount is increased and reduced in response to the height of the lens.
The above configuration is provided to relieve the sensitivity to a tolerance by presetting the refractive power of each lens, locating the stop at the first lens L1, reducing the refractive power of the first lens L1 as small as possible, and forming the second lens L2 with opposite convex surfaces and giving the strong positive refractive power to the second lens L2.
Furthermore, the small lens system is provided such that the fifth lens L5 has the strong positive refractive power to reduce the length of the lens, the absolute value of the refractive power of the fifth lens L5 and the absolute value of the refractive power of the sixth lens L6 are similar to each other, a distance between the lenses is reduced while the sag amount of the sixth lens L6 is increased and reduced in response to the height thereof.
As described above, as the refractive power and the shape of the small lens system are designed so that sensitivity to tolerance is reduced and negative and positive refractive power are properly distributed to each lens. Therefore, high performance suitable for the small lens system with relieved tolerance can be implemented.
In the small lens system of the present disclosure, the stop is located at the first lens L1 and the refractive power of the first lens L1 is reduced as small as possible, so that the first lens L1 that is relatively sensitive to a tolerance is provided in a form in which the first lens L1 is not sensitive to tolerance. The refractive power P1 of the first lens L1 satisfies −0.01<P1<0.01.
Furthermore, the form of the lens that is not sensitive to a tolerance is designed such that a lens thickness et1 at a height of a front effective diameter and a center thickness ct1 of the first lens satisfy |et1−ct1|<0.07 mm.
The second lens L2 is shaped with the opposite convex surfaces and the refractive power P2 of the second lens L2 satisfies P2>0.4.
The above configuration is provided to form the second lens L2, which is the most sensitive to a tolerance, with the opposite convex surfaces (object-side surface and image-side surface) so as to minimize the sensitivity to a tolerance of the second lens L2.
The third lens L3 has negative refractive power and the rear surface curvature C6 of the third lens L3 satisfies −0.01<C6<0.01 so that the shape of the third lens L3 is appropriate for the implementation of the small lens system.
The refractive power P4 of the fourth lens L4 satisfies −0.1<P4<0.1 so as to have week refractive power, thereby reducing the sensitivity and implementing the small lens system.
Furthermore, a lens thickness et4 at a height of a front effective diameter and a center thickness ct4 of the fourth lens L4 satisfy |et4−ct4|<0.05 mm, thereby reducing the sensitivity and being appropriate for the implementation of the small lens system.
Furthermore, for the implementation of the small lens system, the refractive power P5 of the fifth lens L5 satisfies P5>0.7.
Furthermore, an absolute value |P5| of the refractive power of the fifth lens L5 and an absolute value |P6| of the refractive power of the sixth lens L6 are provided similar to each other, so that the implementation of the small lens system is possible. Herein, the absolute value |P5| of the refractive power of the fifth lens L5 and the absolute value |P6| of the refractive power of the sixth lens L6 satisfy −0.1<|P5|−|P6|<0.1.
Furthermore, a lens thickness et5 at a height of a front effective diameter and a center thickness ct5 of the fifth lens L5 satisfy |et5−ct5|>0.15 mm, thereby relieving the sensitivity and implementing the small lens system.
The refractive power P6 of the sixth lens L6 satisfies P6<−0.7, the object-side surface of the sixth lens L6 has at least one inflection point, the sag amount is increased and reduced in response to the height of the lens, the image-side surface of the sixth lens L6 has at least one inflection point, and the sag amount is increased and reduced in response to the height of the lens, so that the present disclosure is designed such that a distance between lenses is reduced and the sensitivity to tolerance is minimized.
Furthermore, the small lens system according to the present disclosure is configured such that an Abbe number V1 of the first lens L1, an Abbe number V2 of the second lens L2, an Abbe number V3 of the third lens L3, an Abbe number V4 of the fourth lens L4, an Abbe number V5 of the fifth lens L5, and an Abbe number V6 of the sixth lens L6 satisfy 50<V1<60, 50<V2<60, 15<V3<30, 15<V4<30, 50<V5<60, and 50<V6<60, respectively.
As described above, as a material with a high Abbe number and a material with a low Abbe number are alternately used, the above configuration is suitable for the high resolution small lens by correction of chromatic aberration of the lens and complement of the performance.
Furthermore, the first lens to the sixth lens L1 to L6 are made of plastic materials, and are formed in aspherical surfaces, thereby correcting spherical aberration and chromatic aberration. Each lens is made of a material that has an advantageous refractive index for reducing the distance, and a material in which the Abbe number is properly distributed to favor correction.
As described above, the present disclosure relates to a small lens system consisting of six lenses, and the small lens system is configured such that the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are arranged along the optical axis from the object.
The present disclosure relates to the small lens system in which the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are arranged along the optical axis from the object. The small lens system is properly designed in the refractive power, shape, etc. thereof, so that there is an effect of providing the small lens system that is small and lightweight and is less sensitive to tolerance.
Specifically, the tolerance sensitivity is relieved by presetting the refractive power of each lens, locating the stop at the first lens L1 and reducing the refractive power as small as possible, and forming the second lens L2 with opposite convex surfaces and giving the strong positive refractive power to the second lens.
Furthermore, the small lens system is provided such that the fifth lens L5 has the strong positive refractive power to reduce the length of the lens, the absolute value of the refractive power of the fifth lens L5 and the absolute value of the refractive power of the sixth lens L6 are similar to each other, a distance between the lenses is reduced while the sag amount of the sixth lens L6 is increased and reduced in response to the height thereof.
Hereinbelow, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
As shown in
Next, Table 1 presents numeric data of the lens constituting the small lens system according to the first embodiment of the present disclosure.
As shown in
An aspherical coefficient having the data of each lens from Equation 1 is as shown in Table 2.
Then, P1=0, P2=0.539, P4=−0.053, P5=1.0, and P6=−0.932 are satisfied, |P5|−|P6|=0.068 is satisfied (herein, P1 is the refractive power of the first lens L1, P2 is the refractive power of the second lens L2, P4 is the refractive power of the fourth lens L4, P5 is the refractive power of the fifth lens L5, and P6 is the refractive power of the sixth lens L6).
Then, C6=0 (herein, C6 is a rear surface curvature of the third lens L3) is satisfied, |et1−ct1|=0.035, |et4−ct4|=0.007, and |et5−ct5|=0.195 are satisfied (herein, et1 and ct1 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the first lens L1, et4 and ct4 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the fourth lens L4, and et5 and ct5 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the fifth lens L5).
In
In
In
As shown in
Next, Table 3 presents numeric data of the lenses constituting the optical system according to the second embodiment of the present disclosure.
As shown in
An aspherical coefficient having the data of each lens from Equation 1 is as shown in Table 4.
Then, P1=0, P2=0.482, P4=−0.053, P5=1.0, and P6=−0.967 are satisfied, |P5|−|P6|=0.033 is satisfied (herein, P1 is the refractive power of the first lens L1, P2 is the refractive power of the second lens L2, P4 is the refractive power of the fourth lens L4, P5 is the refractive power of the fifth lens L5, and P6 is the refractive power of the sixth lens L6).
Then, C6=0 (herein, C6 is a rear surface curvature of the third lens L3) is satisfied, |et1−ct1|=0.052, |et4−ct4|=0.011, and |et5−ct5|=0.27 are satisfied (herein, et1 and ct1 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the first lens L1, et4 and ct4 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the fourth lens L4, and et5 and ct5 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the fifth lens L5).
In
In
In
As shown in
Next, Table 5 presents numeric data of the lenses constituting the optical system according to the third embodiment of the present disclosure.
As shown in
An aspherical coefficient having the data of each lens from Equation 1 is as shown in Table 6.
Then, P1=0, P2=0.492, P4=−0.053, P5=1.0, and P6=−0.941 are satisfied, |P5|−|P6|=0.059 is satisfied (herein, P1 is the refractive power of the first lens L1, P2 is the refractive power of the second lens L2, P4 is the refractive power of the fourth lens L4, P5 is the refractive power of the fifth lens L5, and P6 is the refractive power of the sixth lens L6).
Then, C6=0 (herein, C6 is a rear surface curvature of the third lens L3) is satisfied, |et1−ct1|=0.039, |et4−ct4|=0.032, and |et5−ct5|=0.22 are satisfied (herein, et1 and ct1 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the first lens L1, et4 and ct4 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the fourth lens L4, and et5 and ct5 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the fifth lens L5).
In
In
In
As shown in
Next, Table 7 presents numeric data of the lenses constituting the optical system according to the fourth embodiment of the present disclosure.
As shown in
An aspherical coefficient having the data of each lens from Equation 1 is as shown in Table 8.
Then, P1=0, P2=0.542, P4=−0.047, P5=1.0, and P6=−0.975 are satisfied, |P5|−|P6|=0.025 is satisfied (herein, P1 is the refractive power of the first lens L1, P2 is the refractive power of the second lens L2, P4 is the refractive power of the fourth lens L4, P5 is the refractive power of the fifth lens L5, and P6 is the refractive power of the sixth lens L6).
Then, C6=0 (herein, C6 is a rear surface curvature of the third lens L3) is satisfied, |et1−ct1|=0.059, |et4−ct4|=0.037, and |et5−ct5|=0.222 are satisfied (herein, et1 and ct1 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the first lens L1, et4 and ct4 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the fourth lens L4, and et5 and ct5 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the fifth lens L5).
In
In
In
As shown in
Next, Table 9 presents numeric data of the lenses constituting the optical system according to the fifth embodiment of the present disclosure.
As shown in
An aspherical coefficient having the data of each lens from Equation 1 is as shown in Table 10.
Then, P1=0, P2=0.543, P4=−0.053, P5=1.0, and P6=−0.983 are satisfied, |P5|−|P6|=0.017 is satisfied (herein, P1 is the refractive power of the first lens L1, P2 is the refractive power of the second lens L2, P4 is the refractive power of the fourth lens L4, P5 is the refractive power of the fifth lens L5, and P6 is the refractive power of the sixth lens L6).
Then, C6=0 (herein, C6 is a rear surface curvature of the third lens L3) is satisfied, |et1−ct1|=0.055, |et4−ct4|=0.033, and |et5−ct5|=0.233 are satisfied (herein, et1 and ct1 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the first lens L1, et4 and ct4 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the fourth lens L4, and et5 and ct5 respectively represent the lens thickness at the height of the front effective diameter and the center thickness of the fifth lens L5).
In
In
In
Number | Date | Country | Kind |
---|---|---|---|
10-2021-0040852 | Mar 2021 | KR | national |