This invention relates to the area of processing materials of any origin, especially by shredding by means of crushers or hammer mills, or the like, and the object is a small mill equipped with a rotor that is inclined relative to the axis of the feed chute.
The recovery of metallic products from no longer usable objects, in particular automobiles, by means of shredders or mills is generally done by introducing the objects into hammer mills, via an introduction ramp equipped with a crushing drum; said hammer mill tears down and shreds the material entering there, by interaction with one or more anvils, which ejects and/or discharges the mechanical waste obtained with a defined size through the screening walls. This waste is then processed to eliminate materials improper for re-use and to sort out the remaining materials depending on their metallurgical characteristics.
Current hammer mills, whose hammers are generally mounted on a rotor composed of an assembly of disks and are retractable into the rotor, generally allow correct milling of the products according to a predefined density.
However, these known mills are generally in the form of a unit of large dimensions, able to handle a very significant daily output, and are only suited for processing centers dimensioned accordingly. This results in that to make installations of this size cost-effective, they must necessarily be of a reduced number to cover a significant supply zone. However, if the very size of such milling installations allows a reduction of their number, it necessarily requires relatively significant transport distances to bring the products to be milled to these installations.
This is because large scale transport of wastes, for purposes of their processing, necessarily entails correspondingly high pollution by the transport means and thus a very unfavorable ecological situation.
Moreover, existing milling installations are extremely energy-intensive due to the fact that the driving of the milling rotors requires motors of very high power. Actually, because the rotors are of large size and extend over the entire width of the feed chutes, these rotors have a tendency to pull on the material to be milled such that there is a risk of jamming that entails a significant demand for instantaneous power.
It has likewise been suggested, in an effort to reduce the size, that vertical mills be built in which the rotor is located vertically in a milling housing that is supplied from overhead. However, in such mills, the aforementioned defects remain due to the fact that the control of the feed cannot be guaranteed such that highly elevated instantaneous power peaks remain. Moreover, this type of mill can only receive products of reduced size, precut or premilled.
The object of this invention is to eliminate these defects by proposing a small mill that allows these materials to be processed directly at their collection site without requiring additional transport and with reduced energy consumption.
To do this, the small mill essentially composed of a feed chute discharging into a rotor equipped with milling and/or cutting hammers interworking with a milling housing that is provided with screening walls, a crusher element that can be provided upstream from the rotor, above the feed chute and at a distance from the latter, is characterized in that the axis of the rotor is inclined relative to the axis of the feed chute by forming an acute angle with it.
The invention will be better understood from the following description that relates to preferred embodiments, given by way of nonlimiting examples and explained with reference to the attached schematics, in which:
In a known manner, the chute 1 is preferably inclined to facilitate gravity feed of the rotor 2. Likewise, the rotor 2 can be driven by one or more hydraulic motors, by an internal combustion engine or by one or more electric motors. Moreover, the rotor 2 can be equipped with an assortment of fixed and articulated hammers or tools 3.
The crusher element 6 can be mounted on an articulated arm 6′ or on slides arranged laterally to the feed chute 1 and can be moved by hydraulic cylinders. The crusher 6 can itself be made either in the form of a roller actuated by a reversible rotational movement that allows crushing, but likewise control and metering of feed (
According to the invention and as
Of course, in one particular embodiment, a mill can be envisioned in which the axis of the rotor 2 is vertical. In such a case, the products to be processed will be slowed down in their progress toward the rotor by corresponding layouts.
According to one characteristic of the invention, the beveled space between the inclined rotor 2 and the bottom of the chute 1 is used as a milling and shredding chamber and is provided with impact screens or elements (not shown).
As shown in
According to one characteristic of the invention, the rotor has a useful working diameter, i.e., corresponding to the deployment of the tools, which is at most equal to the width of the feed chute 1.
The feed chute 1 can have an angular shape, determined by a flat bottom and vertical side walls, at least as far as the vicinity of the crusher 6, this angular shape extending by gradual bending of the side parts of the intersection between the side walls and the bottom, as well as said side walls and the bottom for ending in a section and a shape essentially corresponding to those of the rotor 2, near the end of the intersection between the bottom of the feed chute 2 and said rotor 1. This results in that the portion of the material to be processed that is compacted by the crusher 6 on the upstream part of the feed chute 1 and that is located near the side walls is drawn gradually nearer the space swept by the tools 3 of the rotor 2 and is thus likewise milled.
Of course, it is likewise possible to produce the feed chute 1 in its entirety with a bent transverse section, regular or irregular, i.e., of which the section draws gradually nearer that corresponding to the space swept by the tools of the rotor 2.
In such a case, it will obviously be a good idea to ensure compacting of the products to be processed by way of suitable devices such as, for example, one or more longitudinal bars applied to the product following the longitudinal median axis of the chute 1.
It is likewise possible, according to another embodiment of the invention that is not shown in the attached drawings, to provide the bottom of the chute 1 with profiles or fixed projections, stationary or retractable, which delineate a gradual bent section by their generating line. Thus, an effect similar to that described above can be obtained.
According to another variant embodiment of the invention that is not shown in the attached drawings, the lower part of the chute 1 near the rotor 2 can be equipped with a slide that can be moved by means of a cylinder and that has an arched shape or projections on the sides and at the intersection of its sides and the bottom part. Thus, during movement of the slide in the direction of the rotor 2, the product parts not entering the action field of the tools 3 of the rotor 2 normally are moved into this action field and milled. Of course, such a slide can be affected by an alternative, relatively rapid movement to allow continuation of the movement of the product to be processed in the direction of the rotor 2.
According to another characteristic of the invention that is not shown in the attached drawings, the feed chute 1 or the rotor 2 can be mounted on an articulation in such a way as to allow their mutual tipping in the direction of one another in order to change the acute angle of inclination between the axis of the rotor 2 and the feed chute 1. This makes it possible, during a reduction of the acute angle between the chute 1 and the axis of the rotor 2, to implement a more gradual attack on the products to be processed by the tools of the rotor 2 in such a way that the power necessary for processing can again be reduced.
According to another characteristic of the invention and as shown in
According to another embodiment of the invention shown in
Moreover, it is likewise possible to equip the feed chute 1, upstream from the crusher element 6, laterally, either on one side or on two sides, with pushers emerging through the lateral walls to reduce the dimensions of the materials to be processed by compacting. In such a case, it is possible to implement a rotor 2 with a diameter that is reduced relative to the width of the feed chute 1.
Such pushers can advantageously come in the form of slides actuated individually by cylinders and affected by a back-and-forth motion. It would likewise be possible to produce the pushers in the form of articulated side wall elements. The activation of such pushers makes it possible to ensure a continuous stream of materials and the bringing of the material in the corner parts closer toward the action field of the tools 3 of the rotor 2.
According to another characteristic of the invention, the feed chute 1 can be provided in its lower part in the immediate vicinity of the entry of the milling housing 4 and in front of the anvils of the latter with access doors that can likewise be used as ejection valves of products that cannot be milled and that are or are not provided internally with sizing grate elements.
The milling housing 4 can, moreover, be equipped in its part opposite the feed chute 1 with a hood that may or may not be provided with sizing grate elements and that is articulated in its upper part and able to be opened to its lower part via hydraulic cylinders, thus making it possible to ensure the maintenance of the rotor 2 or else to form an ejection valve of the elements that cannot be milled.
It is likewise possible to mount the hood equipping the milling housing 4 in its part opposite the feed chute 1 on said milling housing 4, in a pivotable manner, indiscriminately around an upper axis of rotation or around a lower axis of rotation, by providing retractable articulation and locking means. Actually, it is sufficient, in such a case, to provide mounting of a hood in such a way as to pivot successively but not simultaneously around the two axes, i.e., to implement joining of the top part and the bottom part of the hood to the milling housing, by means of removable pins, removing the pin corresponding to the lower part allowing the hood to tip toward the top and conversely removing the pin corresponding to the upper part allowing the tipping of the hood toward the bottom. In the former case, the hood is used as an ejection valve and in the latter case, the hood can be tipped for maintenance purposes.
According to another characteristic of the invention, the screening grates 5 of the milling housing 4 can be located either equidistantly from the tools 3 of the rotor 2 over the entire height of the rotor 2 or at a distance that decreases gradually from the top of the rotor. In the latter case, a gradual compaction and milling space is obtained.
According to another variant embodiment of the invention that is not shown in the attached drawings, the axis of the rotor 2 can likewise be arranged obliquely relative to the vertical plane passing through the axis of the bottom of the chute and inclined relative to the axis of the feed chute 1 by forming an acute angle with the latter. Such an arrangement makes it possible to sweep with the tools 3 of the rotor 2 the entire width of the chute 1, this with a rotor with a diameter that is smaller than the width of the chute 1, the beating circle of the tools 3 being used more efficiently.
This arrangement of the rotor 2, moreover, allows gradual penetration of the materials between the space formed by the rotor 2 and the bottom of the chute 1, due to the diameter of the rotor that is smaller than the width of the chute.
The arrangement of the cutting tools 3 of the rotor 2 on the latter can be implemented with the provision of movable tools 3 on the two ends of the rotor and stationary tools in the median part of the rotor, the tools provided in the lower part being fixed on the external surface of the rotor 2, or else by staggered arrangement of stationary tools and movable tools. Providing movable tools on the ends makes it possible to optimize the shredding and driving of products toward the anvils and toward the sizing grates 5, whereas providing tools analogous to the bottom part makes it possible to scrape the products located at the very bottom of the rotor 2.
Finally, according to another characteristic of the invention, the lower wall of the milling housing 4, corresponding to the lower end of the rotor 2, is advantageously equipped with openings for discharging products, allowing a blocking of the rotor to be avoided or premature wear by friction to be prevented.
It is likewise possible, according to another variant embodiment of the invention that is not shown in the attached drawings, to arrange the rotor 2 in such a way that its lower part extends under the level of the feed chute 1 and to provide said rotor 2, on its upper surface, with cutting and/or shredding tools. Thus, the compacted material arriving on the feed chute 1 can undergo, on its upper part, a milling action by the tools located on the upper surface of the rotor 2 and can be driven into the milling housing 4, whereas the lower part of the rotor 2, located under the level of the feed chute 1, will form a compaction zone with the milling housing 4.
By means of the invention, it is possible to implement a small mill allowing gradual feed of the milling housing in such a way that the power necessary for the drive motor of the rotor can be significantly reduced, jolts of the batch resulting from obstruction or jamming being avoided.
Of course, the invention is not limited to the embodiments that are described and shown in the attached drawings. Modifications remain possible, especially from the standpoint of the composition of various elements or by substitution of technical equivalents, without thereby exceeding the scope of protection of the invention.
Number | Date | Country | Kind |
---|---|---|---|
08 58540 | Dec 2008 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2009/052430 | 12/7/2009 | WO | 00 | 7/21/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/066996 | 6/17/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3186651 | Briolini | Jun 1965 | A |
3934499 | Strom | Jan 1976 | A |
4156508 | Kisielewski | May 1979 | A |
6612421 | Kohl et al. | Sep 2003 | B1 |
6978955 | Verhoef et al. | Dec 2005 | B2 |
20080017480 | Lahteenmaki et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
199 53 542 | May 2001 | DE |
1 247 581 | Oct 2002 | EP |
2 660 213 | Oct 1991 | FR |
WO 9210297 | Jun 1992 | WO |
Entry |
---|
Machine translation of WO 9210297 A1. |
International Search Report, dated Apr. 12, 2010, from corresponding PCT application. |
Number | Date | Country | |
---|---|---|---|
20110284674 A1 | Nov 2011 | US |