The present invention pertains to an improved small profile tool for tightening strap around an object or load and adhering the strap onto itself. More particularly, the present invention is directed to a pneumatic circuit and module for a strapping tool that is configured to tension a strap around a load, weld or melt-adhere the strap onto itself and sever the strap from a strap source (e.g., supply).
Strapping tools are well-known in the art. These tools come in a wide variety of types, from fully manual tools to automatic, table-top tools. Tools are generally designed for use with either metal strapping or plastic/polymeric strapping.
Strappers for applying plastic or polymeric strapping materials can be of the automatic table-top or hand-held devices and are either electrically or pneumatically driven. This is necessary in order to provide energy for tensioning the strapping material and adhering the strap onto itself. Typically, the adhering function is provided by melting or otherwise welding a section of the polymeric (plastic) strapping material onto itself. Such melting or welding operations are generally carried out using ultrasonic or vibrational-type weld assemblies. The movement or vibrational motion can be provided by electrical, electromechanical or fluid drive (hydraulic or pneumatic) systems.
In one exemplary tool, a pneumatic system is used to drive the motors to tension the strap (driving a tensioning wheel), and to move a vibrating element that is in contact with interfacial surfaces of overlapping plastic strap portions. The tool includes a pneumatic circuit to route the compressed gas (air) to the appropriate functional elements (clamps and motors) through valves and the like.
In such a tool, the various functional elements are large and as such can be cumbersome. In addition, many such tools use one or more large (and heavy) mechanical clutch(es) to hold or clamp the strap following tension.
Accordingly, there exists a need for a pneumatic strapping tool that uses separate pneumatic motors (one motor for tensioning or feeding strap and another for welding the strap material onto itself) in a small or low profile package. Desirably, such a tool incorporates a pneumatic circuit that allows eliminating the clutch (and thus the weight) otherwise necessary for clamping the strap during welding and roll-back to facilitate operation. Most desirably, for ergonomic considerations, the pneumatic module is of a two button design to facilitate operation and to prevent actuation of the tensioning cycle (motor) during the sealing cycle.
A small profile strapping tool is configured for tensioning a strap around a load, adhering the strap onto itself, and cutting a feed end of the strap. The tool uses separate pneumatic motors (one motor for tensioning or feeding strap and another for welding the strap material onto itself) in a small or low profile package. The tool incorporates a pneumatic circuit that allows eliminating the clutch (and thus the weight) otherwise necessary for clamping the strap during welding and roll-back to facilitate operation.
The pneumatic module is of a two button design to facilitate operation and to prevent actuation of the tensioning cycle (motor) during the sealing cycle. The tool includes a body defining a cylinder housing, a piston disposed within a cylinder in the cylinder housing, a pneumatic weld motor operably connected to the piston for actuation during a weld cycle to adhere the strap onto itself and a pneumatic tensioning motor for actuation during a tensioning cycle to tension the strap prior to adhering the strap onto itself.
The pneumatic module is removably mounted to the cylinder housing and includes a compressed gas inlet to the module and a pilot valve in flow communication with the gas inlet for controlling the flow of compressed gas into the module. A tensioning motor valve controls compressed gas flow to the tensioning motor and a weld cycle valve controls compressed gas flow to the weld motor and piston. The tension motor and the weld motor are in flow communication with (receiving gas from) the pilot valve.
A tensioning motor valve switch (one of the two buttons) actuates the tensioning motor valve to draw tension in the strap. The weld cycle valve switch (the second button) is then depressed to actuate the weld cycle valve and initiate the weld cycle. A timer and an accumulator in parallel with the weld motor are configured to isolate gas flow to the weld motor following actuation of the weld motor valve, upon reaching a predetermined pressure in the accumulator (corresponding to a predetermined amount of time). A pneumatic signal circuit is disposed between the piston cylinder and a bleed valve and includes a signal valve in the signal circuit. The signal valve controls the actuation of the bleed valve to route gas to the tension motor to maintain tension in the strap following the weld cycle during the cooldown cycle, thus eliminating the need for a mechanical clutch in the tensioning motor.
In a preferred strapping tool, the module is self-contained. The timer and the accumulator isolate gas flow to the pilot valve upon reaching a predetermined pressure in the accumulator (again, corresponding to a predetermined period of time). Another timer is disposed between the weld motor and the piston cylinder to delay venting of the piston cylinder following isolation of gas flow into the piston cylinder.
The tensioning motor valve is biased to close the valve to isolate flow to the tension motor and the weld motor valve is biased to close the valve to isolate flow to the weld motor. Compressed gas is introduced to the tension motor valve to assist the bias to close the valve and compressed gas is introduced to the weld motor valve against the bias to maintain the valve in an open condition.
These and other features and advantages of the present invention will be apparent from the following detailed description, in conjunction with the appended claims.
The benefits and advantages of the present invention will become more readily apparent to those of ordinary skill in the relevant art after reviewing the following detailed description and accompanying drawings, wherein:
While the present invention is susceptible of embodiment in various forms, there is shown in the drawings and will hereinafter be described a presently preferred embodiment with the understanding that the present disclosure is to be considered an exemplification of the invention and is not intended to limit the invention to the specific embodiment illustrated.
It should be further understood that the title of this section of this specification, namely, “Detailed Description Of The Invention”, relates to a requirement of the United States Patent Office, and does not imply, nor should be inferred to limit the subject matter disclosed herein.
Referring now to the figures and in particular to
The tool includes, generally, a body 12, a foot 14, a weld motor 16 and housing 18, a tensioning motor 20, a cylinder housing 22 and a pneumatic module 24 having a circuit embodying the principle of the present invention. The tool 10 includes a handle 26 and grip 28 for ease of handling and use. The pneumatic module 24, as will be discussed in more detail below, is mounted to the body 12 and provides pneumatic pathways between the module 24 and the weld and tensioning motors 16, 20 for introducing and venting a compressed gas, such as compressed air, to and from the motors. The module 24 is readily mounted to and removed from the body 12 by a plurality of fasteners such as bolts and the like.
The pneumatic module 24 is removably mounted to the body 12 and includes a plurality of components (e.g., switches, such as tension motor switch 30 and weld motor switch 32, valves, accumulators) to control the overall operation of the strapper 10. The module 24 is configured to readily mount to and be removed from the body 12 by, for example, bolts or like fasteners for ease of maintenance, removal and repair. In this manner, the module 24 can be removed and a spare installed on the tool 10 for continued use.
Referring to
Referring to
Releasing the tensioning motor switch 30 closes the tensioning motor valve 48, terminating the air feed to the tensioning motor 16. The air entering the back end of the tensioning motor valve (at 58) assists (the spring bias) in moving the tensioning valve 48 to the closed position following release of the valve switch 30. At this point in time, however, even though the tensioning motor 16 has stopped (the tensioning valve 48 is closed), a portion of the tensioning portion of the system remains pressurized with air routed to the signal valve 70 to maintain the signal valve in the open position as long as there is sufficient pressure in the line 69 between the orifice 66 and the signal valve 70.
Referring to
As air is provided to the weld motor 20, air is also routed to the weld cylinder 60 (to the top of the piston) to maintain pressure on the piston 34 (which assures that sufficient pressure is applied by the weld element on the strap S). The air is routed to the top of the weld cylinder 60 through a check valve 92. As set forth above, after welding is complete, the strap S must be allowed sufficient time to cool to assure integrity of the weld. Cool down, which is shown schematically in
In addition, as air is routed to the piston chamber 60 (weld piston chamber), air also flows through the signal line 72 and the signal valve 70 to in turn open the bleed valve 56 which routes air back to the tension motor 16 to maintain tension (not further tension) in the strap during welding and to signal valve 70 to maintain its open position.
At the same time that air is routed to the weld motor 20 and piston chamber 60, air is directed to a volume chamber or accumulator 80, through a weld timer 82 and check valve 84 for weld timing. The weld timer 82 is a restriction device such as the illustrated variable orifice. In this manner, air flow into the accumulator 80 is restricted (and thus timed) in that flow through the orifice 82 is limited or restricted. A line 86 from the accumulator 80 is routed to the pilot valve, so that as the pressure in the accumulator 80 increases, air flows to the pilot valve 42. When the air in the accumulator 80 reaches a predetermined pressure, the pilot valve 42 closes, thus stopping air flow to the weld cycle valve 52. This stops operation of the weld motor 20.
When air flow is terminated to the weld cycle valve 52, the pressure exerted to maintain the valve 52 open (through line 78) also drops, and the valve 52 returns to the closed position by action of the bias.
Referring to
One of the advantages of the present system is the “fail-safe” mode of operation seen in
Continuing through the pneumatic circuit, the accumulator 80 is routed to the pilot valve 42 to close the pilot valve 42 when the accumulator 80 is under pressure. The accumulator 80 vents through the weld cycle valve 52 when the valve is in the off position. The pilot valve 42 is maintained in the open position by a line that tees from the tee line to the weld cycle valve.
Those skilled in the art will recognize and understand that the various references to “lines”, “vent paths” and the like are provided by a plurality of openings formed, e.g., machined, in the module.
All patents referred to herein, are hereby incorporated herein by reference, whether or not specifically do so within the text of this disclosure.
In the present disclosure, the words “a” or “an” are to be taken to include both the singular and the plural. Conversely, any reference to plural items shall, where appropriate, include the singular.
From the foregoing it will be observed that numerous modifications and variations can be effectuated without departing from the true spirit and scope of the novel concepts of the present invention. It is to be understood that no limitation with respect to the specific embodiments illustrated is intended or should be inferred. The disclosure is intended to cover by the appended claims all such modifications as fall within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3506041 | Angarola | Apr 1970 | A |
3654033 | Angarola et al. | Apr 1972 | A |
3863684 | Simmons | Feb 1975 | A |
4062278 | Cheung | Dec 1977 | A |
4282907 | Massion et al. | Aug 1981 | A |
5169480 | Toppel et al. | Dec 1992 | A |
5380393 | Drabarek et al. | Jan 1995 | A |
5476569 | Harada | Dec 1995 | A |
5694749 | Oseland | Dec 1997 | A |
5853524 | Nix | Dec 1998 | A |
6338375 | Harada | Jan 2002 | B1 |
6732638 | Rometty et al. | May 2004 | B1 |
6895733 | Nix | May 2005 | B1 |
6907717 | Nix | Jun 2005 | B1 |
6918235 | Nix | Jul 2005 | B1 |
6966255 | Crittenden | Nov 2005 | B1 |