The invention disclosed herein is directed to an antenna structure operative within electrically small antenna constraints (i.e., ka≅0.5), and having bandwidth performance close to fundamental limits, and a methodology for fabricating such an antenna. The antenna of the invention comprises a plurality of planar resonators formed into a three-dimensional structure as described herein. When formed into three-dimensional structures approximating a spherical shape, the resonators achieve radiation Q-factors that are close to the theoretical Chu limit.
The basic planar resonator structure of the invention is a two-arm split-ring structure which is schematically depicted in
In the figure, the conductor traces are shown in black and the gray area represents a substrate holding the conductor patterns for the illustrated embodiment. Note, however, that the substrate is not necessary for operation of the resonator of the invention, and, in embodiments for low-frequency antennas (where the physical size of the antenna becomes large) would not likely be present. It is also to be noted that the semi-circular shape of the illustrated resonator arrays is chosen to make a spherical antenna. However, while it is generally true that a spherical antenna will come closest to the Chu limit, the inventive concept can be applied for non-spheres where warranted.
According to the method of the invention, as described more fully hereafter, multiple versions of this resonator can be combined in an axially symmetric manner to produce numerous spherical resonator variations. Four, six and eight-arm such variations are illustrated in
It should be understood, however, in respect to
The resonant frequencies of the resonator are determined by the various parameters that define the structure: the radius of the rings, the width of the conductor traces, the separation between the conductors along the central axis, the gaps at the outer edge of the rings, the dielectric constant of the substrate, etc. The design of a resonator to achieve a desired resonant frequency can be accomplished using standard numerical simulation techniques in electromagnetics, for example using the finite element method. Guidelines for changing the resonant frequency are readily deduced from a basic knowledge of electromagnetic behavior. For example, increasing the ring radius will result in lower values of the resonant frequency. Alternatively, for a fixed value of ring radius, the resonant frequency can be shifted to lower values by increasing either the capacitance (by decreasing the gap size) or the inductance (by decreasing the trace width) present in the structure. Varying the resonant frequency while holding the ring radius constant is equivalent to varying the normalized size ka of the resonator.
The resonator designs illustrated in
Using the resonant frequency and the actual physical size of the resonators, one can deduce the normalized frequency, or size, of the resonators, ka. Using ka as so determined, the Chu limit Qchu, for the resonators can be determined. A performance factor for the resonator, designated by the inventor as a Chu factor, is then derived as the ratio of the measured/simulated values of Q to the Chu limit.
The Chu factor is an important figure of merit for the resonators, as it determines how close the realized Q of the resonator is to the theoretical limit in performance. For a resonator with 100% efficiency, the Chu factor cannot be less than 1, and values close to ≈1.5 are expected to represent a practical lower limit. By varying the gap size in the resonators, the inventor has been able to find values that result in measured Chu factors close to 1.6 (illustrated by measured results curves in
As noted, the curves in
By plotting Chu-factor vs. ka, one can see immediately the significance of the inventive concept. Recall, initially, the general theoretical guidance above regarding resonant frequency, corresponding here to ka—i.e., resonant frequency can be shifted to lower values by increasing either the capacitance (by decreasing the gap size) or the inductance (by decreasing the trace width). Within a particular resonator configuration (take, for example, the two-arm configuration), smaller values of ka can be achieved (by reducing the gap size), but this results in higher Chu factors. Thus, for the planar two-arm configuration, moving toward lower ka (smaller size) results in increasingly poor performance—i.e., Chu factor increases as one tries to make the antenna size smaller (the curve moves towards the upper left of the graph). However, in going from the planar resonator to the volumetric resonators, one moves towards the lower left of the plot, i.e. smaller values of ka can be achieved and lower Chu factors can also be achieved. As can be seen from the figure, moving from the planar resonator to the four-arm spherical resonator results in a dramatic bandwidth improvement. Adding more arms to the spherical resonators improves the performance further. A Chu factor of 1.5 is measured in the eight-arm resonator for ka=0.5, indicating that these resonators have bandwidth performance very close to the theoretical limits.
To form antennas from the resonators of the invention, an impedance-matched transmission line is required to feed to the resonators. To illustrate that aspect of the invention, an example of a planar antenna based upon the two-arm resonator is described below. It is noted that this exemplary antenna was built and tested by the inventor. As discussed herein, the test results confirm the effectiveness of the transmission line feed geometry and demonstrate that the resulting antenna has a bandwidth that corresponds to the measured resonator characteristics shown in
For testing purposes, a balun was used to interface the balanced transmission line with an unbalanced 50 ohm coaxial cable and test equipment. The measured performance for the exemplary antenna embodiment is depicted in the graph of Return Loss vs. Frequency shown in
The performance of the exemplary antenna embodiment above corresponds very well to performance predicted in design simulations. The Q-factor of the antenna can be determined from the derivative of the measured antenna impedance Z at the resonant frequency using the following formula (derived in A. D. Yaghjian and S. R. Best, “Impedance, bandwidth, and Q of antennas,” IEEE Trans. Ant. Prop., vol. 53, pp. 1298, 2005):
where ω0 is the resonant frequency and R0 is the transmission line impedance at the resonant frequency. The Q-factor of the measured antenna corresponds to a Chu factor of 3.1 at ka=0.57, consistent with the performance expected from the performance measurements for the two-arm resonator embodiment shown in
As can readily be deduced from the resonator performance results shown in
The volumetric antenna embodiment of
Simulation studies have been carried out by the inventor for this volumetric antenna embodiment and the results are shown in
As in the case of the planar two-arm antenna embodiment, the transmission line for the volumetric antenna embodiment excites the collective resonant mode of the entire structure. Currents are therefore induced in all four resonator arms, despite the fact that electrical connections are made to only two of the arms. This feature of the antenna design is particularly important from a fabrication standpoint. The construction of the antenna is relative simple: the two planar pieces of the antenna shown in
The above exemplary antenna embodiments illustrate one possible methodological approach to interfacing a transmission line structure to the resonators of the invention in order to form the antenna. Other approaches will be apparent to those skilled in the art of the invention and are intended to be included with the scope of the invention as described and claimed herein. For example, if one wished to drive the antenna using an unbalanced transmission line without the use of a balun, this could be done by using a half-sphere structure placed over a ground plane, with one or more of the arms of the resonator (but not necessarily all of arms) electrically connected to a driving source connected through the ground plane (for example, a coaxial feed structure). This approach has the advantage that the physical size of the antenna would be half that in the exemplary embodiments shown above, due to the presence of the ground plane. Transmission line feeds other than those described here, whether balanced or unbalanced, may also be utilized. The general procedure in designing the transmission line feed involves finding a geometry by which the transmission line mode can efficiently excite the resonant mode of the resonator. Some aspect of the feed geometry must then be varied in order to insure that the radiation resistance matches the transmission line impedance at a frequency of zero reactance in the antenna. This was done in the described exemplary two-arm antenna by varying the gap in the resonator structure at the point where the feed line enters the resonator, and it was done in the exemplary four-arm antenna by varying the length of the shorted coupling stub. It is generally desirable that the method utilized to insure an impedance match does not degrade the bandwidth performance of the antenna relative to that which is observed in the isolated resonators of the same electrical size. The described exemplary antenna embodiments satisfy this criterion. Alternatively, other techniques well known to those skilled in the art can be applied here—the T-match and gamma match techniques being two other examples. In another example, one or more lumped circuit elements (inductors or capacitors) can be placed in a series or parallel configuration along the transmission line feed to create optimal impedance matching, where the particular location, configuration, and values of the elements can be determined using techniques well known to those skilled in the art, for example through the use of Smith charts. This sort of approach allows for increased flexibility in choosing the exact frequency at which the antenna achieves the optimal match, and it is recognized that the best bandwidth performance is obtained by designing the antenna to operate at the frequencies with the lowest values of the Chu factor.
The exemplary antenna embodiments described above utilize printed circuit board implementations, where the conductor patterns are printed on thin substrates. This is a convenient implementation at frequencies where the antenna size is physically small (at frequencies>1 GHz, for example), but becomes less convenient for lower frequency antennas (100s of MHz or lower), due to the large physical size of the structures. At the lower frequency ranges, the implementation of these antennas would more likely consist of free-standing wire structures that have been bent into the appropriate shapes (or sheet-metal implementations punched out into the appropriate shapes). The general process for designing antennas for such lower-frequency embodiments is identical to that described above. While it is understood that the presence of substrates with a particular thickness and dielectric constant affects the various design parameters required to achieve the desired frequency of operation and impedance matched condition, it should also understood that the presence of such substrates is not required to achieve the exemplary performance characteristics illustrated here.
Although the resonator embodiments described herein are for resonators constructed as spheres, it should be understood that these design principals can also be applied to embodiments that are not spherical in nature (for example, ellipsoids). This may be necessary for some applications, as the aspect ratio, or shape, of the antenna may be constrained by factors not related to the antenna design (e.g., availability of space, restrictions on height, etc. in the environment in which the antenna is to be deployed). It should be further understood that the spherical shape represents the ideal, solution for the single resonance antenna. However, engineering constraints may dictate tradeoffs in bandwidth performance in exchange for having the antenna assume a particular shape or aspect ratio. Resonators of the type illustrated in
All of the embodiments described herein are for resonators and antennas that are based upon a single resonance structure. It should be understood, however, that the inventive approach can also be expanded to the case of multiple resonance structures. By utilizing multiple resonances, it is possible to exceed the bandwidth performance achievable in single resonance structures—a principal that has been applied extensively in the field of microstrip antennas. By starting with single resonance structures that are optimized for bandwidth performance, it can be expected that the multiple resonance antennas formed from these single resonance building blocks will also demonstrate exemplary bandwidth performance. The planar resonator embodiment illustrated in
Herein, the inventor has disclosed a new antenna for use in applications requiring electrically small antennas that achieves improved bandwidth over antennas of the art by arraying multiple non-interconnected resonator structures and then forming the antenna by connecting a transmission line to only one or two of those structures.
Numerous modifications and alternative embodiments of the invention will be apparent to those skilled in the art in view of the foregoing description. In particular, it should be understood that, while the invention has been generally described in terms of a physical structure that is equivalent to an electromagnetic sphere, the principles of the invention will equally apply for other aspect ratios and shape constraints for the antenna structure.
Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention and is not intended to illustrate all possible forms thereof. It is also understood that the words used are words of description, rather that limitation, and that details of the structure may be varied substantially without departing from the spirit of the invention, and that the exclusive use of all modifications which come within the scope of the appended claims is reserved.