Small vehicle launch platform

Information

  • Patent Grant
  • 6376762
  • Patent Number
    6,376,762
  • Date Filed
    Tuesday, September 19, 2000
    24 years ago
  • Date Issued
    Tuesday, April 23, 2002
    22 years ago
Abstract
A launch platform for a host vehicle. There is a cradle having a cylindrical shape with peripheral axial recesses formed therein and arranged around the cradle. A release mechanism is positioned within the cradle. The release mechanism releasably joins small cylindrical undersea vehicles positioned in said peripheral axial recesses.
Description




BACKGROUND OF THE INVENTION




(1) Field of the Invention




The present invention relates to marine vehicles and more particularly to marine vehicle launch systems.




(2) Brief Description of the Prior Art




Underwater missiles and torpedoes are currently launched from either off the side of a manned ship or from the torpedo tube of a manned submarine. The current method of deploying undersea weapons requires the actual presence of the ship and/or submarine at the deployment site, thereby posing a number of dangers, including (1) exposure of personnel and ships to enemy fire in a danger zone, and (2) detection of ships and submarines in shallow water.




Various arrangements are described in the prior art for launching a weapon or other device from an unmanned vehicle. U.S. Pat. No. 3,513,750 to Penza, for example, discloses a missile launcher including an elongate buoyant keel structure adapted to float upright in a body of water. The keel is provided with an azimuth and elevation sensing mechanism which controls a series of propulsive devices also placed on the keel and which give the launcher and an attached missile the desired launch elevation and azimuth positioning.




U.S. Pat. No. 5,076,192 to Tegel et al. discloses an unmanned submarine which is guided to the surface of the water in order to launch an air rocket contained therein and which is provided in its walls with closeable openings for the discharge of the rocket recoil gases into the surrounding water to conduct the impinging recoil gases of a launched air rocket directly out of the submarine. To create a lock for the recoil gas discharge openings which withstands high water pressures and is easily opened in the starting phase of the air rocket, the openings are disposed in the surfaces where the recoil gases impinge on the wall of the submarine, each opening is closed by a cover which is pressed out of the opening by the impinging gases, the seat for the cover in the opening is configured as an inwardly tapered conical surface, and the cover is held in the opening by a transport safety which is released by the action of the pressure of the recoil gases or the cover.




U.S. Pat. No. 5,542,333 to Hagelberg et al. discloses an undersea vehicle storage and ejection system including a capsule having a cavity therein adapted to store and launch a vehicle. The capsule has an opening at one end for passage of the vehicle therethrough. A closure member is suitably adapted to be mateable with the housing at the opening to seal the cavity. A rocket unit is incorporated within the capsule to remove the closure member at launch. The closure member includes a sealing arrangement for withstanding the hydrostatic pressure when the system is in the undersea environment of use and block the entry of seawater into the cavity. The rocket unit, when ignited, rapidly builds up pressure within the capsule to a level exceeding the external hydrostatic pressure on the cover, thereby removing the cover so that the vehicle may be launched.




U.S. Pat. No. 5,786,545 to Hillenbrand discloses a vehicle known as an unmanned undersea vehicle (UUV). The UUV includes a weapon compartment and a control means. Within the weapon compartment are a weapon and a buoyancy chamber positioned axi-symetrically therein. The buoyancy chamber is initially empty and has sufficient capacity so that it can be loaded with seawater whose mass approximates mass of the weapon. The weapon compartment further includes controllable valve means for enabling seawater surrounding the vehicle to fill the buoyancy chamber. The control means controls the deployment of the weapon by expelling the weapon from the weapon compartment and thereafter controls the firing of the weapon. The control means further controls the valves during weapon deployment to enable filling of the buoyancy chamber to maintain a predetermined distribution of mass as the weapon is deployed, which filling-of-the-chamber acts with bilateral symmetry on opposing sides of a vertical reference plane through the vehicle's axis. The mother vehicle generates command information for controlling the control means and receives unmanned undersea vehicle status information from the unmanned undersea vehicle and processes it for use in generating the command information. The communication link interconnects the unmanned undersea vehicle and the mother vehicle to facilitate transfer of command information from the mother vehicle to the unmanned undersea vehicle and to facilitate transfer of unmanned undersea vehicle status information from the unmanned undersea vehicle to the mother vehicle.




SUMMARY OF THE INVENTION




It is an object of the invention to allow a smaller UUV to be launched or jettisoned from a larger or host UUV.




It is a further object to mount the smaller UUV's within the same diameter as the host UUV.




Yet another object is allowing the host UUV to launch the smaller UUV's without adversely affecting its buoyancy.




Accordingly, the undersea launch platform of the present invention includes a host vehicle, which is preferably, a larger UUV having a generally cylindrical hull. A cradle projection extends from the hull of the host vehicle. A carried vessel, which is preferably a small UUV, is mounted on the forward axial cradle projection.




This launch platform would allow the larger UUV, preferably with a tactical diameter of 21 inches, to significantly expand its area of operation by carrying one or more small UUV's. The small UUV's could be launched individually at any time during the larger UUV's mission. The smaller UUV's, when equipped with sensors, i.e., sonar, oceanographic instrumentation, etc., could obtain data in their own region of operation and relay that information, via submerged acoustic communications submerged or surface radio communications, back to the larger UUV or another vehicle. This deployment and operation technique would substantially expand the area of coverage of the larger UUV.











BRIEF DESCRIPTION OF THE DRAWINGS




Other objects, features and advantages of the present invention will become apparent upon reference to the following description of the preferred embodiments and to the drawing, wherein corresponding reference characters indicate corresponding parts in the drawing and wherein:





FIG. 1

is a side elevational view of a preferred embodiment of the launch platform assembly of the present invention;





FIG. 2

is a front end view of the assembly shown in

FIG. 1

;





FIG. 3

is a perspective view of the assembly shown in

FIG. 1

immediately after release of two small UUV's;





FIG. 4

is a detailed view of area


4


in

FIG. 3

; and





FIG. 5

is a view similar to

FIG. 4

after release of all the small UUV's.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring to the drawings, the assembly of the present invention includes a host vehicle


10


, which can be a UUV as is described in the aforesaid U.S. Pat. No. 5,786,545 to Hillenbrand, the contents of which are incorporated herein by reference. The control and propulsion features of the UUV are described by Hillenbrand, but, briefly the UUV


10


contains a cylindrical hull


12


with a convex bow


14


and a converging stern section


16


on which there is mounted a stern propeller assembly


18


. Also adjacent the converging stern section


16


there are stern stabilizing fins


20


,


22


,


24


and


26


. Extending forward from the convex bow


14


there is a forward axial cradle


28


, which includes peripheral axial recesses


30


,


32


,


34


and


36


. It will be noted that in this embodiment these axial recesses are peripherally positioned at about 90° from adjacent recesses. In each of these axial recesses there is, respectively, mounted a small UUV


38


,


40


,


42


and


44


. Each of the UUV's as, for example, small UUV


38


includes a cylindrical hull


46


, a convex bow


48


, a converging stern section


50


and a stern propeller assembly


52


. UUV


38


also includes stern stabilizing fins


54


,


56


,


58


and


60


. The control and propulsion features of UUV


38


are conventional as is, for example, disclosed in the aforesaid Hillenbrand patent. It will be also understood that the other small UUV's


40


,


42


and


44


typically identical to UUV


38


.




A controller


37


is positioned within hull


12


. Controller


37


is joined by a control line


39


to release mechanisms


41


joined between cradle


28


and small UUV's


38


,


40


,


42


and


44


.




Those skilled in the art will appreciate that release mechanisms-


41


can be a spring-loaded release pin with a lanyard pull initiated by an actuator mechanism or an explosive squib which breaks the attachment latching on the small UUV. Whatever release mechanism is used, it is controlled by the host UUV's control computer


37


. Each release mechanism


41


joining a small UUV is independent, allowing the small UUV's to be deployed separately.




Referring particularly to

FIG. 2

, it will be seen that small UUV


40


has a cylindrical hull


62


and stern stabilizing fins


64


,


66


,


68


and


70


. Fins


58


on small UUV


38


and fins


64


on small UUV


40


slightly overlap so fins on its upper side continuously overlap the periphery of the forward axial cradle


28


. Small UUV


42


has a cylindrical hull


72


and stern stabilizing fins


74


,


76


,


78


and


80


. It will also be noted that fin


70


on small UUV


40


and fin


76


on small UUV


42


overlap so as to continuously overlap the axial cradle


28


on one of its axial sides. Small UUV


44


also has a cylindrical hull


82


and stern fins


84


,


86


,


88


and


90


. It will be observed that fin


74


on small UUV


42


and fins


88


on small UUV


44


overlap to continuously overlap the forward axial cradle


28


on its lower side, and fin


60


on small UUV


38


and fin


86


on small UUV


44


overlap to continuously overlap the forward axial cradle


28


on its other lateral side. It will also be observed that the stern fins


54


and


56


on small UUV


38


, fins


66


and


68


on small UUV


40


, fins


76


and


80


on small UUV


42


, and fins


84


and


90


on small UUV


40


extend slightly beyond the periphery of the cylindrical hull


12


of the host vehicle


10


. The cylindrical hulls at cylindrical hull


86


of the small UUV's


38


,


40


,


42


and


44


are, however, confined within the diameter of the cylindrical hull


12


of the host vehicle


10


so as to allow torpedo tube and swimout cage capability.




It will be appreciated that the launch of the small UUV can be executed with several different techniques. The small UUV can start its own propeller and swim away from the host at a greater velocity than the host. The small UUV can also be jettisoned from the host, either outboard or forward of the host UUV. Jettison methods include actuators or springs, which push the small UUV in the desired direction. After jettison, the small UUV can power away on its own.




Another launch technique require deceleration of the host UUV and simultaneously release of the small UUV allowing the small UUV's inertia to carry it forward of the host UUV. The small UUV then powers away.




Preferably, the small UUV's is packaged together on the cradle in such a way as to not exceed the standard 21 inch diameter of the host. This allows typical tube launch or cage swimout. If the fins on the small UUV are required to be larger for control purposes and extend beyond the standard 21 inch diameter, they should be pop out fins which extend during the small UUV's launch sequence.




Although the embodiment described above carries four small UUV's, it will be understood that, depending on the size of the small UUV's employed, greater or fewer numbers of UUV's can be carried. It will also be understood that the cradle projection does not need to be mounted on the bow, and in alternate embodiments the cradle projection can be mounted anywhere on the cylindrical hull. This option should incorporate the off-board jettison launch technique described above.




The invention allows multiple UUV's to be launched individually or together at any time. This operational technique allows the host UUV to significantly expand its operational area. These multiple UUV's can be networked together via acoustic or other communications to effectively generate a UUV with tremendous range and coverage for whatever mission is desired.




While the present invention has been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiment for performing the same function of the present invention without deviating therefrom. Therefore, the present invention should not be limited to any single embodiment, but rather construed in breadth and scope in accordance with the recitation of the appended claims.



Claims
  • 1. A launch platform for a host vehicle;a cradle having a generally cylindrical shape with peripheral axial recesses formed therein and arrayed around the cradle; and a release mechanism positioned within said cradle and adapted to releasably join small cylindrical undersea vehicles positioned in said peripheral axial recesses.
  • 2. The system of claim 1 wherein said cradle is positioned axially extending from the bow of said host vehicle.
  • 3. The system of claim 1 wherein said host vehicle is cylindrical in shape and said cradle is formed for positioning said small cylindrical undersea vehicles with the radius of said host vehicle.
  • 4. The system of claim 1 wherein said release mechanism is at least one actuated spring loaded release pin positioned in said cradle and adapted to join said small cylindrical undersea vehicles.
  • 5. The system of claim 1 wherein said release mechanism is at least one explosive squib positioned in said cradle and adapted to join said small cylindrical undersea vehicles.
  • 6. An undersea launch platform assembly comprising:a host vehicle having a bow, a stern and a generally cylindrical hull; a cradle projection extending from the host vehicle bow, and said cradle projection having at least one peripheral axial recess; and at least one carried vehicle mounted on the cradle projection with one carried vehicle being mounted in each said peripheral axial recess.
  • 7. The system of claim 6 wherein the carried vehicle has a generally cylindrical hull.
  • 8. The system of claim 7 wherein the carried vehicle has a stern and a plurality of stabilizing fins mounted adjacent said stern.
  • 9. The system as in claim 6 further comprising a release mechanism positioned within said cradle projection releasably joining each carried vehicle within said peripheral axial recess, said host vehicle having a controller joined to said release mechanism for actuating said release.
  • 10. The system as in claim 9 wherein said release mechanism is an actuated spring loaded release pin positioned in said cradle projection and releasably joining said carried vehicle.
  • 11. The system as in claim 9 wherein said release mechanism is an explosive squib positioned in said cradle projection and releasably joining said carried vehicle.
STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.

US Referenced Citations (8)
Number Name Date Kind
1296333 Shonnard Mar 1919 A
3461801 Vitale et al. Aug 1969 A
3724410 Lok Apr 1973 A
3969977 Opdahl et al. Jul 1976 A
4911058 Anderson et al. Mar 1990 A
5235931 Nadolink Aug 1993 A
5660135 Gomes et al. Aug 1997 A
5666897 Amstrong Sep 1997 A