Small x-ray tube with electron beam control optics

Information

  • Patent Grant
  • 8761344
  • Patent Number
    8,761,344
  • Date Filed
    Thursday, December 29, 2011
    13 years ago
  • Date Issued
    Tuesday, June 24, 2014
    10 years ago
Abstract
An x-ray tube comprising an anode and a cathode disposed at opposing ends of an electrically insulative cylinder. The x-ray tube includes an operating range of 15 kilovolts to 40 kilovolts between the cathode and the anode. The x-ray tube has an overall diameter, defined as a largest diameter of the x-ray tube anode, cathode, and insulative cylinder, of less than 0.6 inches. A direct line of sight exists between all points on an electron emitter at the cathode to a target at the anode.
Description
BACKGROUND

A desirable characteristics of x-ray tubes for some applications, especially for portable x-ray sources, is small size. Due to very large voltages between a cathode and an anode of an x-ray tube, such as tens of kilovolts, it can be difficult to reduce x-ray tubes to a smaller size.


Another desirable characteristic of x-ray tubes is electron beam stability within the x-ray tube, including both positional stability and steady electron beam flux. A moving or wandering electron beam within the x-ray tube can result in instability or moving x-ray flux output. An unsteady electron beam flux can result in unsteady x-ray flux output.


Another desirable characteristic of x-ray tubes is a consistent and centered location where the electron beam hits the target, which can result in a more a consistent and centered location where x-rays hit a sample. Another desirable characteristic of x-ray tubes is efficient use of electrical power input to the x-ray source. Another desirable characteristic is high x-ray flux from a small x-ray source.


SUMMARY

It has been recognized that it would be advantageous to have an x-ray tube with small size, electron beam stability, consistent and centered location where the electron beam hits the target, efficient use of electrical power input to the x-ray source, and high x-ray flux. The present invention is directed to an x-ray tube that satisfies these needs.


The x-ray tube comprises an anode disposed at one end of an electrically insulative cylinder, the anode including a target which can be configured to emit x-rays in response to electrons impinging upon the target, and a cathode disposed at an opposing end of the insulative cylinder from the anode, the cathode including an electron emitter. The x-ray tube includes an operating range of 15 kilovolts to 40 kilovolts between the cathode and the anode. The x-ray tube includes an overall diameter, defined as a largest diameter of the x-ray tube anode, cathode, and insulative cylinder, of less than 0.6 inches. A direct line of sight exists between all points on the electron emitter to the target.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic cross-sectional side view of an x-ray tube, with a transmission target, in accordance with an embodiment of the present invention;



FIG. 2 is a schematic cross-sectional side view of an x-ray tube, with a transmission target, in accordance with an embodiment of the present invention;



FIG. 3 is a schematic cross-sectional side view of an x-ray tube, with a transmission target, in accordance with an embodiment of the present invention;



FIGS. 4
a-c are schematic cross-sectional side views of x-ray tube cathodes with primary optics, and electron emitters, in accordance with embodiments of the present invention;



FIG. 5 is a schematic cross-sectional side view of an x-ray tube, with a reflection target, in accordance with an embodiment of the present invention


DEFINITIONS





    • As used herein, the term “direct line of sight” means no solid structures in a straight line between the objects. Specifically, no solid structures in a straight line between all points on the cathode electron emitter and the anode target, other than portions of the electron emitter and the anode target themselves.

    • As used herein, the term “mil” is a unit of length equal to 0.001 inches.

    • As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. For example, an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have about the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result.








DETAILED DESCRIPTION

Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.


As illustrated in FIGS. 1-5, x-ray tubes 10, 30, and 50 are shown comprising an anode 12 disposed at one end of an electrically insulative cylinder 11. The insulative cylinder 11 has a hollow central section 29. The anode 12 can include a target 13 which can be configured to emit x-rays 26 in response to electrons 24 impinging upon the target 13. A cathode 15 can be disposed at an opposing end of the insulative cylinder 11 from the anode 12, the cathode 15 can include an electron emitter 16.



FIGS. 1-3 show x-ray tubes 10 and 30 that have transmission targets 13a. A transmission target 13a is a target that is configured for allowing electrons 24 from the electron emitter 16 to hit the target 13 on one side and allow x-rays 26 to exit the x-ray tube from the other side of the target. An x-ray tube 50 with a reflection target 13b and a side window 51 is shown in FIG. 5. With a reflection target 13b, electrons impinge upon one side of the target 13b and x-rays are emitted from this same side towards the x-ray window 51.


The electron emitter can be a filament. The term “electron emitter”, unless specified otherwise, can include multiple electron emitters, thus the x-ray tube can include a single electron emitter, or can include multiple electron emitters.


As shown in FIG. 1, the x-ray tube 10 can include a primary optic 26, comprising a cavity in the cathode 15, having an open end 28 facing the electron emitter 16, and disposed on an opposite side of the electron emitter 16 from the anode 12. The x-ray tube 10 can include electrical connections 21 to be connected to a power source and electrical connector(s) 27 for the electron emitter 16. The electrical connectors 27 can include two wires for supplying alternating current to a filament electron emitter 16. In one embodiment, one of these two wires is electrically connected to the cathode 15 and the other is electrically insulated from the cathode 15. In another embodiment, the electrical connectors 27 are not electrically connected to the cathode 15, and the cathode 12 is maintained at a different voltage than the electron emitter 16. A decision of whether to electrically connect the electron emitter 16 to the cathode 15 may be made based on desired effect on the electron beam 24.


Various embodiments of the cathode 15, the primary optic 26, and the electron emitter 16 are shown in FIGS. 4a-c. In FIG. 4a, the electron emitter 16 is disposed fully outside of the primary optic 26 cavity. In FIG. 4b, the electron emitter 16 is disposed partially inside of the primary optic 26 cavity. In FIG. 4c, the electron emitter 16 is disposed fully inside the primary optic 26 cavity. A decision of placement of the electron emitter 16 with respect to the primary optic 26 may be made based on desired effect of the primary optic on the electron beam 24.


A cylindrical, electrically conductive electron optic divergent lens 14 can be attached to the anode 12 and can have a far end 22 extending from the anode 12 towards the cathode 15. The cylindrical shape of the divergent lens 14 can be an annular, hollow shape, to allow electrons to pass through a central section of the divergent lens 14 from the electron emitter 16 to the target 13.


In the present invention, the entire divergent lens 14 can be made of electrically conductive material in one embodiment, or only the surface, or a substantial portion of the surface, of the divergent lens 14 can be made of electrically conductive material in another embodiment. Thus, the term “electrically conductive electron optic divergent lens” does not necessarily mean that the entire structure is electrically conductive, only that enough of the divergent lens 14 is electrically conductive to allow this structure to act as an electron optic lens.


The divergent lens 14 can be attached directly to, and thus electrically connected to, the anode 12. Alternatively, an electrically insulative connector or spacer 17 can separate the anode 12 from the divergent lens 14, thus electrically insulating the divergent lens 14 from the anode 12. In one embodiment, in which an electrically insulative connector or spacer 17 is used, the divergent lens 14 can be maintained at a voltage that is intermediate between a voltage of the cathode 15 and a voltage of the anode 12.


If spacer 17 is used, a separate structure can be used to provide voltage to the divergent lens 14, or a portion of the surface 27 of the spacer can be electrically conductive, such as with a metal coating on this portion of the surface 27, to allow transfer of a voltage to the divergent lens 14.


A cylindrical, electrically conductive electron optic convergent lens 19 can be attached to and can surround the cathode 15 and can have a far end 23 extending from the cathode 15 towards the anode 12. The cylindrical shape of the convergent lens 19 can be an annular, hollow shape, to allow electrons to pass from the electron emitter 16 through a central section of the convergent lens 19 to the target 13.


The entire convergent lens 19 can be made of electrically conductive material in one embodiment, or only the surface, or a substantial portion of the surface, of the convergent lens 19 can be made of electrically conductive material in another embodiment. Thus, the term “electrically conductive electron optic convergent lens” does not necessarily mean that the entire structure is electrically conductive, only that enough of the convergent lens is electrically conductive to allow this structure to act as an electron optic lens.


The convergent lens 19 can be attached directly to, and thus electrically connected to, the cathode 15 in one embodiment. The convergent lens 19 can be attached to the cathode 15 through an electrically insulative connector or spacer 25, and thus the convergent lens 19 can be electrically insulated from the cathode 15, in another embodiment. In one embodiment, in which an electrically insulative connector or spacer 25 is used, the convergent lens 19 can by maintained at a voltage that is intermediate between a voltage of the cathode 15 and a voltage of the anode 12.


It can be desirable in some situations for electron beam and target spot shape control to have the convergent lens 19 electrically insulated from the cathode 15 and/or have the divergent lens 14 electrically insulated from the anode 12, and a separate electrical connection made to the convergent lens 19 and/or divergent lens 14. It can be desirable in other situations, for simplification of power supply and/or tube construction, to have the divergent lens 14 electrically connected to the anode 12 and/or the convergent lens 19 to be electrically connected to the cathode 15.


Electron flight distance EFD, defined as a distance from the electron emitter 16 to the target 13, can be an indication of overall tube size. It can be desirable in some circumstances, especially for miniature, portable x-ray tubes, to have a short electron flight distance EFD. The electron flight distance EFD can be less than 0.8 inches in one embodiment, less than 0.7 inches in another embodiment, less than 0.6 inches in another embodiment, less than 0.4 inches in another embodiment, or less than 0.2 inches in another embodiment.


The tube overall diameter OD is defined as a largest diameter of the x-ray tube anode 12, cathode 15, or insulative cylinder 11, measured perpendicular to the line of sight 9 between the electron emitter 16 and the target 13. Any structure electrically connected to the cathode 15, and thus having substantially the same voltage as the cathode 15, will be considered part of the cathode 15 for determining the cathode diameter. If, in FIG. 3, the cathode 15 is electrically connected to tube end cap 18, then the end cap 18 will be considered part of the cathode 15 for determining cathode diameter, and the cathode diameter will be the tube end cap 18 diameter which will also be the overall diameter OD. The x-ray tube overall diameter is less than 0.7 inches in one embodiment, less than 0.6 inches in another embodiment, or less than 0.5 inches in another embodiment.


In one embodiment, a direct line of sight 9 can exist between all points on the electron emitter 16 and the target 13. The direct line of sight 9 can extend between all points on the electron emitter 16 through a central portion of the convergent lens 19, through a central portion of the divergent lens 14, to the target 13. This direct line of sight 9 can be beneficial for improved use of electrons and thus improved power efficiency (more power output compared to power input).


A relationship between the electron flight distance EFD and the overall diameter OD can be important for small tube design with optimal performance, such as small tube size with good electron beam control and stability. In the present invention, electron flight distance EFD divided by an overall diameter OD is greater than the 1.0 and less than 1.5 in one embodiment, the electron flight distance EFD divided by an overall diameter OD is greater than the 1.1 and less than 1.4 in another embodiment, the electron flight distance EFD divided by an overall diameter OD is greater than the 1.2 and less than 1.3 in another embodiment.


A maximum voltage standoff length MVS is defined as a distance from the far end 22 of the divergent lens 14 to the far end 23 of the convergent lens 19. The maximum voltage standoff length MVS can indicate electron acceleration distance within the tube. Electron acceleration distance can be an important dimension for electron spot centering on the target (location where electrons primarily impinge upon the target). In the present invention, the maximum voltage standoff length MVS is less than 0.15 inches in one embodiment, less than 0.25 inches in another embodiment, or less than 0.35 inches in another embodiment.


The relationship between an inside diameter CID of the convergent lens 19 and an outside diameter DOD of the divergent lens 14 can be important for electron beam shaping. In one embodiment, the inside diameter CID of the convergent lens 19 is greater than 0.85 times the outside diameter of the divergent lens DOD (CID>0.85*DOD). In another embodiment, the inside diameter CID of the convergent lens 19 is greater than 0.95 times the outside diameter of the divergent lens DOD (CID>0.95*DOD). In another embodiment, the inside diameter CID of the convergent lens 19 is greater than the outside diameter of the divergent lens DOD (CID>DOD). In another embodiment, the inside diameter CID of the convergent lens 19 is greater than 1.1 times the outside diameter of the divergent lens DOD (CID>1.1*DOD).


The actual electrical field gradient can vary through the tube, but for purposes of claim definition, electrical field gradient is defined by the tube voltage between the cathode and the anode, divided by the maximum voltage standoff length MVS. A tube that can withstand higher electrical field gradients is a tube that can withstand very large voltages relative to the small size of the tube, and can function properly without breakdown. In the present invention, the electrical field gradient can be greater than 200 volts per mil in one embodiment, greater than 250 volts per mil in another embodiment, greater than 300 volts per mil in another embodiment, greater than 400 volts per mil in another embodiment, greater than 500 volts per mil in another embodiment, or greater than 600 volts per mil in another embodiment.


A relationship between an outside diameter COD of the convergent lens 19 and the maximum voltage standoff length MVS can be important for a consistent, centered electron spot on the target and for small tube size. In one embodiment, an outside diameter COD of the convergent lens 19 divided by the maximum voltage standoff length MVS is greater than 1 and less than 2.


Insulative cylinder length ICL is defined as a distance from closest contact of the insulative cylinder 11 with the cathode 15, or other electrically conductive structure electrically connected to the cathode 15, to closest contact with the anode 14, or other electrically conductive structure electrically connected to the anode 14. Insulative cylinder length ICL is a distance along a surface of the insulative cylinder 11. Insulative cylinder length ICL can be based on a straight line if the insulative cylinder 11 has a straight structure between cathode and anode or can be based on a curved or bent line if the insulative cylinder, and other insulating structures if used, have bends or curves. Insulative cylinder length ICL is thus an indication of distance of insulative material required to electrically insulate the anode 12 from the cathode 15. FIGS. 2 & 3 show insulative cylinder length ICL. In both figures, it is assumed for purposes of defining insulative cylinder length ICL that the tube end cap 18 is electrically conductive and is electrically connected to the cathode 15.


It can be beneficial, for reduction of tube size, to have a small insulative cylinder length ICL. In the present invention, the insulative cylinder length can be less than 1 inch in one embodiment, less than 0.85 inches in another embodiment, less than 0.7 inches in another embodiment, or less than 0.55 inches in another embodiment.


It can be beneficial for some applications, such as portable x-ray tubes, to have a small tube. Tube overall length OL is defined as x-ray tube length from a far end of the cathode to a far end of the anode.


A relationship between the overall length OL and overall diameter OD can be important for tube size and optimal electron beam control. In the present invention, the overall length OL divided by an overall diameter OD can be greater than 1.7 and less than 2.5 in one embodiment, greater than 1.9 and less than 2.3 in another embodiment, or greater than 2.0 and less than 2.2 in another embodiment.


A relationship between the outside diameter DOD of the divergent lens 14 divided by an inside diameter DID of the divergent lens 14 can be important for electron beam control. In the present invention, an outside diameter DOD of the divergent lens 14 divided by an inside diameter DID of the divergent lens 14 can be greater than 1.6 and less than 3.4 in one embodiment, greater than 1.9 and less than 3.0 in another embodiment, or greater than 2.1 and less than 2.5 in another embodiment.


A benefit of the present invention is the ability for a small x-ray tube to be operated at high voltages between the cathode and the anode. The tubes 10, 30, and 50 of the present invention can comprise or include an operating range of 15 kilovolts to 40 kilovolts in one embodiment, an operating range of 50 kilovolts to 80 kilovolts in another embodiment, or an operating range of 15 kilovolts to 60 kilovolts in another embodiment. An x-ray tube that includes a certain voltage operating range means that the x-ray tube is configured to operate effectively at all voltages within that range. For example, the term “an operating range of 15 kilovolts to 40 kilovolts” is used herein to refer to a tube with an operating range effectively at all voltages within 15 to 40 kilovolts, including by way of example, an operating range of 14 to 41 kilovolts.


The various embodiments described herein can have high electron transport efficiency. Electron transport efficiency (ETE) is defined as a percent of electrons absorbed by the target Et divided by electrons emitted from the electron emitter








E
e



(


E





T





E

=


E
t


E
e



)


.





The percent or electrons absorbed by the target Et can be the percent absorbed within a certain area, such as within a specified radius of a center of the target or within a specified diameter spot size anywhere on the target 13. In one embodiment, 90% of electrons emitted by the electron emitter are absorbed within a 0.75 millimeter radius of a center of the target. In another embodiment, 90% of electrons emitted by the electron emitter are absorbed within a 0.4 millimeter radius of a center of the target. In another embodiment, 90% of electrons emitted by the electron emitter are absorbed within a 0.3 millimeter diameter of a spot on the target (anywhere on the target).


The previously described x-ray tubes 10 and 30 can have many advantages, including small size, electron beam stability, consistent and centered location where the electron beam hits the target, and efficient use of electrical power input to the x-ray source, and high voltage between anode and cathode. Many of these advantages are achieved, not by a single factor alone, but by a combination of factors or tube dimensions. Thus, the present invention is directed to an x-ray tube that combines various size relationships and structures to provide improved x-ray tube performance.


For example, one x-ray tube design that has provided the benefits just mentioned, has the following approximate dimensions:

    • Convergent lens inside diameter CID=0.18 inches
    • Convergent lens outside diameter COD=0.30 inches
    • Divergent lens inside diameter DID=0.08 inches
    • Divergent lens outside diameter DOD=0.18 inches
    • Electron flight distance EFD=0.66 inches
    • Insulative cylinder length ICL=0.62 inches
    • Maximum voltage standoff MVS=0.20 inches
    • Overall diameter OD=0.52 inches
    • Overall length OL=1.1 inches


      This x-ray tube was designed to include an operating range of 10 kilovolts to 40 kilovolts between the cathode 15 and the anode 12. The anode 12 of this tube is electrically connected to the divergent lens 14 and the cathode 15 is electrically connected to the convergent lens 19.


It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention. While the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth herein.

Claims
  • 1. An x-ray tube, comprising: a. an electrically insulative cylinder;b. an anode disposed at one end of the insulative cylinder, the anode including a target which is configured to emit x-rays in response to electrons impinging upon the target;c. a cathode disposed at an opposing end of the insulative cylinder from the anode, the cathode including an electron emitter;d. a primary optic, comprising a cavity in the cathode, having an open end facing the electron emitter, and disposed on an opposite side of the electron emitter from the anode;e. an operating range of 15 kilovolts to 40 kilovolts between the cathode and the anode;f. an overall diameter, defined as a largest diameter of the x-ray tube anode, cathode, and insulative cylinder, being less than 0.6 inches;g. a cylindrical, electrically conductive electron optic divergent lens, attached to the anode and electrically connected to the anode, and having a far end extending from the anode towards the cathode;h. a cylindrical, electrically conductive electron optic convergent lens, attached to and surrounding the cathode and electrically connected to the cathode, and having a far end extending from the cathode towards the anode;i. an electron flight distance, from the electron emitter to the target, of less than 0.8 inches;j. a maximum voltage standoff length, from the far end of the divergent lens to the far end of the convergent lens, being less than 0.25 inches;k. an insulative cylinder length from closest contact with the cathode to closest contact with the anode being less than 0.7 inches; andl. a direct line of sight between all points on the electron emitter through a central portion of the convergent lens, through a central portion of the divergent lens, to the target.
  • 2. The x-ray tube of claim 1, wherein an inside diameter of the convergent lens is greater than 0.95 times an outside diameter of the divergent lens.
  • 3. The x-ray tube of claim 1, wherein the electron flight distance, from the electron emitter to the target, is less than 0.7 inches.
  • 4. The x-ray tube of claim 1, wherein the electron flight distance divided by the overall diameter is greater than 1.1 and less than 1.4.
  • 5. The x-ray tube of claim 1, wherein an outside diameter of the convergent lens divided by the maximum voltage standoff length is greater than 1 and less than 2.
  • 6. The x-ray tube of claim 1, wherein the target is a transmission target.
  • 7. The x-ray tube of claim 1, wherein an overall length, of the x-ray tube from a far end of the cathode to a far end of the anode, is less than 1.1 inches.
  • 8. The x-ray tube of claim 1, wherein the operating range is from 15 kilovolts to 60 kilovolts.
  • 9. The x-ray tube of claim 1, wherein an outside diameter of the divergent lens divided by an inside diameter of the divergent lens is greater than 1.9 and less than 3.0.
  • 10. An x-ray tube, comprising: a. an electrically insulative cylinder;b. an anode disposed at one end of the insulative cylinder, the anode including a target which is configured to emit x-rays in response to electrons impinging upon the target;c. a cathode disposed at an opposing end of the insulative cylinder from the anode, the cathode including an electron emitter;d. a primary optic, comprising a cavity in the cathode, having an open end facing the electron emitter, and disposed on an opposite side of the electron emitter from the anode;e. an operating range of 15 kilovolts to 40 kilovolts between the cathode and the anode;f. an overall diameter, defined as a largest diameter of the x-ray tube anode, cathode, and insulative cylinder, being less than 0.6 inches;g. a cylindrical, electrically conductive electron optic convergent lens, attached to and surrounding the cathode and electrically connected to the cathode, and having a far end extending from the cathode towards the anode;h. an electron flight distance, from the electron emitter to the target, of less than 0.7 inches;i. a maximum voltage standoff length, from the far end of the divergent lens to the far end of the convergent lens, being less than 0.25 inches;j. a direct line of sight between all points on the electron emitter through a central portion of the convergent lens to the target; andk. wherein 90% of electrons emitted by the electron emitter are absorbed within a 0.75 millimeter radius of a center of the target.
  • 11. The x-ray tube of claim 10, wherein the target is a transmission target.
  • 12. The x-ray tube of claim 10, wherein the operating range is from 15 kilovolts to 60 kilovolts.
  • 13. The x-ray tube of claim 10, wherein 90% of electrons emitted by the electron emitter are absorbed within a 0.4 millimeter radius of a center of the target.
  • 14. The x-ray tube of claim 10, wherein 90% of electrons emitted by the electron emitter are absorbed within a 0.3 millimeter diameter spot on the target.
  • 15. An x-ray tube, comprising: a. an electrically insulative cylinder;b. an anode disposed at one end of the insulative cylinder, the anode including a target which is configured to emit x-rays in response to electrons impinging upon the target;c. a cathode disposed at an opposing end of the insulative cylinder from the anode, the cathode including an electron emitter;d. an operating range of 15 kilovolts to 40 kilovolts between the cathode and the anode;e. an insulative cylinder length from closest contact with the cathode to closest contact with the anode being less than 0.7 inches;f. an overall diameter, defined as a largest diameter of the x-ray tube anode, cathode, and insulative cylinder, being less than 0.6 inches;g. a direct line of sight between all points on the electron emitter to the target; andh. wherein 90% of electrons emitted by the electron emitter are absorbed within a 0.75 millimeter radius of a center of the target.
  • 16. The x-ray tube of claim 15, wherein the target is a transmission target.
  • 17. The x-ray tube of claim 15, wherein the operating range is from 15 kilovolts to 60 kilovolts.
  • 18. The x-ray tube of claim 15, wherein 90% of electrons emitted by the electron emitter are absorbed within a 0.4 millimeter radius of a center of the target.
  • 19. The x-ray tube of claim 15, wherein 90% of electrons emitted by the electron emitter are absorbed within a 0.3 millimeter diameter spot on the target.
  • 20. The x-ray tube of claim 15, wherein the x-ray tube has an electron flight distance, from the electron emitter to the target, of less than 0.7 inches.
US Referenced Citations (249)
Number Name Date Kind
1881448 Forde et al. Oct 1932 A
1946288 Kearsley Feb 1934 A
2291948 Cassen Aug 1942 A
2316214 Atlee Apr 1943 A
2329318 Atlee et al. Sep 1943 A
2340363 Atlee et al. Feb 1944 A
2502070 Atlee et al. Mar 1950 A
2663812 Jamison et al. Mar 1950 A
2683223 Hosemann Jul 1954 A
2952790 Steen Sep 1960 A
3356559 Mohn et al. Dec 1967 A
3397337 Denholm Aug 1968 A
3434062 Cox Mar 1969 A
3665236 Gaines et al. May 1972 A
3679927 Kirkendall Jul 1972 A
3691417 Gralenski Sep 1972 A
3741797 Chavasse, Jr. et al. Jun 1973 A
3751701 Gralenski et al. Aug 1973 A
3801847 Dietz Apr 1974 A
3828190 Dahlin et al. Aug 1974 A
3851266 Conway Nov 1974 A
3872287 Kooman Mar 1975 A
3882339 Rate et al. May 1975 A
3894219 Weigel Jul 1975 A
3962583 Holland et al. Jun 1976 A
3970884 Golden Jul 1976 A
4007375 Albert Feb 1977 A
4075526 Grubis Feb 1978 A
4160311 Ronde et al. Jul 1979 A
4163900 Warren et al. Aug 1979 A
4178509 More et al. Dec 1979 A
4184097 Auge Jan 1980 A
4250127 Warren et al. Feb 1981 A
4293373 Greenwood Oct 1981 A
4368538 McCorkle Jan 1983 A
4393127 Greschner et al. Jul 1983 A
4400822 Kuhnke et al. Aug 1983 A
4421986 Friauf et al. Dec 1983 A
4443293 Mallon et al. Apr 1984 A
4463338 Utner et al. Jul 1984 A
4504895 Steigerwald Mar 1985 A
4521902 Peugeot Jun 1985 A
4532150 Endo et al. Jul 1985 A
4573186 Reinhold Feb 1986 A
4576679 White Mar 1986 A
4591756 Avnery May 1986 A
4608326 Neukermans et al. Aug 1986 A
4675525 Amingual et al. Jun 1987 A
4679219 Ozaki Jul 1987 A
4688241 Peugeot Aug 1987 A
4705540 Hayes Nov 1987 A
4734924 Yahata et al. Mar 1988 A
4761804 Yahata Aug 1988 A
4777642 Ono Oct 1988 A
4797907 Anderton Jan 1989 A
4818806 Kunimune et al. Apr 1989 A
4819260 Haberrecker Apr 1989 A
4862490 Karnezos et al. Aug 1989 A
4870671 Hershyn Sep 1989 A
4876330 Higashi et al. Oct 1989 A
4878866 Mori et al. Nov 1989 A
4885055 Woodbury et al. Dec 1989 A
4891831 Tanaka et al. Jan 1990 A
4933557 Perkins Jun 1990 A
4939763 Pinneo et al. Jul 1990 A
4957773 Spencer et al. Sep 1990 A
4960486 Perkins et al. Oct 1990 A
4969173 Valkonet Nov 1990 A
4979198 Malcolm et al. Dec 1990 A
4979199 Cueman et al. Dec 1990 A
4995069 Tanaka Feb 1991 A
5010562 Hernandez et al. Apr 1991 A
5063324 Grunwald et al. Nov 1991 A
5066300 Isaacson et al. Nov 1991 A
5077771 Skillicorn et al. Dec 1991 A
5077777 Daly Dec 1991 A
5090046 Friel Feb 1992 A
5105456 Rand et al. Apr 1992 A
5117829 Miller et al. Jun 1992 A
5153900 Nomikos et al. Oct 1992 A
5161179 Suzuki et al. Nov 1992 A
5173612 Imai et al. Dec 1992 A
5178140 Ibrahim Jan 1993 A
5187737 Watanabe Feb 1993 A
5196283 Ikeda et al. Mar 1993 A
5200984 Laeuffer Apr 1993 A
5217817 Verspui et al. Jun 1993 A
5226067 Allred et al. Jul 1993 A
RE34421 Parker et al. Oct 1993 E
5258091 Imai et al. Nov 1993 A
5267294 Kuroda et al. Nov 1993 A
5343112 Wegmann Aug 1994 A
5347571 Furbee et al. Sep 1994 A
5391958 Kelly Feb 1995 A
5392042 Pellon Feb 1995 A
5400385 Blake et al. Mar 1995 A
5422926 Smith et al. Jun 1995 A
5428658 Oettinger et al. Jun 1995 A
5432003 Plano et al. Jul 1995 A
5469429 Yamazaki et al. Nov 1995 A
5469490 Golden et al. Nov 1995 A
5478266 Kelly Dec 1995 A
5521851 Wei et al. May 1996 A
5524133 Neale et al. Jun 1996 A
RE35383 Miller et al. Nov 1996 E
5571616 Phillips et al. Nov 1996 A
5578360 Viitanen Nov 1996 A
5607723 Plano et al. Mar 1997 A
5621780 Smith et al. Apr 1997 A
5627871 Wang May 1997 A
5631943 Miles May 1997 A
5673044 Pellon Sep 1997 A
5680433 Jensen Oct 1997 A
5682412 Skillicorn et al. Oct 1997 A
5696808 Lenz Dec 1997 A
5706354 Stroehlein Jan 1998 A
5729583 Tang et al. Mar 1998 A
5774522 Warburton Jun 1998 A
5812632 Schardt et al. Sep 1998 A
5835561 Moorman et al. Nov 1998 A
5870051 Warburton Feb 1999 A
5898754 Gorzen Apr 1999 A
5907595 Sommerer May 1999 A
5978446 Resnick Nov 1999 A
6002202 Meyer et al. Dec 1999 A
6005918 Harris et al. Dec 1999 A
6044130 Inazura et al. Mar 2000 A
6062931 Chuang et al. May 2000 A
6069278 Chuang May 2000 A
6073484 Miller et al. Jun 2000 A
6075839 Treseder Jun 2000 A
6097790 Hasegawa et al. Aug 2000 A
6129901 Moskovits et al. Oct 2000 A
6133401 Jensen Oct 2000 A
6134300 Trebes et al. Oct 2000 A
6184333 Gray Feb 2001 B1
6205200 Boyer et al. Mar 2001 B1
6277318 Bower et al. Aug 2001 B1
6282263 Arndt et al. Aug 2001 B1
6288209 Jensen Sep 2001 B1
6307008 Lee et al. Oct 2001 B1
6320019 Lee et al. Nov 2001 B1
6351520 Inazaru Feb 2002 B1
6385294 Suzuki et al. May 2002 B2
6388359 Duelli et al. May 2002 B1
6438207 Chidester et al. Aug 2002 B1
6477235 Chornenky et al. Nov 2002 B2
6487272 Kutsuzawa Nov 2002 B1
6487273 Takenaka et al. Nov 2002 B1
6494618 Moulton Dec 2002 B1
6546077 Chornenky et al. Apr 2003 B2
6567500 Rother May 2003 B2
6645757 Okandan et al. Nov 2003 B1
6646366 Hell et al. Nov 2003 B2
6658085 Sklebitz et al. Dec 2003 B2
6661876 Turner et al. Dec 2003 B2
6740874 Doring May 2004 B2
6778633 Loxley et al. Aug 2004 B1
6799075 Chornenky et al. Sep 2004 B1
6803570 Bryson, III et al. Oct 2004 B1
6803571 Mankos et al. Oct 2004 B1
6816573 Hirano et al. Nov 2004 B2
6819741 Chidester Nov 2004 B2
6852365 Smart et al. Feb 2005 B2
6866801 Mau et al. Mar 2005 B1
6876724 Zhou Apr 2005 B2
6956706 Brandon Oct 2005 B2
6976953 Pelc Dec 2005 B1
6987835 Lovoi Jan 2006 B2
7035379 Turner et al. Apr 2006 B2
7046767 Okada et al. May 2006 B2
7049735 Ohkubo et al. May 2006 B2
7050539 Loef et al. May 2006 B2
7075699 Oldham et al. Jul 2006 B2
7085354 Kanagami Aug 2006 B2
7108841 Smalley Sep 2006 B2
7110498 Yamada Sep 2006 B2
7130380 Lovoi et al. Oct 2006 B2
7130381 Lovoi et al. Oct 2006 B2
7203283 Puusaari Apr 2007 B1
7206381 Shimono et al. Apr 2007 B2
7215741 Ukita May 2007 B2
7224769 Turner May 2007 B2
7233647 Turner et al. Jun 2007 B2
7286642 Ishikawa et al. Oct 2007 B2
7305066 Ukita Dec 2007 B2
7317784 Durst et al. Jan 2008 B2
7358593 Smith et al. Apr 2008 B2
7382862 Bard et al. Jun 2008 B2
7399794 Harmon et al. Jul 2008 B2
7410603 Noguchi et al. Aug 2008 B2
7428298 Bard et al. Sep 2008 B2
7448801 Oettinger et al. Nov 2008 B2
7448802 Oettinger et al. Nov 2008 B2
7486774 Cain Feb 2009 B2
7526068 Dinsmore Apr 2009 B2
7529345 Bard et al. May 2009 B2
7618906 Meilahti Nov 2009 B2
7634052 Grodzins et al. Dec 2009 B2
7649980 Aoki et al. Jan 2010 B2
7650050 Haffner et al. Jan 2010 B2
7657002 Burke et al. Feb 2010 B2
7675444 Smith et al. Mar 2010 B1
7680652 Giesbrecht et al. Mar 2010 B2
7693265 Hauttmann et al. Apr 2010 B2
7709820 Decker et al. May 2010 B2
7737424 Xu et al. Jun 2010 B2
7756251 Davis et al. Jul 2010 B2
7983394 Kozaczek et al. Jul 2011 B2
20020075999 Rother Jun 2002 A1
20020094064 Zhou Jul 2002 A1
20030096104 Tobita et al. May 2003 A1
20030152700 Asmussen et al. Aug 2003 A1
20030165418 Ajayan et al. Sep 2003 A1
20040076260 Charles, Jr. et al. Apr 2004 A1
20050018817 Oettinger et al. Jan 2005 A1
20050141669 Shimono et al. Jun 2005 A1
20050207537 Ukita Sep 2005 A1
20060073682 Furukawa et al. Apr 2006 A1
20060098778 Oettinger et al. May 2006 A1
20060210020 Takahashi et al. Sep 2006 A1
20060233307 Dinsmore Oct 2006 A1
20060269048 Cain Nov 2006 A1
20060280289 Hanington et al. Dec 2006 A1
20070025516 Bard et al. Feb 2007 A1
20070111617 Meilahti May 2007 A1
20070165780 Durst et al. Jul 2007 A1
20070172104 Nishide Jul 2007 A1
20070183576 Burke et al. Aug 2007 A1
20070217574 Beyerlein Sep 2007 A1
20080199399 Chen et al. Aug 2008 A1
20080296479 Anderson et al. Dec 2008 A1
20080296518 Xu et al. Dec 2008 A1
20080317982 Hecht Dec 2008 A1
20090085426 Davis et al. Apr 2009 A1
20090086923 Davis et al. Apr 2009 A1
20090213914 Dong et al. Aug 2009 A1
20090243028 Dong et al. Oct 2009 A1
20100098216 Dobson Apr 2010 A1
20100126660 O'Hara May 2010 A1
20100140497 Damiano, Jr. et al. Jun 2010 A1
20100189225 Ernest et al. Jul 2010 A1
20100239828 Cornaby et al. Sep 2010 A1
20100243895 Xu et al. Sep 2010 A1
20100285271 Davis et al. Nov 2010 A1
20110121179 Liddiard et al. May 2011 A1
20120025110 Davis et al. Feb 2012 A1
20120076276 Wang et al. Mar 2012 A1
20120087476 Liddiard et al. Apr 2012 A1
Foreign Referenced Citations (31)
Number Date Country
1030936 May 1958 DE
4430623 Mar 1996 DE
19818057 Nov 1999 DE
0297808 Jan 1989 EP
0330456 Aug 1989 EP
0400655 May 1990 EP
0676772 Mar 1995 EP
1252290 Nov 1971 GB
57 082954 Aug 1982 JP
3170673 Jul 1991 JP
4171700 Jun 1992 JP
05066300 Mar 1993 JP
5135722 Jun 1993 JP
06119893 Jul 1994 JP
6289145 Oct 1994 JP
6343478 Dec 1994 JP
8315783 Nov 1996 JP
2003007237 Jan 2003 JP
2003088383 Mar 2003 JP
2003510236 Mar 2003 JP
2003211396 Jul 2003 JP
2006297549 Nov 2006 JP
1020050107094 Nov 2005 KR
WO 9965821 Dec 1999 WO
WO 0017102 Mar 2000 WO
WO 03076951 Sep 2003 WO
WO 2008052002 May 2008 WO
WO 2009009610 Jan 2009 WO
WO 2009045915 Apr 2009 WO
WO 2009085351 Jul 2009 WO
WO 2010107600 Sep 2010 WO
Non-Patent Literature Citations (45)
Entry
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010; Steven Liddiard; notice of allowance dated Jun. 4, 2013.
U.S. Appl. No. 12/890,325, filed Sep. 24, 2010; Dongbing Wang; notice of allowance dated Jul. 16, 2013.
Barkan et al., “Improved window for low-energy x-ray transmission a Hybrid design for energy-dispersive microanalysis,” Sep. 1995, 2 pages, Ectroscopy 10(7).
Blanquart et al.; “XPAD, a New Read-out Pixel Chip for X-ray Counting”; IEEE Xplore; Mar. 25, 2009.
Das, D. K., and K. Kumar, “Chemical vapor deposition of boron on a beryllium surface,” Thin Solid Films, 83(1), 53-60.
Das, K., and Kumar, K., “Tribological behavior of improved chemically vapor-deposited boron on beryllium,” Thin Solid Films, 108(2), 181-188.
Gevin et al., “IDeF-X V1.0: performances of a new CMOS multi channel analogue readout ASIC for Cd(Zn)Te detectors”, IDDD, Oct. 2005, 433-437, vol. 1.
Grybos et al., “DEDIX—development of fully integrated multichannel ASCI for high count rate digital x-ray imaging systems”, IEEE, 693-696, vol. 2.
Grybos et al., “Measurements of matching and high count rate performance of mulitchannel ASIC for digital x-ray imaging systems”, IEEE, Aug. 2007, 1207-1215, vol. 54, Issue 4.
Grybos et al., “Pole-Zero cancellation circuit with pulse pile-up tracking system for low noise charge-sensitive amplifiers”, Feb. 2008, 583-590, vol. 55, Issue 1.
Hanigofsky, J. A., K. L. More, and W. J. Lackey, “Composition and microstructure of chemically vapor-deposited boron nitride, aluminum nitride, and boron nitride + aluminum nitride composites,” J. Amer. Ceramic Soc. 74, 301 (1991).
http://www.orau.org/ptp/collectio/xraytubescollidge/MachlettCW250T.htm, 1999, 2 pages.
Komatsu, S., and Y. Moriyoshi, “Influence of atomic hydrogen on the growth reactions of amorphous boron films in a low-pressure B.sub.2 H.sub.6 +He+H.sub.2 plasma”, J. Appl. Phys. 64, 1878 (1988).
Komatsu, S., and Y. Moriyoshi, “Transition from amorphous to crystal growth of boron films in plasma-enhanced chemical vapor deposition with B.sub.2 H.sub.6 +He,” J. Appl. Phys., 66, 466 (1989).
Komatsu, S., and Y. Moriyoshi, “Transition from thermal-to electron-impact decomposition of diborane in plasma-enhanced chemical vapor deposition of boron films from B.sub.2 H.sub.6 +He,” J. Appl. Phys. 66, 1180 (1989).
Lee, W., W. J. Lackey, and P. K. Agrawal, “Kinetic analysis of chemical vapor deposition of boron nitride,” J. Amer. Ceramic Soc. 74, 2642 (1991).
Michaelidis, M., and R. Pollard, “Analysis of chemical vapor deposition of boron,” J. Electrochem. Soc. 132, 1757 (1985).
Micro X-ray Tube Operation Manual, X-ray and Specialty Instruments Inc., 1996, 5 pages.
Moore, A. W., S. L. Strong, and G. L. Doll, “Properties and characterization of codeposited boron nitride and carbon materials,” J. Appl. Phys. 65, 5109 (1989).
Nakamura, K., “Preparation and properties of amorphous boron nitride films by molecular flow chemical vapor deposition,” J. Electrochem. Soc. 132, 1757 (1985).
Neyco, “SEM & TEM: Grids”; catalog; http://www.neyco.fr/pdf/Grids.pdf#page=1.
Panayiotatos, et al., “Mechanical performance and growth characteristics of boron nitride films with respect to their optical, compositional properties and density,” Surface and Coatings Technology, 151-152 (2002) 155-159.
Perkins, F. K., R. A. Rosenberg, and L. Sunwoo, “Synchrotronradiation deposition of boron and boron carbide films from boranes and carboranes: decaborane,” J. Appl. Phys. 69,4103 (1991).
Powell et al., “Metalized polyimide filters for x-ray astronomy and other applications,” SPIE, pp. 432-440, vol. 3113.
Rankov et al., “A novel correlated double sampling poly-Si circuit for readout systems in large area x-ray sensors”, IEEE, May 2005, 728-731, vol. 1.
Roca i Cabarrocas, P., S. Kumar, and B. Drevillon, “In situ study of the thermal decomposition of B.sub.2 H.sub.6 by combining spectroscopic ellipsometry and Kelvin probe measurements,” J. Appl. Phys. 66, 3286 (1989).
Scholze et al., “Detection efficiency of energy-dispersive detectors with low-energy windows” X-Ray Spectrometry, X-Ray Spectrom, 2005: 34: 473-476.
Sheather, “The support of thin windows for x-ray proportional counters,” Journal Phys,E., Apr. 1973, pp. 319-322, vol. 6, No. 4.
Shirai, K., S.-I. Gonda, and S. Gonda, “Characterization of hydrogenated amorphous boron films prepared by electron cyclotron resonance plasma chemical vapor deposition method,” J. Appl. Phys. 67, 6286 (1990).
Tamura, et al “Developmenmt of ASICs for CdTe Pixel and Line Sensors”, IEEE Transactions on Nuclear Science, vol. 52, No, 5, Oct. 2005.
Tien-Hui Lin et al., “An investigation on the films used as the windows of ultra-soft X-ray counters.”.
Acta Physica Sinica, vol. 27, No. 3, pp. 276-283, May 1978, abstract only.
U.S. Appl. No. 13/307,579, filed Nov. 30, 2011; Dongbing Wang.
Vandenbulcke, L. G., “Theoretical and experimental studies on the chemical vapor deposition of boron carbide,” Indust. Eng. Chem. Prod. Res. Dev. 24, 568 (1985).
Viitanen Veli-Pekka et al., Comparison of Ultrathin X-Ray Window Designs, presented at the Soft X-rays in the 21st Century Conference held in Provo, Utah Feb. 10-13, 1993, pp. 182-190.
Wagner et al, “Effects of Scatter in Dual-Energy Imaging: An Alternative Analysis”; IEEE; Sep. 1989, vol. 8. No. 3.
Winter, J., H. G. Esser, and H. Reimer, “Diborane-free boronization,” Fusion Technol. 20, 225 (1991).
Wu, et al.; “Mechanical properties and thermo-gravimetric analysis of PBO thin films”; Advanced Materials Laboratory, Institute of Electro-Optical Engineering; Apr. 30, 2006.
www.moxtek,com, Moxtek, Sealed Proportional Counter X-Ray Windows, Oct. 2007, 3 pages.
www.moxtek.com, Moxtek, AP3 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages.
www.moxtek.com, Moxtek, DuraBeryllium X-Ray Windows, May 2007, 2 pages.
www.moxtek.com, Moxtek, ProLine Series 10 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 6, 2012.
www.moxtek.com, X-Ray Windows, ProLINE Series 20 Windows Ultra-thin Polymer X-ray Windows, 2 pages. Applicant believes that this product was offered for sale prior to the filed of applicant's application.
U.S. Appl. No. 12/890,325. filed Sep. 24, 2010; Dongbing Wang; office action dated Sep. 7, 2012.
PCT Application No. PCT/US2011/044168; filedMar. 28, 2012; Kang Hyun II; report mailed Mar. 28, 2012.
Related Publications (1)
Number Date Country
20130170623 A1 Jul 2013 US