A desirable characteristics of x-ray tubes for some applications, especially for portable x-ray sources, is small size. Due to very large voltages between a cathode and an anode of an x-ray tube, such as tens of kilovolts, it can be difficult to reduce x-ray tubes to a smaller size.
Another desirable characteristic of x-ray tubes is electron beam stability within the x-ray tube, including both positional stability and steady electron beam flux. A moving or wandering electron beam within the x-ray tube can result in instability or moving x-ray flux output. An unsteady electron beam flux can result in unsteady x-ray flux output.
Another desirable characteristic of x-ray tubes is a consistent and centered location where the electron beam hits the target, which can result in a more a consistent and centered location where x-rays hit a sample. Another desirable characteristic of x-ray tubes is efficient use of electrical power input to the x-ray source. Another desirable characteristic is high x-ray flux from a small x-ray source.
It has been recognized that it would be advantageous to have an x-ray tube with small size, electron beam stability, consistent and centered location where the electron beam hits the target, efficient use of electrical power input to the x-ray source, and high x-ray flux. The present invention is directed to an x-ray tube that satisfies these needs.
The x-ray tube comprises an anode disposed at one end of an electrically insulative cylinder, the anode including a target which can be configured to emit x-rays in response to electrons impinging upon the target, and a cathode disposed at an opposing end of the insulative cylinder from the anode, the cathode including an electron emitter. The x-ray tube includes an operating range of 15 kilovolts to 40 kilovolts between the cathode and the anode. The x-ray tube includes an overall diameter, defined as a largest diameter of the x-ray tube anode, cathode, and insulative cylinder, of less than 0.6 inches. A direct line of sight exists between all points on the electron emitter to the target.
a-c are schematic cross-sectional side views of x-ray tube cathodes with primary optics, and electron emitters, in accordance with embodiments of the present invention;
Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
As illustrated in
The electron emitter can be a filament. The term “electron emitter”, unless specified otherwise, can include multiple electron emitters, thus the x-ray tube can include a single electron emitter, or can include multiple electron emitters.
As shown in
Various embodiments of the cathode 15, the primary optic 26, and the electron emitter 16 are shown in
A cylindrical, electrically conductive electron optic divergent lens 14 can be attached to the anode 12 and can have a far end 22 extending from the anode 12 towards the cathode 15. The cylindrical shape of the divergent lens 14 can be an annular, hollow shape, to allow electrons to pass through a central section of the divergent lens 14 from the electron emitter 16 to the target 13.
In the present invention, the entire divergent lens 14 can be made of electrically conductive material in one embodiment, or only the surface, or a substantial portion of the surface, of the divergent lens 14 can be made of electrically conductive material in another embodiment. Thus, the term “electrically conductive electron optic divergent lens” does not necessarily mean that the entire structure is electrically conductive, only that enough of the divergent lens 14 is electrically conductive to allow this structure to act as an electron optic lens.
The divergent lens 14 can be attached directly to, and thus electrically connected to, the anode 12. Alternatively, an electrically insulative connector or spacer 17 can separate the anode 12 from the divergent lens 14, thus electrically insulating the divergent lens 14 from the anode 12. In one embodiment, in which an electrically insulative connector or spacer 17 is used, the divergent lens 14 can be maintained at a voltage that is intermediate between a voltage of the cathode 15 and a voltage of the anode 12.
If spacer 17 is used, a separate structure can be used to provide voltage to the divergent lens 14, or a portion of the surface 27 of the spacer can be electrically conductive, such as with a metal coating on this portion of the surface 27, to allow transfer of a voltage to the divergent lens 14.
A cylindrical, electrically conductive electron optic convergent lens 19 can be attached to and can surround the cathode 15 and can have a far end 23 extending from the cathode 15 towards the anode 12. The cylindrical shape of the convergent lens 19 can be an annular, hollow shape, to allow electrons to pass from the electron emitter 16 through a central section of the convergent lens 19 to the target 13.
The entire convergent lens 19 can be made of electrically conductive material in one embodiment, or only the surface, or a substantial portion of the surface, of the convergent lens 19 can be made of electrically conductive material in another embodiment. Thus, the term “electrically conductive electron optic convergent lens” does not necessarily mean that the entire structure is electrically conductive, only that enough of the convergent lens is electrically conductive to allow this structure to act as an electron optic lens.
The convergent lens 19 can be attached directly to, and thus electrically connected to, the cathode 15 in one embodiment. The convergent lens 19 can be attached to the cathode 15 through an electrically insulative connector or spacer 25, and thus the convergent lens 19 can be electrically insulated from the cathode 15, in another embodiment. In one embodiment, in which an electrically insulative connector or spacer 25 is used, the convergent lens 19 can by maintained at a voltage that is intermediate between a voltage of the cathode 15 and a voltage of the anode 12.
It can be desirable in some situations for electron beam and target spot shape control to have the convergent lens 19 electrically insulated from the cathode 15 and/or have the divergent lens 14 electrically insulated from the anode 12, and a separate electrical connection made to the convergent lens 19 and/or divergent lens 14. It can be desirable in other situations, for simplification of power supply and/or tube construction, to have the divergent lens 14 electrically connected to the anode 12 and/or the convergent lens 19 to be electrically connected to the cathode 15.
Electron flight distance EFD, defined as a distance from the electron emitter 16 to the target 13, can be an indication of overall tube size. It can be desirable in some circumstances, especially for miniature, portable x-ray tubes, to have a short electron flight distance EFD. The electron flight distance EFD can be less than 0.8 inches in one embodiment, less than 0.7 inches in another embodiment, less than 0.6 inches in another embodiment, less than 0.4 inches in another embodiment, or less than 0.2 inches in another embodiment.
The tube overall diameter OD is defined as a largest diameter of the x-ray tube anode 12, cathode 15, or insulative cylinder 11, measured perpendicular to the line of sight 9 between the electron emitter 16 and the target 13. Any structure electrically connected to the cathode 15, and thus having substantially the same voltage as the cathode 15, will be considered part of the cathode 15 for determining the cathode diameter. If, in
In one embodiment, a direct line of sight 9 can exist between all points on the electron emitter 16 and the target 13. The direct line of sight 9 can extend between all points on the electron emitter 16 through a central portion of the convergent lens 19, through a central portion of the divergent lens 14, to the target 13. This direct line of sight 9 can be beneficial for improved use of electrons and thus improved power efficiency (more power output compared to power input).
A relationship between the electron flight distance EFD and the overall diameter OD can be important for small tube design with optimal performance, such as small tube size with good electron beam control and stability. In the present invention, electron flight distance EFD divided by an overall diameter OD is greater than the 1.0 and less than 1.5 in one embodiment, the electron flight distance EFD divided by an overall diameter OD is greater than the 1.1 and less than 1.4 in another embodiment, the electron flight distance EFD divided by an overall diameter OD is greater than the 1.2 and less than 1.3 in another embodiment.
A maximum voltage standoff length MVS is defined as a distance from the far end 22 of the divergent lens 14 to the far end 23 of the convergent lens 19. The maximum voltage standoff length MVS can indicate electron acceleration distance within the tube. Electron acceleration distance can be an important dimension for electron spot centering on the target (location where electrons primarily impinge upon the target). In the present invention, the maximum voltage standoff length MVS is less than 0.15 inches in one embodiment, less than 0.25 inches in another embodiment, or less than 0.35 inches in another embodiment.
The relationship between an inside diameter CID of the convergent lens 19 and an outside diameter DOD of the divergent lens 14 can be important for electron beam shaping. In one embodiment, the inside diameter CID of the convergent lens 19 is greater than 0.85 times the outside diameter of the divergent lens DOD (CID>0.85*DOD). In another embodiment, the inside diameter CID of the convergent lens 19 is greater than 0.95 times the outside diameter of the divergent lens DOD (CID>0.95*DOD). In another embodiment, the inside diameter CID of the convergent lens 19 is greater than the outside diameter of the divergent lens DOD (CID>DOD). In another embodiment, the inside diameter CID of the convergent lens 19 is greater than 1.1 times the outside diameter of the divergent lens DOD (CID>1.1*DOD).
The actual electrical field gradient can vary through the tube, but for purposes of claim definition, electrical field gradient is defined by the tube voltage between the cathode and the anode, divided by the maximum voltage standoff length MVS. A tube that can withstand higher electrical field gradients is a tube that can withstand very large voltages relative to the small size of the tube, and can function properly without breakdown. In the present invention, the electrical field gradient can be greater than 200 volts per mil in one embodiment, greater than 250 volts per mil in another embodiment, greater than 300 volts per mil in another embodiment, greater than 400 volts per mil in another embodiment, greater than 500 volts per mil in another embodiment, or greater than 600 volts per mil in another embodiment.
A relationship between an outside diameter COD of the convergent lens 19 and the maximum voltage standoff length MVS can be important for a consistent, centered electron spot on the target and for small tube size. In one embodiment, an outside diameter COD of the convergent lens 19 divided by the maximum voltage standoff length MVS is greater than 1 and less than 2.
Insulative cylinder length ICL is defined as a distance from closest contact of the insulative cylinder 11 with the cathode 15, or other electrically conductive structure electrically connected to the cathode 15, to closest contact with the anode 14, or other electrically conductive structure electrically connected to the anode 14. Insulative cylinder length ICL is a distance along a surface of the insulative cylinder 11. Insulative cylinder length ICL can be based on a straight line if the insulative cylinder 11 has a straight structure between cathode and anode or can be based on a curved or bent line if the insulative cylinder, and other insulating structures if used, have bends or curves. Insulative cylinder length ICL is thus an indication of distance of insulative material required to electrically insulate the anode 12 from the cathode 15.
It can be beneficial, for reduction of tube size, to have a small insulative cylinder length ICL. In the present invention, the insulative cylinder length can be less than 1 inch in one embodiment, less than 0.85 inches in another embodiment, less than 0.7 inches in another embodiment, or less than 0.55 inches in another embodiment.
It can be beneficial for some applications, such as portable x-ray tubes, to have a small tube. Tube overall length OL is defined as x-ray tube length from a far end of the cathode to a far end of the anode.
A relationship between the overall length OL and overall diameter OD can be important for tube size and optimal electron beam control. In the present invention, the overall length OL divided by an overall diameter OD can be greater than 1.7 and less than 2.5 in one embodiment, greater than 1.9 and less than 2.3 in another embodiment, or greater than 2.0 and less than 2.2 in another embodiment.
A relationship between the outside diameter DOD of the divergent lens 14 divided by an inside diameter DID of the divergent lens 14 can be important for electron beam control. In the present invention, an outside diameter DOD of the divergent lens 14 divided by an inside diameter DID of the divergent lens 14 can be greater than 1.6 and less than 3.4 in one embodiment, greater than 1.9 and less than 3.0 in another embodiment, or greater than 2.1 and less than 2.5 in another embodiment.
A benefit of the present invention is the ability for a small x-ray tube to be operated at high voltages between the cathode and the anode. The tubes 10, 30, and 50 of the present invention can comprise or include an operating range of 15 kilovolts to 40 kilovolts in one embodiment, an operating range of 50 kilovolts to 80 kilovolts in another embodiment, or an operating range of 15 kilovolts to 60 kilovolts in another embodiment. An x-ray tube that includes a certain voltage operating range means that the x-ray tube is configured to operate effectively at all voltages within that range. For example, the term “an operating range of 15 kilovolts to 40 kilovolts” is used herein to refer to a tube with an operating range effectively at all voltages within 15 to 40 kilovolts, including by way of example, an operating range of 14 to 41 kilovolts.
The various embodiments described herein can have high electron transport efficiency. Electron transport efficiency (ETE) is defined as a percent of electrons absorbed by the target Et divided by electrons emitted from the electron emitter
The percent or electrons absorbed by the target Et can be the percent absorbed within a certain area, such as within a specified radius of a center of the target or within a specified diameter spot size anywhere on the target 13. In one embodiment, 90% of electrons emitted by the electron emitter are absorbed within a 0.75 millimeter radius of a center of the target. In another embodiment, 90% of electrons emitted by the electron emitter are absorbed within a 0.4 millimeter radius of a center of the target. In another embodiment, 90% of electrons emitted by the electron emitter are absorbed within a 0.3 millimeter diameter of a spot on the target (anywhere on the target).
The previously described x-ray tubes 10 and 30 can have many advantages, including small size, electron beam stability, consistent and centered location where the electron beam hits the target, and efficient use of electrical power input to the x-ray source, and high voltage between anode and cathode. Many of these advantages are achieved, not by a single factor alone, but by a combination of factors or tube dimensions. Thus, the present invention is directed to an x-ray tube that combines various size relationships and structures to provide improved x-ray tube performance.
For example, one x-ray tube design that has provided the benefits just mentioned, has the following approximate dimensions:
It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention. While the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
1881448 | Forde et al. | Oct 1932 | A |
1946288 | Kearsley | Feb 1934 | A |
2291948 | Cassen | Aug 1942 | A |
2316214 | Atlee | Apr 1943 | A |
2329318 | Atlee et al. | Sep 1943 | A |
2340363 | Atlee et al. | Feb 1944 | A |
2502070 | Atlee et al. | Mar 1950 | A |
2663812 | Jamison et al. | Mar 1950 | A |
2683223 | Hosemann | Jul 1954 | A |
2952790 | Steen | Sep 1960 | A |
3356559 | Mohn et al. | Dec 1967 | A |
3397337 | Denholm | Aug 1968 | A |
3434062 | Cox | Mar 1969 | A |
3665236 | Gaines et al. | May 1972 | A |
3679927 | Kirkendall | Jul 1972 | A |
3691417 | Gralenski | Sep 1972 | A |
3741797 | Chavasse, Jr. et al. | Jun 1973 | A |
3751701 | Gralenski et al. | Aug 1973 | A |
3801847 | Dietz | Apr 1974 | A |
3828190 | Dahlin et al. | Aug 1974 | A |
3851266 | Conway | Nov 1974 | A |
3872287 | Kooman | Mar 1975 | A |
3882339 | Rate et al. | May 1975 | A |
3894219 | Weigel | Jul 1975 | A |
3962583 | Holland et al. | Jun 1976 | A |
3970884 | Golden | Jul 1976 | A |
4007375 | Albert | Feb 1977 | A |
4075526 | Grubis | Feb 1978 | A |
4160311 | Ronde et al. | Jul 1979 | A |
4163900 | Warren et al. | Aug 1979 | A |
4178509 | More et al. | Dec 1979 | A |
4184097 | Auge | Jan 1980 | A |
4250127 | Warren et al. | Feb 1981 | A |
4293373 | Greenwood | Oct 1981 | A |
4368538 | McCorkle | Jan 1983 | A |
4393127 | Greschner et al. | Jul 1983 | A |
4400822 | Kuhnke et al. | Aug 1983 | A |
4421986 | Friauf et al. | Dec 1983 | A |
4443293 | Mallon et al. | Apr 1984 | A |
4463338 | Utner et al. | Jul 1984 | A |
4504895 | Steigerwald | Mar 1985 | A |
4521902 | Peugeot | Jun 1985 | A |
4532150 | Endo et al. | Jul 1985 | A |
4573186 | Reinhold | Feb 1986 | A |
4576679 | White | Mar 1986 | A |
4591756 | Avnery | May 1986 | A |
4608326 | Neukermans et al. | Aug 1986 | A |
4675525 | Amingual et al. | Jun 1987 | A |
4679219 | Ozaki | Jul 1987 | A |
4688241 | Peugeot | Aug 1987 | A |
4705540 | Hayes | Nov 1987 | A |
4734924 | Yahata et al. | Mar 1988 | A |
4761804 | Yahata | Aug 1988 | A |
4777642 | Ono | Oct 1988 | A |
4797907 | Anderton | Jan 1989 | A |
4818806 | Kunimune et al. | Apr 1989 | A |
4819260 | Haberrecker | Apr 1989 | A |
4862490 | Karnezos et al. | Aug 1989 | A |
4870671 | Hershyn | Sep 1989 | A |
4876330 | Higashi et al. | Oct 1989 | A |
4878866 | Mori et al. | Nov 1989 | A |
4885055 | Woodbury et al. | Dec 1989 | A |
4891831 | Tanaka et al. | Jan 1990 | A |
4933557 | Perkins | Jun 1990 | A |
4939763 | Pinneo et al. | Jul 1990 | A |
4957773 | Spencer et al. | Sep 1990 | A |
4960486 | Perkins et al. | Oct 1990 | A |
4969173 | Valkonet | Nov 1990 | A |
4979198 | Malcolm et al. | Dec 1990 | A |
4979199 | Cueman et al. | Dec 1990 | A |
4995069 | Tanaka | Feb 1991 | A |
5010562 | Hernandez et al. | Apr 1991 | A |
5063324 | Grunwald et al. | Nov 1991 | A |
5066300 | Isaacson et al. | Nov 1991 | A |
5077771 | Skillicorn et al. | Dec 1991 | A |
5077777 | Daly | Dec 1991 | A |
5090046 | Friel | Feb 1992 | A |
5105456 | Rand et al. | Apr 1992 | A |
5117829 | Miller et al. | Jun 1992 | A |
5153900 | Nomikos et al. | Oct 1992 | A |
5161179 | Suzuki et al. | Nov 1992 | A |
5173612 | Imai et al. | Dec 1992 | A |
5178140 | Ibrahim | Jan 1993 | A |
5187737 | Watanabe | Feb 1993 | A |
5196283 | Ikeda et al. | Mar 1993 | A |
5200984 | Laeuffer | Apr 1993 | A |
5217817 | Verspui et al. | Jun 1993 | A |
5226067 | Allred et al. | Jul 1993 | A |
RE34421 | Parker et al. | Oct 1993 | E |
5258091 | Imai et al. | Nov 1993 | A |
5267294 | Kuroda et al. | Nov 1993 | A |
5343112 | Wegmann | Aug 1994 | A |
5347571 | Furbee et al. | Sep 1994 | A |
5391958 | Kelly | Feb 1995 | A |
5392042 | Pellon | Feb 1995 | A |
5400385 | Blake et al. | Mar 1995 | A |
5422926 | Smith et al. | Jun 1995 | A |
5428658 | Oettinger et al. | Jun 1995 | A |
5432003 | Plano et al. | Jul 1995 | A |
5469429 | Yamazaki et al. | Nov 1995 | A |
5469490 | Golden et al. | Nov 1995 | A |
5478266 | Kelly | Dec 1995 | A |
5521851 | Wei et al. | May 1996 | A |
5524133 | Neale et al. | Jun 1996 | A |
RE35383 | Miller et al. | Nov 1996 | E |
5571616 | Phillips et al. | Nov 1996 | A |
5578360 | Viitanen | Nov 1996 | A |
5607723 | Plano et al. | Mar 1997 | A |
5621780 | Smith et al. | Apr 1997 | A |
5627871 | Wang | May 1997 | A |
5631943 | Miles | May 1997 | A |
5673044 | Pellon | Sep 1997 | A |
5680433 | Jensen | Oct 1997 | A |
5682412 | Skillicorn et al. | Oct 1997 | A |
5696808 | Lenz | Dec 1997 | A |
5706354 | Stroehlein | Jan 1998 | A |
5729583 | Tang et al. | Mar 1998 | A |
5774522 | Warburton | Jun 1998 | A |
5812632 | Schardt et al. | Sep 1998 | A |
5835561 | Moorman et al. | Nov 1998 | A |
5870051 | Warburton | Feb 1999 | A |
5898754 | Gorzen | Apr 1999 | A |
5907595 | Sommerer | May 1999 | A |
5978446 | Resnick | Nov 1999 | A |
6002202 | Meyer et al. | Dec 1999 | A |
6005918 | Harris et al. | Dec 1999 | A |
6044130 | Inazura et al. | Mar 2000 | A |
6062931 | Chuang et al. | May 2000 | A |
6069278 | Chuang | May 2000 | A |
6073484 | Miller et al. | Jun 2000 | A |
6075839 | Treseder | Jun 2000 | A |
6097790 | Hasegawa et al. | Aug 2000 | A |
6129901 | Moskovits et al. | Oct 2000 | A |
6133401 | Jensen | Oct 2000 | A |
6134300 | Trebes et al. | Oct 2000 | A |
6184333 | Gray | Feb 2001 | B1 |
6205200 | Boyer et al. | Mar 2001 | B1 |
6277318 | Bower et al. | Aug 2001 | B1 |
6282263 | Arndt et al. | Aug 2001 | B1 |
6288209 | Jensen | Sep 2001 | B1 |
6307008 | Lee et al. | Oct 2001 | B1 |
6320019 | Lee et al. | Nov 2001 | B1 |
6351520 | Inazaru | Feb 2002 | B1 |
6385294 | Suzuki et al. | May 2002 | B2 |
6388359 | Duelli et al. | May 2002 | B1 |
6438207 | Chidester et al. | Aug 2002 | B1 |
6477235 | Chornenky et al. | Nov 2002 | B2 |
6487272 | Kutsuzawa | Nov 2002 | B1 |
6487273 | Takenaka et al. | Nov 2002 | B1 |
6494618 | Moulton | Dec 2002 | B1 |
6546077 | Chornenky et al. | Apr 2003 | B2 |
6567500 | Rother | May 2003 | B2 |
6645757 | Okandan et al. | Nov 2003 | B1 |
6646366 | Hell et al. | Nov 2003 | B2 |
6658085 | Sklebitz et al. | Dec 2003 | B2 |
6661876 | Turner et al. | Dec 2003 | B2 |
6740874 | Doring | May 2004 | B2 |
6778633 | Loxley et al. | Aug 2004 | B1 |
6799075 | Chornenky et al. | Sep 2004 | B1 |
6803570 | Bryson, III et al. | Oct 2004 | B1 |
6803571 | Mankos et al. | Oct 2004 | B1 |
6816573 | Hirano et al. | Nov 2004 | B2 |
6819741 | Chidester | Nov 2004 | B2 |
6852365 | Smart et al. | Feb 2005 | B2 |
6866801 | Mau et al. | Mar 2005 | B1 |
6876724 | Zhou | Apr 2005 | B2 |
6956706 | Brandon | Oct 2005 | B2 |
6976953 | Pelc | Dec 2005 | B1 |
6987835 | Lovoi | Jan 2006 | B2 |
7035379 | Turner et al. | Apr 2006 | B2 |
7046767 | Okada et al. | May 2006 | B2 |
7049735 | Ohkubo et al. | May 2006 | B2 |
7050539 | Loef et al. | May 2006 | B2 |
7075699 | Oldham et al. | Jul 2006 | B2 |
7085354 | Kanagami | Aug 2006 | B2 |
7108841 | Smalley | Sep 2006 | B2 |
7110498 | Yamada | Sep 2006 | B2 |
7130380 | Lovoi et al. | Oct 2006 | B2 |
7130381 | Lovoi et al. | Oct 2006 | B2 |
7203283 | Puusaari | Apr 2007 | B1 |
7206381 | Shimono et al. | Apr 2007 | B2 |
7215741 | Ukita | May 2007 | B2 |
7224769 | Turner | May 2007 | B2 |
7233647 | Turner et al. | Jun 2007 | B2 |
7286642 | Ishikawa et al. | Oct 2007 | B2 |
7305066 | Ukita | Dec 2007 | B2 |
7317784 | Durst et al. | Jan 2008 | B2 |
7358593 | Smith et al. | Apr 2008 | B2 |
7382862 | Bard et al. | Jun 2008 | B2 |
7399794 | Harmon et al. | Jul 2008 | B2 |
7410603 | Noguchi et al. | Aug 2008 | B2 |
7428298 | Bard et al. | Sep 2008 | B2 |
7448801 | Oettinger et al. | Nov 2008 | B2 |
7448802 | Oettinger et al. | Nov 2008 | B2 |
7486774 | Cain | Feb 2009 | B2 |
7526068 | Dinsmore | Apr 2009 | B2 |
7529345 | Bard et al. | May 2009 | B2 |
7618906 | Meilahti | Nov 2009 | B2 |
7634052 | Grodzins et al. | Dec 2009 | B2 |
7649980 | Aoki et al. | Jan 2010 | B2 |
7650050 | Haffner et al. | Jan 2010 | B2 |
7657002 | Burke et al. | Feb 2010 | B2 |
7675444 | Smith et al. | Mar 2010 | B1 |
7680652 | Giesbrecht et al. | Mar 2010 | B2 |
7693265 | Hauttmann et al. | Apr 2010 | B2 |
7709820 | Decker et al. | May 2010 | B2 |
7737424 | Xu et al. | Jun 2010 | B2 |
7756251 | Davis et al. | Jul 2010 | B2 |
7983394 | Kozaczek et al. | Jul 2011 | B2 |
20020075999 | Rother | Jun 2002 | A1 |
20020094064 | Zhou | Jul 2002 | A1 |
20030096104 | Tobita et al. | May 2003 | A1 |
20030152700 | Asmussen et al. | Aug 2003 | A1 |
20030165418 | Ajayan et al. | Sep 2003 | A1 |
20040076260 | Charles, Jr. et al. | Apr 2004 | A1 |
20050018817 | Oettinger et al. | Jan 2005 | A1 |
20050141669 | Shimono et al. | Jun 2005 | A1 |
20050207537 | Ukita | Sep 2005 | A1 |
20060073682 | Furukawa et al. | Apr 2006 | A1 |
20060098778 | Oettinger et al. | May 2006 | A1 |
20060210020 | Takahashi et al. | Sep 2006 | A1 |
20060233307 | Dinsmore | Oct 2006 | A1 |
20060269048 | Cain | Nov 2006 | A1 |
20060280289 | Hanington et al. | Dec 2006 | A1 |
20070025516 | Bard et al. | Feb 2007 | A1 |
20070111617 | Meilahti | May 2007 | A1 |
20070165780 | Durst et al. | Jul 2007 | A1 |
20070172104 | Nishide | Jul 2007 | A1 |
20070183576 | Burke et al. | Aug 2007 | A1 |
20070217574 | Beyerlein | Sep 2007 | A1 |
20080199399 | Chen et al. | Aug 2008 | A1 |
20080296479 | Anderson et al. | Dec 2008 | A1 |
20080296518 | Xu et al. | Dec 2008 | A1 |
20080317982 | Hecht | Dec 2008 | A1 |
20090085426 | Davis et al. | Apr 2009 | A1 |
20090086923 | Davis et al. | Apr 2009 | A1 |
20090213914 | Dong et al. | Aug 2009 | A1 |
20090243028 | Dong et al. | Oct 2009 | A1 |
20100098216 | Dobson | Apr 2010 | A1 |
20100126660 | O'Hara | May 2010 | A1 |
20100140497 | Damiano, Jr. et al. | Jun 2010 | A1 |
20100189225 | Ernest et al. | Jul 2010 | A1 |
20100239828 | Cornaby et al. | Sep 2010 | A1 |
20100243895 | Xu et al. | Sep 2010 | A1 |
20100285271 | Davis et al. | Nov 2010 | A1 |
20110121179 | Liddiard et al. | May 2011 | A1 |
20120025110 | Davis et al. | Feb 2012 | A1 |
20120076276 | Wang et al. | Mar 2012 | A1 |
20120087476 | Liddiard et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
1030936 | May 1958 | DE |
4430623 | Mar 1996 | DE |
19818057 | Nov 1999 | DE |
0297808 | Jan 1989 | EP |
0330456 | Aug 1989 | EP |
0400655 | May 1990 | EP |
0676772 | Mar 1995 | EP |
1252290 | Nov 1971 | GB |
57 082954 | Aug 1982 | JP |
3170673 | Jul 1991 | JP |
4171700 | Jun 1992 | JP |
05066300 | Mar 1993 | JP |
5135722 | Jun 1993 | JP |
06119893 | Jul 1994 | JP |
6289145 | Oct 1994 | JP |
6343478 | Dec 1994 | JP |
8315783 | Nov 1996 | JP |
2003007237 | Jan 2003 | JP |
2003088383 | Mar 2003 | JP |
2003510236 | Mar 2003 | JP |
2003211396 | Jul 2003 | JP |
2006297549 | Nov 2006 | JP |
1020050107094 | Nov 2005 | KR |
WO 9965821 | Dec 1999 | WO |
WO 0017102 | Mar 2000 | WO |
WO 03076951 | Sep 2003 | WO |
WO 2008052002 | May 2008 | WO |
WO 2009009610 | Jan 2009 | WO |
WO 2009045915 | Apr 2009 | WO |
WO 2009085351 | Jul 2009 | WO |
WO 2010107600 | Sep 2010 | WO |
Entry |
---|
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010; Steven Liddiard; notice of allowance dated Jun. 4, 2013. |
U.S. Appl. No. 12/890,325, filed Sep. 24, 2010; Dongbing Wang; notice of allowance dated Jul. 16, 2013. |
Barkan et al., “Improved window for low-energy x-ray transmission a Hybrid design for energy-dispersive microanalysis,” Sep. 1995, 2 pages, Ectroscopy 10(7). |
Blanquart et al.; “XPAD, a New Read-out Pixel Chip for X-ray Counting”; IEEE Xplore; Mar. 25, 2009. |
Das, D. K., and K. Kumar, “Chemical vapor deposition of boron on a beryllium surface,” Thin Solid Films, 83(1), 53-60. |
Das, K., and Kumar, K., “Tribological behavior of improved chemically vapor-deposited boron on beryllium,” Thin Solid Films, 108(2), 181-188. |
Gevin et al., “IDeF-X V1.0: performances of a new CMOS multi channel analogue readout ASIC for Cd(Zn)Te detectors”, IDDD, Oct. 2005, 433-437, vol. 1. |
Grybos et al., “DEDIX—development of fully integrated multichannel ASCI for high count rate digital x-ray imaging systems”, IEEE, 693-696, vol. 2. |
Grybos et al., “Measurements of matching and high count rate performance of mulitchannel ASIC for digital x-ray imaging systems”, IEEE, Aug. 2007, 1207-1215, vol. 54, Issue 4. |
Grybos et al., “Pole-Zero cancellation circuit with pulse pile-up tracking system for low noise charge-sensitive amplifiers”, Feb. 2008, 583-590, vol. 55, Issue 1. |
Hanigofsky, J. A., K. L. More, and W. J. Lackey, “Composition and microstructure of chemically vapor-deposited boron nitride, aluminum nitride, and boron nitride + aluminum nitride composites,” J. Amer. Ceramic Soc. 74, 301 (1991). |
http://www.orau.org/ptp/collectio/xraytubescollidge/MachlettCW250T.htm, 1999, 2 pages. |
Komatsu, S., and Y. Moriyoshi, “Influence of atomic hydrogen on the growth reactions of amorphous boron films in a low-pressure B.sub.2 H.sub.6 +He+H.sub.2 plasma”, J. Appl. Phys. 64, 1878 (1988). |
Komatsu, S., and Y. Moriyoshi, “Transition from amorphous to crystal growth of boron films in plasma-enhanced chemical vapor deposition with B.sub.2 H.sub.6 +He,” J. Appl. Phys., 66, 466 (1989). |
Komatsu, S., and Y. Moriyoshi, “Transition from thermal-to electron-impact decomposition of diborane in plasma-enhanced chemical vapor deposition of boron films from B.sub.2 H.sub.6 +He,” J. Appl. Phys. 66, 1180 (1989). |
Lee, W., W. J. Lackey, and P. K. Agrawal, “Kinetic analysis of chemical vapor deposition of boron nitride,” J. Amer. Ceramic Soc. 74, 2642 (1991). |
Michaelidis, M., and R. Pollard, “Analysis of chemical vapor deposition of boron,” J. Electrochem. Soc. 132, 1757 (1985). |
Micro X-ray Tube Operation Manual, X-ray and Specialty Instruments Inc., 1996, 5 pages. |
Moore, A. W., S. L. Strong, and G. L. Doll, “Properties and characterization of codeposited boron nitride and carbon materials,” J. Appl. Phys. 65, 5109 (1989). |
Nakamura, K., “Preparation and properties of amorphous boron nitride films by molecular flow chemical vapor deposition,” J. Electrochem. Soc. 132, 1757 (1985). |
Neyco, “SEM & TEM: Grids”; catalog; http://www.neyco.fr/pdf/Grids.pdf#page=1. |
Panayiotatos, et al., “Mechanical performance and growth characteristics of boron nitride films with respect to their optical, compositional properties and density,” Surface and Coatings Technology, 151-152 (2002) 155-159. |
Perkins, F. K., R. A. Rosenberg, and L. Sunwoo, “Synchrotronradiation deposition of boron and boron carbide films from boranes and carboranes: decaborane,” J. Appl. Phys. 69,4103 (1991). |
Powell et al., “Metalized polyimide filters for x-ray astronomy and other applications,” SPIE, pp. 432-440, vol. 3113. |
Rankov et al., “A novel correlated double sampling poly-Si circuit for readout systems in large area x-ray sensors”, IEEE, May 2005, 728-731, vol. 1. |
Roca i Cabarrocas, P., S. Kumar, and B. Drevillon, “In situ study of the thermal decomposition of B.sub.2 H.sub.6 by combining spectroscopic ellipsometry and Kelvin probe measurements,” J. Appl. Phys. 66, 3286 (1989). |
Scholze et al., “Detection efficiency of energy-dispersive detectors with low-energy windows” X-Ray Spectrometry, X-Ray Spectrom, 2005: 34: 473-476. |
Sheather, “The support of thin windows for x-ray proportional counters,” Journal Phys,E., Apr. 1973, pp. 319-322, vol. 6, No. 4. |
Shirai, K., S.-I. Gonda, and S. Gonda, “Characterization of hydrogenated amorphous boron films prepared by electron cyclotron resonance plasma chemical vapor deposition method,” J. Appl. Phys. 67, 6286 (1990). |
Tamura, et al “Developmenmt of ASICs for CdTe Pixel and Line Sensors”, IEEE Transactions on Nuclear Science, vol. 52, No, 5, Oct. 2005. |
Tien-Hui Lin et al., “An investigation on the films used as the windows of ultra-soft X-ray counters.”. |
Acta Physica Sinica, vol. 27, No. 3, pp. 276-283, May 1978, abstract only. |
U.S. Appl. No. 13/307,579, filed Nov. 30, 2011; Dongbing Wang. |
Vandenbulcke, L. G., “Theoretical and experimental studies on the chemical vapor deposition of boron carbide,” Indust. Eng. Chem. Prod. Res. Dev. 24, 568 (1985). |
Viitanen Veli-Pekka et al., Comparison of Ultrathin X-Ray Window Designs, presented at the Soft X-rays in the 21st Century Conference held in Provo, Utah Feb. 10-13, 1993, pp. 182-190. |
Wagner et al, “Effects of Scatter in Dual-Energy Imaging: An Alternative Analysis”; IEEE; Sep. 1989, vol. 8. No. 3. |
Winter, J., H. G. Esser, and H. Reimer, “Diborane-free boronization,” Fusion Technol. 20, 225 (1991). |
Wu, et al.; “Mechanical properties and thermo-gravimetric analysis of PBO thin films”; Advanced Materials Laboratory, Institute of Electro-Optical Engineering; Apr. 30, 2006. |
www.moxtek,com, Moxtek, Sealed Proportional Counter X-Ray Windows, Oct. 2007, 3 pages. |
www.moxtek.com, Moxtek, AP3 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages. |
www.moxtek.com, Moxtek, DuraBeryllium X-Ray Windows, May 2007, 2 pages. |
www.moxtek.com, Moxtek, ProLine Series 10 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 6, 2012. |
www.moxtek.com, X-Ray Windows, ProLINE Series 20 Windows Ultra-thin Polymer X-ray Windows, 2 pages. Applicant believes that this product was offered for sale prior to the filed of applicant's application. |
U.S. Appl. No. 12/890,325. filed Sep. 24, 2010; Dongbing Wang; office action dated Sep. 7, 2012. |
PCT Application No. PCT/US2011/044168; filedMar. 28, 2012; Kang Hyun II; report mailed Mar. 28, 2012. |
Number | Date | Country | |
---|---|---|---|
20130170623 A1 | Jul 2013 | US |