The present disclosure relates to apparatus, systems, and methods for managing batteries. More particularly, the present disclosure relates to apparatus, systems, and methods for managing batteries that are connected to a network.
A battery is typically considered as an energy source to provide electrical energy to electronic or power devices. For example, rechargeable batteries used in cellphones and laptop computers are normally separate functional components from the main electronics control system. The interface between a battery and its energy-consuming device typically has only limited functionalities. In addition, information about battery status is often limited to certain basic properties, and is often confined to be available to and used by only the associated energy-consuming device for the purpose of local operation and protection. Thus, it is difficult to effectively manage batteries under such traditional battery utilization framework.
Therefore, it is desirable to develop smart battery systems and corresponding methods to improve the efficiency of managing batteries and expand the functionality thereof.
The present application provides apparatus, systems, and methods for managing batteries. Some disclosed embodiments may involve a battery management device. The battery management device may include a sensor configured to detect a characteristic of a battery, a processor communicatively connected with the sensor to receive a signal indicative of the characteristic of the battery, a network interface to send the signal to a server through a network and to receive an instruction from the server through the network, and a control circuit to control one or more aspects of the battery based on the received instruction. The characteristics of a battery that can be monitored may include electrical properties, such as voltage, current, impedance, charge, etc.; mechanical properties, such as displacement, acceleration, strain, tension, location, etc.; chemical properties, such as gas (e.g., CO, CO2) emission; or other properties such as internal or external temperature, humidity, etc. The one or more aspects to be controlled may include thresholds of these characteristics or other parameters related to these characteristics (e.g., time, etc.).
The present application also provides a battery management system. According to some embodiments, the battery management system may include a battery and a controller coupled to the battery. The controller may include a sensor configured to detect a characteristic of a battery, a processor communicatively connected with the sensor to receive a signal indicative of the characteristic of the battery, a network interface to send the signal to a server through a network and to receive an instruction from the server through the network, and a control circuit to control one or more aspects of the battery based on the received instruction.
The present application also provides a method for managing a battery. According to some embodiments, the method may include detecting a characteristic of the battery, generating a signal indicative of the characteristic of the battery, sending the signal to a server through a network, receiving an instruction from the server through the network, and controlling one or more aspects of the battery based on the received instruction.
The preceding summary is not intended to restrict in any way the scope of the claimed invention. In addition, it is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate various embodiments and exemplary aspects of the present invention and, together with the description, explain principles of the invention. In the drawings:
Reference will now be made in detail to exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. When appropriate, the same reference numbers are used throughout the drawings to refer to the same or like parts.
Embodiments of the present disclosure may involve apparatus, systems, and methods for managing batteries. As used herein, batteries may include any device comprising one or more electrochemical cells that convert stored chemical energy into electrical energy, such as zinc-carbon batteries, alkaline batteries, lead-acid batteries, nickel-cadmium batteries, nickel-zinc batteries, nickel metal hydride batteries, lithium-ion batteries, etc. The batteries may be used in electronics, computers, medical devices, power tools, cars, etc. The batteries may form a battery pack, including multiple battery cells connected in series, in parallel, or having both series and parallel configurations. In this disclosure, the term battery may refer to a battery pack including multiple cells or a single battery cell. Managing the battery may include monitoring battery status, setting thresholds/parameters, and controlling battery behavior. The status and/or characteristics of a battery that can be monitored may include its electrical properties, such as voltage, current, impedance, charge, etc.; mechanical properties, such as displacement, acceleration, strain, tension, location, etc.; chemical properties, such as gas (e.g., CO, CO2) emission; or other properties such as internal or external temperature, etc. The apparatus, systems, and methods for managing batteries can also monitor properties of the environment where the batteries operate. Such properties include temperature, humidity, etc. The behaviors and/or parameters of a battery that can be controlled may include voltage, current, stored charges, thresholds, on/off switching, charging/discharging switching, etc.
Information regarding battery status may be transmitted to a server through a network. The server may store and analyze such information and issue instructions to control one or more aspects of a battery. The instructions may be transferred to the battery through the network. The server may collect battery information from a plurality of batteries. The plurality of batteries may reside in the same location or may reside in different locations. The plurality of batteries may be of similar types or different types. The information regarding the plurality of batteries may be stored and/or analyzed by the server. The server may utilize the information to manage one or more of the plurality of the batteries, or other batteries connected to the server. The server and/or the individual battery may provide interfaces for local and/or remote users to access the battery status information and/or to control one or more aspects of a battery. Third party service providers may also connect to the network to provide value-added services.
Referring to
In some embodiments, one or more monitoring units and/or controlling units may be provided on battery unit 112 and controller 114 may communicate with the monitoring/controlling units through one or more information exchange links. In other embodiments, one or more monitoring units and/or controlling units may be provided on controller 114 and the monitoring/controlling units may monitor/control one or more characteristics of battery unit 112.
Cloud 130 may include one or more servers. For example, as shown in
Cloud 130 (e.g., server 132 or additionally servers 134 and 136) and battery assembly 110 (e.g., through controller 114) may communicate with each other through a network 120. Cloud 130 may receive information from battery assembly 110 via network 120 and store the information on the cloud (e.g., on server 132). In addition, cloud 130 may send information to battery assembly 110 via network 120. Therefore, the information flow between cloud 130 and battery assembly 110 may be bidirectional. Network 120 may include LAN, WAN, VPN, Internet, telecommunication network, Bluetooth, NFC, etc.
Controller 210 may include a memory 214. Memory 214 may include, among other things, a random access memory (“RAM”) and/or a read-only memory (“ROM”). Computer program instructions and/or digital data can be stored, accessed, and read from memory 214 for execution by processor 212. For example, memory 214 may store one or more software applications. Further, memory 214 may store an entire software application or only part of a software application that is executable by processor 212. It is noted that although only one block is shown in
Network interface 216 may provide wired or wireless communication connections to network 120. For example, network interface 216 may include Ethernet, WiFi, Bluetooth, NFC, telecommunication connection (3G, 4G, LTE, etc.), or other suitable communication devices. Network interface 216 may provide network connection using TCP/IP, HTTP, HTTPS, UDP, or other suitable protocols. In some embodiments, an application programming interface (API) may be provided to facilitate communication between controller 210 and cloud 130.
Battery 240 may include one or more cells connected with one another in series and/or parallel. For example,
In some embodiments, processor 212 may communicate directly with battery 240, as indicated by the double-headed arrow between processor 212 and battery 240. The communication may be carried out in analog and/or digital form. For example, processor 212 may include an analog port that can input/output analog signals (e.g., voltage signals or current signals). The analog port may be electrically connected to certain part of battery 240 to directly read/write analog signals. In another example, processor 212 may include a digital port that can input/output digital signals. The digital port may be electrically connected to certain digital terminal of battery 240 to directly read/write digital signals. Information can be communicated directly, wirelessly or through the cloud between processor 212 and battery 240 or to a charger or a battery-connected device. This information may include, for example, battery identification information (e.g., brand, model, serial number, etc.), timing information (e.g., date, time, running duration), cell configuration (series/parallel/combination configuration), and charging or discharging parameters, etc.
Processor 212 may communicate with battery 240 through intermediate devices. The intermediate devices include, among others, monitoring module 220 and controlling module 230. Monitoring module 220 may include one or more monitoring units to monitor the status of battery 240. Controlling module 230 may include one or more controlling units to control the behavior of battery 240. For example, in
Current sensor 302 may detect/monitor the current value of battery 240 or its individual cells during charging and/or discharging process. The current value may be detected directly or indirectly. In some embodiments, a current sensing device may be mounted on a PCB and be connected in series with one or more battery cells, such as directly coupled to one terminal of a battery cell, to measure input/output current to/from the cell(s) directly. The measured current value may be converted into a voltage value and read by or provided to processor 212 in analog or digital form. In other embodiments, voltage values across one or more cells may be measured and corresponding current value flowing through the cell(s) may be derived from the measured voltage values. The calculation of current value can be accomplished by either current sensor 302 or processor 212. The derived current value (e.g., after calculation) or measured voltage values (e.g., before calculation) may be read by processor 212 in analog or digital form. Processor 212 may store the current value locally, e.g., in memory 214. Alternatively or additionally, processor 212 may send the current value to cloud 130 through network 120.
Voltage sensor 304 may detect/monitor the voltage level of battery 240 or its individual cells. For example, voltage values (e.g., with respect to ground or floating) may be measured at one or more points of the battery cell circuit and read by or provided to processor 212 in analog or digital form. Voltage sensor 304 may be coupled to two terminals of battery 240, or an individual battery cell. Voltage sensor 304 may be mounted on the PCB where the current sensor 302 is installed. Voltage drops across one or more cells may be obtained from the measured voltage values. Similar to the current values, voltage values may be stored locally and/or sent to cloud 130.
In some embodiments, both current values and voltage values may be measured using only one sensor (e.g., voltage sensor or current sensor). For example, either current or voltage value may be measured directly, while the other value may be derived from the measured value. Therefore, instead of using two sensors, only one sensor may be used.
Accelerometer 308 may detect and/or monitor acceleration (e.g., acceleration associated with the phenomenon of weight) experienced by battery 240. For example, the acceleration of battery 240 at rest on the surface of the earth may be g=9.81 m/s2 straight upwards, due to its weight. In another example, the acceleration of battery 240 in free fall may be zero. Accelerometer 308 may include single- and/or multi-axis models to detect magnitude and/or direction of the proper acceleration (or g-force), as a vector quantity, of battery 240. Accelerometer 308 can be used to sense orientation (e.g., because direction of weight changes), coordinate acceleration (e.g., when it produces g-force or a change in g-force), vibration, shock, and falling of battery 240, among others. Accelerometer 308 may be directly coupled to battery 240 so that it can measure accurately the acceleration of battery 240, and the measurement will not be interfered by any intermediate component that may serve as a cushion.
Thermocoupler 308 may measure the temperature of battery 240 or one or more parts of battery 240. The system may use one or more thermocouplers to measure temperature at different locations, for example, an internal thermocoupler for measuring the temperature inside a battery cell, and an external thermocoupler for measuring the ambient temperature. The system may also include more thermocouplers, for example, a thermocoupler for each of the individual cells, one for the center region of battery pack 240, the peripheral region of battery 240, etc.
Hygrometer 310 may measure the humidity in the environment in which battery 240 resides. For example, hygrometer 310 may measure the moisture content in the environment and derive or calculate the humidity level. Hygrometer 310 may include metal-paper coil hygrometers, hair tension hygrometers, chilled mirror dewpoint hygrometers, capacitive humidity sensors, resistive humidity sensors, thermal conductivity humidity sensors, etc. Hygrometer 310 may be mounted on the PCB that includes current sensor 302 and/or voltage sensor 304. The humidity level may impact battery/electronics performance.
GPS receiver 312 may provide the geographical location of battery 240. Battery control may be adapted and/or optimized based on the geographical location. For example, charging/discharging parameters/thresholds or schemes for a battery located in a low latitude region may be different from that for a battery located in a high latitude region. In another example, battery health standard may be different at high altitude from that at sea level.
Through GPS receiver 312, a user may know the location of battery 240, and set charging/discharging parameters/thresholds or schemes, and/or other parameters, such as threshold of humidity, temperature, pressure, gas level, etc. For example, if the user detect that battery 240 is at a location that is normally hot, the user may set the maximum current for battery 240 to be certain amount to prevent battery 240 from being over-heated. The system may include a current limiting circuit or a circuit breaker. When the current reaches the maximum current, the system may activate the current limiting circuit or the circuit breaker to reduce the current or break the circuit.
GPS receiver 312 can receive radio signals from GPS satellites. GPS receiver 312 can calculate the location based on the received radio signals. Alternatively, processor 212, which is coupled to GPS receiver 312, can receive signals from GPS receiver 312, and calculate the location or send the signals to remote server 132 for calculation.
Gas sensor 314 may detect the presence and/or the concentration level of certain gaseous molecules, such as carbon monoxide (CO) and/or carbon dioxide (CO2), emitted by battery 240. Battery 240 may emit these gaseous molecules in certain circumstances, such as overheat, over/under charged, dead/damaged cell(s), etc. The presence of such gaseous molecules may indicate that battery 240 is compromised or damaged. The concentration level of the gaseous molecules may indicate the degree of damage and/or the duration of the damage. Gas sensor 314 may include opto-chemical sensors, biomimetic sensors, electrochemical sensors, and/or semiconductor sensors, among others. The system may include gas sensor 314 placed inside a battery cell and/or close to a battery cell.
Impedance sensor 316 may detect/monitor the internal impedance (e.g., resistance) of battery 240 or its individual cells. The internal impedance may provide indications of battery health status (e.g., aging and/or potential damage). Impedance sensor 316 may be connected in series with a battery cell.
Strain sensor 318 (also known as a strain gauge) may measure the strain experienced by battery 240 (or a battery cell). The strain may provide indications of potential physical damage and/or deformation of battery due to physical impact or internal gassing. Strain sensor 318 may include an insulating flexible backing which supports a metallic foil pattern. Strain sensor 318 may be attached to battery 240 by a suitable adhesive, such as cyanoacrylate. As battery 240 deforms, the foil deforms correspondingly, causing its electrical resistance to change. The resistance change, which may be measured using a Wheatstone bridge, corresponds to the strain (e.g., by a quantity known as the gauge factor) experienced by battery 240. Therefore, by detecting the resistance change, the strain of battery 240 may be measured.
Pressure sensor 320 (also known as a pressure gauge) may measure the pressure experienced by battery 240. Pressure increase due to internal gassing may indicate potential cell damage/fail. Pressure sensor 320 may be placed inside a battery cell. Pressure sensor 320 can be implemented by a conventional pressure sensor, such as a piezoresistive strain gauge, a capacitive pressure sensor, an electromagnetic pressure sensor, or an optical pressure sensor. For example, a capacitive sensor may use a diaphragm and pressure cavity to create a variable capacitor to detect applied pressure. The diaphragm can be a metal, ceramic, and silicon diaphragm. When the pressure changes, the capacitance of the capacitor changes and such changes can be detected.
Dimensional sensor 322 may measure the dimension and/or dimension variation of battery 240. Dimension change due to internal gassing may indicate potential cell damage/fail. Dimension sensor 322 may be directly coupled to an external surface of a battery cell.
Coulomb counting sensor 324 may measure the coulombs into or out of the battery 240. Coulomb counting may be used to determine state of charge of the battery.
Magnetism/Quantum Magnetism sensor 326 may measure the magnetic state of the battery 240. Magnetism/Quantum Magnetism measurement may be used to improve charge methods and diagnose battery deficiencies, including predicting end-of-life by measuring battery capacity.
Processor 212 may perform PCB self-diagnosis to detect if one or more components (e.g., monitoring/controlling units) on the PCB control board function properly. The self-diagnostic information may provide indications of battery health status. For example, certain component may fail when the battery emits gas, the pressure inside the battery increases, the battery undergoes deformation or physical damage, etc.
The communication of monitoring information between controller 210 and cloud 130 may be instantaneous, periodical, or event driven. In some embodiments, raw data obtained from one or more monitoring units may be transmitted to cloud 130. In other embodiments, raw data may be pre-processed by processor 212 before being transmitted to cloud 130.
Battery health regulator 412 may also turn off switch 448 to shut down the entire charging circuit of the battery under certain circumstances. For example, if only one cell is disfunctioning, battery health regulator 412 may discharge that one cell by turn on the corresponding discharging switch, or battery health regulator 412 may instead shut down the entire charge circuit by turning off switch 448 to protect the battery from further damages.
Battery parameter controller 422 may control various parameters associated with the battery and/or its individual cells. For example, each cell may have one or more thresholds associated with its voltage, current, impedance, charge, charging rate, temperature, etc. These thresholds may be used to trigger one or more controlling events. For example, if the measured voltage of cell 442a is higher than a first threshold but below a second threshold, battery health regulator 412 may turn on switch 446a to discharge cell 442a. If the voltage of cell 442a is higher than the second threshold, then battery health regulator 412 may turn off switch 448 to shut down the entire charging circuit. The first and second thresholds of cell 442a may be set and/or changed by battery parameter controller 422, or may be directed from the cloud. Similarly, other thresholds and thresholds associated with other cells can also be set and/or changed by battery parameter controller 422. Battery Health Regulation, Battery Parameter Control, and Voltage/Current Control may all be in the same device, such as, on the same PCB that is attached to the battery pack, or may be in separate devices.
Voltage/current controller 432 may control the voltage applied to and/or the current flowing through one or more cells. For example, based on battery status obtained by one or more monitoring units or certain predetermined control scheme, processor 212 may instruct voltage/current controller 432 to increase or decrease the voltage applied to one or more cells. Similarly, voltage/current controller 432 may control the current (e.g., charging current or discharging current) flowing through one or more cells based on battery status obtained by one or more monitoring units or certain predetermined control scheme either through some mechanism on the battery, or indirectly through communications with a charger or a battery-connected device. Voltage/current controller 432 may also control voltage source 452 to increase or decrease overall charging voltage and/or current.
A DC voltage regulator 462 may be included in the main cell circuit to regulate DC voltage. DC voltage regulator 462 may be configured to change the DC voltage output from the battery pack. DC voltage regulator 462 may be controlled by battery health regulator 412, battery parameter controller 422, and/or voltage/current controller 432.
Server 500 may include a network interface 504 communicatively connected with the one or more processors 502. Network interface 504 may provide wired or wireless communication connections to network 120. For example, network interface 504 may include Fiber, Ethernet, WiFi, Bluetooth, NFC, telecommunication connection (3G, 4G, LTE, etc.), or other suitable communication devices. Network interface 504 may provide network connection using TCP/IP, HTTP, HTTPS, UDP, or other suitable protocols. In some embodiments, an application programming interface (API) may be provided to facilitate communication between controller 114 and server 500.
Server 500 may include a storage device 506. Storage device 506 may include one or more magnetic storage media such as hard drive disks; one or more optical storage media such as computer disks (CDs), CD-Rs, CD±RWs, DVDs, DVD±Rs, DVD±RWs, HD-DVDs, Blu-ray DVDs; one or more semiconductor storage media such as flash drives, SD cards, memory sticks; or any other suitable computer readable media. Storage device 506 may store information received from controller 114, such as data relating to the status of battery 110, into the storage space of storage device 506.
One or more user terminals, such as user terminal 630, may be connected to cloud 610 or connected directly to one or more batteries, such as battery 606. User terminal 630 may include smart phones, tablets, computers, PDAs, dedicated devices, etc. User terminal 630 may communicate with cloud 610 or battery 606 to obtain status information of one or more batteries. Such information may be displayed to a user in numerical, textual, or graphical forms. The user may also control one or more aspects of one or more batteries, either through cloud 610 or through direct connection with the batteries, subject to certain permissions imposed by cloud 610 or battery 606. Authorization process may be implemented to grant or deny the permissions.
One or more service providers, such as service provider 620, may connect to cloud 610 to provide various services. For example, a financial institute may provide financial services such as bank transaction, credit card payment, etc. when cloud 610 involves services requiring financial transactions. In another example, a battery maintenance company may schedule battery maintenance field trips after receiving warning alarms from cloud 610. As such, unnecessary periodic visits can be avoided to reduce cost. In yet another example, a battery manufacturer may inspect battery status records to determine whether warranty claims should be honored. For example, if the data obtained by accelerometer 306 indicates that the battery was dropped, the warranty claim may be denied.
As discussed above, the aspects of the battery to be controlled include directly interfering with the operation of the battery, such as turn off (e.g., disconnect) the battery, reduce charging/discharging voltage or current, etc. The system may control a battery pack as a whole or control individual battery cells. For example, if it is detected that an individual battery cell is overcharged, the system may turn on a bleeding circuit coupled to that individual battery cell to bleed off certain charges.
The aspects of the battery to be controlled may also include setting up thresholds for batteries. Based on one or more sensed values, the system may set up certain thresholds for the battery correspondingly. For example, charging and discharging voltage or current thresholds may be set up based on sensed ambient temperature. If the sensed ambient temperature is high, a lower charging threshold (maximum voltage to be charged) can be set. When the battery voltage reaches that maximum voltage, the system may stop charging the battery. For another example, the CO level threshold can also be set based on the sensed ambient temperature. If the ambient temperature is high, for safety reasons, the system may set a lower CO threshold. If the CO level in the battery reaches the threshold, the system may turn off the battery. For another example, the system may set up an upper temperature threshold based on the location of the battery. In other words, different temperature thresholds may be set up for batteries at different locations.
In the foregoing description of exemplary embodiments, various features are grouped together in a single embodiment for purposes of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claims require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this description of the exemplary embodiments, with each claim standing on its own as a separate embodiment of the invention.
Moreover, it will be apparent to those skilled in the art from consideration of the specification and practice of the present disclosure that various modifications and variations can be made to the disclosed systems and methods without departing from the scope of the disclosure, as claimed. Thus, it is intended that the specification and examples be considered as exemplary only, with a true scope of the present disclosure being indicated by the following claims and their equivalents.