The present description relates generally to a protective housing for a wireless smart connector.
Electrical outlets and connectors are often linked with networks to respond to signals from external sources without a physical connection.
By way of example, U.S. patent application Ser. Nos. 13/591,371 and 13/650,757, each of which is incorporated herein by reference in its entirety, describe a smart connector which allows for wireless control of the bringing of power to a low-voltage DC powered device that is coupled via use of the connectors to a low-voltage DC power source. The disclosed connectors may be used to couple a low-voltage DC powered device to any one of a low-voltage DC power grid systems, to low-voltage DC power cables, and/or to other disconnection/connection points in a DC power system.
By way of further example, U.S. patent application Ser. No. 14,226,017, which is incorporated herein by reference in its entirety, describe a smart connector which allows for wireless control of the bringing of power to a low-voltage DC powered device that is couple via use of the connectors to an AC power source. In particular, the provided power is used to drive an AC/DC converter to create an internal DC bus and the DC bus powers the electronics, including for example, a wireless transceiver. In at least one instance, the wireless transceiver will receive a command from another wireless device to turn power ON or OFF to the local outlet and the downstream (e.g. daisychained, etc.) outlets. These outlets can be wired to the output terminations (push-in and/or other) on the back of the local outlet and/or outlet housing, or may be connected through any other suitable electrical connection.
The following describes a smart connector. The smart connector includes a main housing element for holding smart connector circuitry. A threaded nub extends from the main housing element and is sized to be received within a knock-out of a junction box. The threaded nub has a first opening and a second opening separated by a barrier for allowing respective ones of power wires and dimming wires, which are coupled to the smart connector circuitry, to be passed from the main housing element to the junction box.
A better understanding of the objects, advantages, features, properties and relationships of the invention will be obtained from the following detailed description and accompanying drawings which set forth illustrative embodiments and which are indicative of the various ways in which the principles of the invention may be employed.
For a better understanding of the various aspects of the described smart connector housing, reference may be had to preferred embodiments shown in the attached drawings in which:
The following description of example methods and apparatus is not intended to limit the scope of the description to the precise form or forms detailed herein. Instead the following description is intended to be illustrative so that others may follow its teachings.
An example smart connector 10 is shown in use in
Turning to
To secure the smart connector 10 to a fixture wall, such as the wall of a junction box 12, the main housing section 20 included a threaded nub 25 (which is sized to be received within a knockout of the junction box) upon which a nut 26 is secured. In this regard, the wall of the junction box is intended to be secured between the nut 26 and the surface of the smart connector housing that supports the nub 25. The wires that emanate from the connector 20 pass through the nub 25 whereupon they will be available within the junction box to couple to wires leading to a load or the like. As will also be appreciated, other hardware or locking arrangements can be used to allow the connector 10 to be secured to a junction box or the like.
While the housing elements are preferably constructed of impact resistant plastics, one or more of the housing elements can be made from other materials such as metal, ceramics, etc. as desired, for example, depending upon the climate or environment in which the smart connector 10 is to be used. Furthermore, while one or more reinforcing ridges are preferably provided to one or more surfaces of the connector housing when the connector housing is constructed from plastic, it will be appreciated that, when the housing is constructed from a metallic material, such ridges 28 can omitted as shown in
To allow for radio communications to be provided to the smart connector receiver via use of one or more wireless protocols, such as Bluetooth, Wi-Fi, cellular, etc., the antenna 24 may be extended from the housing at various different locations as illustrated. Furthermore, to allow the smart connector 10 to be mounted close to various devices that may provide interfering surfaces and/or to allow for better signal reception as needed, the antenna 24 can be constructed to be flexible and/or bendable, for example, by being provided with a joint to allow the antenna to be bendable over 90 degrees while also being rotatable relative to the connector housing. As will be appreciated, the antenna can also be disposed entirely within the connector housing as desired.
To connect the circuitry within the connector 10 to electrical elements within the junction box, wires are fed through nub 25 and, thereby, through the knockout opening of the junction box to the internals of the junction box. When the wires include power wires and dimming control wires, a barrier 205 is provided between the wires as required by the electrical code as particularly shown in
While specific embodiments of a smart connector housing have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, it will be understood that the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any equivalents thereof.
This application claims the benefit of U.S. Provisional Application 62/153,182, filed on Apr. 27, 2015, the disclosure of which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7724204 | Annamaa et al. | May 2010 | B2 |
20050258439 | Dry | Nov 2005 | A1 |
20060040535 | Koshy | Feb 2006 | A1 |
20070281520 | Insalaco | Dec 2007 | A1 |
20090167613 | Hershey | Jul 2009 | A1 |
20100280677 | Budike, Jr. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
2010096513 | Aug 2010 | WO |
WO 2010096513 | Aug 2010 | WO |
Entry |
---|
ISA/US, Int. Search Report and Written Opinion issued on PCT Application No. US16/29474, dated Jul. 27, 2016, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20160316584 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62153182 | Apr 2015 | US |