The present invention pertains to the field of smart container closure mechanisms, and specifically to a container cap that can be remotely opened using a device such as a smartphone.
The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions.
Selectively controlling access to containers is a longstanding and nontrivial concern, and has been ever since someone first built a box that could lock. There is a multitude of situations in which one would not want just anyone to be able to get into a given container, but wants also to still allow convenient authorized access.
As a few examples, childproofing of containers containing medicine, drugs, or cleaning chemicals has saved untold numbers of lives. Recent inventions of automatic pill dispensers that dispense medication when, and not before, the medicine should be taken have assisted people who need to precisely follow complicated medication regimens, even enabling care in situations where the person taking the medication wouldn't be able to follow written instructions as to when the medicine should be taken. As a further example, people living with mental illness often require regular meds to live functionally, but allowing unrestricted access to a full container or an early dose, even of a usual, needed, daily medication, may put the mentally ill individual in danger of self-poisoning.
While digital container-locking is known in the art, no single solution that works well for everyone has yet been engineered, nor have most people dealing with such situations adopted any solution more technologically sophisticated than a childproof cap, a high shelf, a lock on a cupboard door, or giving a dangerous container to a trusted individual to keep safe. Thus, there is a long-felt need to provide a more optimal solution.
Towards these and other objects of the method of the present invention (hereinafter, “the invented method”) that are made obvious to one of ordinary skill in the art in light of the present disclosure, what is provided is a device that can fit in place of an ordinary container cap, which includes a control mechanism, sensors, a locking mechanism, and a wireless communications connection, such that the device may be remotely controlled by a second device such as a smartphone or computer to lock/unlock the container or report information from the sensors.
In most preferred embodiments, the invented device is a ‘smart cap’ that fits in place of and replaces a standard container cap, sealing the container (to at least the extent the regular cap did) and also providing additional features such as: (a.) remote-controlled unlocking via wireless communication, (b.) unlocking validation features such as a biometric scanner (allowing access in response to a recognized thumbprint or retina scan) or a keypad for entering a passcode, and also (c.) sensors inside the cap to safeguard the contents, such as moisture and/or humidity sensors that can send an alert via wireless if the contents of the container are in danger of getting ruined by moisture, or an accelerometer or impact sensor that may send an alert or otherwise register if someone should attempt to forcefully tamper with the container.
In most embodiments, the invented device fits in place of a cap or lid having a standardized size and shape, such as a prescription medicine bottle cap, a jar lid, or a gallon jug lid, to name only three examples of lids having well-known standardized shapes and sizes. Accordingly, the overall shape and size of the invented device may vary depending upon the cap size and shape standard being adhered to. Non-standard cap sizes and shapes are also included within the scope of the invention, but may be less useful (i.e. perhaps only slightly more useful than an ordinary cap that doesn't fit any available containers) without a container in mind that the cap is meant to fit onto. In preferred embodiments, the invented device is reusable and durable; a preferred application might be an instance of the invented device being installed onto one's current bottle of prescription medication, and this high-tech ‘favorite cap’ then being transferred onto a next bottle when the previous one is depleted. One might even provide a variety of invented caps having different decoration, such as colorful ones or ones with designs or patterns, or cap covers made of a more aesthetically-pleasing material such as glazed ceramic or carved wood, which may be a more practical investment for a consumer on an item meant to be reusable instead of single-use.
The invented cap, designed to restrict unauthorized access to the equipped container and allow authorized access, particularly access granted remotely, may allow more flexible and convenient storage of materials that can be unsafe if handled improperly, such as but not limited to medicine, chemicals, or sharp objects, or to which, for other reasons, restricted access is preferred. The cap may restrict access to the container by requiring a biometric scan, such as a thumbprint or retina, to match a preset one; may have a keypad and require a passcode; have a touch screen that can be programmed to require a certain authentication that can be entered via the touchscreen; or may be remotely operated by a device such as a computer or smartphone, allowing the sealed container to remain close to someone whose access should be limited but not allowing this person to actually access the contents until the container is unlocked by someone else who need not be present to do so. For instance, one might consider a situation in which a person needs regular medication, and a caregiver dispenses this medication to the person daily because it's unsafe for the person receiving the medication to have unsupervised access to the rest of the medicine, for whatever reason. The invented remotely controllable container cap would allow for a ‘cued up’ dose of medication, stored in a container protected by the invented cap, to be dispensed at the appropriate time (and not before) to the person who needs it, such as by the same caregiver operating the invented cap with a smartphone, without requiring the caregiver to be physically present just to ensure the medication is dispensed safely. The caregiver might still visit frequently, of course, but there is no emergency if the caregiver cannot be physically present to dispense a dose of medication.
A first preferred embodiment of the invented device is shaped to fit over the opening of a container, and may comprise: a cap enclosure with a cap cover and an inner body; a locking mechanism integrally combined with the cap enclosure; a smart module coupled with the cap enclosure and communicatively coupled locking mechanism, comprising a central processing unit (“CPU”), a wireless communications interface bi-directionally communicatively coupled with the CPU, wherein the memory contains instructions that operatively direct the device to: accept an open command as received by the wireless communications interface; and direct the locking mechanism to change to an open state upon receipt by the smart module of the open command.
In this preferred embodiment, the open command may be issued by a remote device operated by a user, and remote device is bi-directionally coupled with the smart module. In certain preferred embodiments, this remote device comprises a smart phone (e.g. an iPhone or Android). In other preferred embodiments, this remote device may comprise any network device, such as a smartphone, computer, laptop, or tablet.
This preferred embodiment may further include a biometric sensor (e.g. a thumbprint or retina scanner) communicatively coupled with the smart module, and the memory further containing a biometric pattern and additional instructions that operatively direct the device to: accept an open command when the biometric pattern is detected by the biometric sensor; and direct the locking mechanism to change to an open state when the biometric pattern is detected by the biometric sensor.
Additionally or alternatively, this embodiment might include a keypad coupled to the smart module, such that one can gain authorized access to the container by entering a passcode. The keypad might be numerical, alphanumerical, alphabetical, or even non-alphanumerical symbols and include any number of keys deemed to be appropriate to the application. The smart module would accept an ‘open’ command when the keypad receives the appropriate passcode or selection pattern, and direct the locking mechanism of the cap to unlock and allow access to the container.
Further, some preferred embodiments might include an electromagnetic actuator serving as the locking mechanism, operated by the smart module of the device. Additionally, certain preferred embodiments may have the cap cover shaped to provide a one way snap fit assembly between the cap enclosure and the inner body. Certain alternative preferred embodiments of the invented device may include sensors such as biometric, humidity, moisture, accelerometric, impact, tilting, or other sensors known in the art, communicatively coupled to the smart module to provide sensor information; a single invented cap may include multiple sensors, as deemed appropriate. Further, the invented cap or smartphone software may include a sensor reading threshold at which to alert a user, such as if the moisture or humidity might ruin the container contents, or if the accelerometer reading might indicate the container is being tampered with.
A moisture sensor and/or humidity sensor positioned on the inside of the invented cap may provide improved monitoring of the container contents. Depending on what these are expected to be, moisture or excessive humidity inside the container could be an indicator of conditions that could ruin the contents; this would provide an alert about that danger to the container contents without anyone even opening the container to check. An accelerometer, impact, tilting, or gyrometric sensor may provide an alert that the container is being tampered with, or has been tampered with, or that someone is trying to break into the container by force. It's known in the art of smartphones to detect a potential danger of impact trauma to a phone based on the accelerometer in the phone, because a sudden jump in speed may indicate that the phone has just slipped out of someone's hand; similarly, an accelerometer placed inside the invented cap may detect a container being broken into by means such as dropping of the container on a floor or surface, or throwing the container against a wall. An impact sensor, such as is known in the art for triggering the air bags in a car, might also detect tampering attempts an accelerometer might miss, such as an attempt to break into the container with a hammer. Tilting or gyroscopic sensors might be similarly useful for detecting attempts at unauthorized access, or even pointing out unsafe storage conditions, such as a container holding something seriously unpleasant to accidentally spill, such as a hazardous chemical, being stored on a shelf that wobbles or isn't level.
Further, the invented device may have one or more light emitters, such as LEDs, coupled with the smart module. These may be decorative or may provide signals, such as indicating that the cap is currently locked/unlocked or that a command or access attempt has been registered. The one or more light emitters may be any color, and may be just one color or more than one. In preferred embodiments, at least three colors of light may be available.
Further, the invented device may include a battery communicatively coupled to the smart module and configured to provide electrical energy as needed to support the functions of the device. This may be a replaceable or rechargeable battery, and the cap may further include means of charging if appropriate, such as an AC adapter, USB adapter, or small solar panel (like on a calculator), or other such means as known in the art.
The invented device includes a wireless communications interface in most preferred embodiments, and this interface may be in conformance with a wireless communications standard, such as Bluetooth, WiFi, NFC, or radio. A command to open may be transmitted by a remote device and received by the invented cap via the wireless communications interface, then executed by the smart module controlling the lock on the container.
The invented cap may be made of any suitable material known in the art, including but not limited to molded plastic, 3D-printed plastic, metal, wood, glass, ceramic, and so on. Concerns as to which material may be most suitable include that the cap be sufficiently durable and solid to deny access except by use of the means for digitally controlling the lock; that electrical elements as currently known in the art generally require conductive materials; and that decorative caps are very much possible but aesthetics may take a lower priority to security in most cases.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
The detailed description of some embodiments of the invention is made below with reference to the accompanying figures, wherein like numerals represent corresponding parts of the figures.
In the following detailed description of the invention, numerous details, examples, and embodiments of the invention are described. However, it will be clear and apparent to one skilled in the art that the invention is not limited to the embodiments set forth and that the invention can be adapted for any of several applications.
It is to be understood that this invention is not limited to particular aspects of the present invention described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims. Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events.
Where a range of values is provided herein, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the methods and materials are now described.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
When elements are referred to as being “connected” or “coupled,” the elements can be directly connected or coupled together or one or more intervening elements may also be present. In contrast, when elements are referred to as being “directly connected” or “directly coupled,” there are no intervening elements present.
In the specification and claims, references to “a processor” include multiple processors. In some cases, a process that may be performed by “a processor” may be actually performed by multiple processors on the same device or on different devices. For the purposes of this specification and claims, any reference to “a processor” shall include multiple processors, which may be on the same device or different devices, unless expressly specified otherwise.
The subject matter may be embodied as devices, systems, methods, and/or computer program products. Accordingly, some or all of the subject matter may be embodied in hardware and/or in software (including firmware, resident software, micro-code, state machines, gate arrays, etc.) Furthermore, the subject matter may take the form of a computer program product on a computer-usable or computer-readable storage medium having computer-usable or computer-readable program code embodied in the medium for use by or in connection with an instruction execution system. In the context of this document, a computer-usable or computer-readable medium may be any medium that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
The computer-usable or computer-readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media.
Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by an instruction execution system. Note that the computer-usable or computer-readable medium could be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted, of otherwise processed in a suitable manner, if necessary, and then stored in a computer memory.
When the subject matter is embodied in the general context of computer-executable instructions, the embodiment may comprise program modules, executed by one or more systems, computers, or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments.
Additionally, it should be understood that any transaction or interaction described as occurring between multiple computers is not limited to multiple distinct hardware platforms, and could all be happening on the same computer. It is understood in the art that a single hardware platform may host multiple distinct and separate server functions.
Throughout this specification, like reference numbers signify the same elements throughout the description of the figures.
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Functions of the cap cover 204 and cap enclosure 204 may include decoration; branding; environmental protection for the smart module 202; providing a watertight or airtight seal for the container 102; and providing a surface on which features such as the LED 201, a biometric sensor, a touch screen, a keypad, a button, or similar might be placed (see
The smart module 202 and electromagnet 206 are a printed circuit board assembly, and may comprise: (1.) a substrate such as composite, flexible materials, ceramics, or plastics, and (2.) metal coils and conductive elements forming the circuits of the board. The functions of the smart module 202 include: wireless connectivity (such as via WiFi, BlueTooth, RFID, infrared, or NFC), data logging, password or biometric protection, environment sensing and assessment, child safety features, position tracking, access records, key card access (such as by RFID/NFC, magnetic strip, embedded IC, or a QR code with an integrated camera module, and device settings. The functions of the electromagnet 206 include functioning as an actuator for toggling the cap 100 between locked and unlocked states and engaging and disengaging the open key 216 with the cap enclosure 204. The electromagnet 206 is communicatively connected to the smart module 202, and the smart module 202 controls the electromagnet 206 to toggle on and off.
The close key 210 is a one way turning key for closing the cap 100; when a user places the cap 100 onto the open container 102 and turns the cap 100 in order to close the container 102, the close key 210 is the element of the cap 100 that freely permits the cap 100 to be turned until sealed shut, but resists the cap 100 being turned back in the opposite direction to open the cap 100 the same way the cap 100 was just closed. Thus, once the cap 100 has been closed, the cap 100 is mechanically locked into remaining closed until opened by the appropriate unlocking method. The close key spring 212 maintains engagement between the cap enclosure 204 and the close key 210, such that a user gripping and moving the cap enclosure 204 can also move the close key 210 by doing so.
The open key 216 engages with the cap enclosure 204 when the cap 100 is unlocked for opening, such that the cap 100 can be moved or turned by a user gripping the cap enclosure 204. The open key spring 214 resets the open key position.
The close key 210 and open key 216 may be made of any suitable material known in the art or discovered to be suitable in the future, some examples of which include plastics, ceramics, metals, and wood. The close key spring 212 and open key spring 214 may be made of any suitable material known in the art or discovered to be suitable in the future, some examples of which include metals, plastics, rubber, and elastomers.
The threaded cap body 218 is shaped to be fastened to or unfastened from the container opening 104, such as including threading corresponding to threading of the container opening 104. The threaded cap body may be made of any suitable material known in the art or discovered to be suitable in the future, some examples of which include plastics, ceramics, metals, and wood.
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Alternatively, optionally and/or additionally the device 108 and its functions as disclosed in the present disclosure are wholly or in part are comprised within, provided within, and/or made accessible via, or directly or indirectly via the network 106, including but not limited to a Virtual Machine and/or Platform as a Service, including but not limited to an Amazon Web Services (AWS) asset, a Microsoft Cloud (Azure) asset or service, a Google Cloud service or asset, and Oracle Cloud Infrastructure (OCI) asset or service, and/or one or more suitable internet-accessible assets or services in singularity, in concert or in combination.
The memory 108F of the device 108 includes a software operating system OP.SYS 108G. The software OP.SYS 108G of the device 108 may be selected from freely available, open source and/or commercially available operating system software, to include but not limited to IBM Power System 5924 marketed by IBM, or Dell EMC PowerEdge™ Servers; or (d.) other suitable computational system or electronic communications device known in the art capable of providing networking and operating system services as known in the art capable of providing networking and operating system services as known in the art. The exemplary device software program SW 108H consisting of executable instructions and associated data structures is optionally adapted to enable the device 108 to (a.) provide an interface for operating the cap 100; (b.) transmit a signal directing the cap 100 to open; (c.) receive and store sensor data from the cap 100 as gathered by one or more cap sensors 220; and (d.) to perform, execute and instantiate all elements, aspects and steps as required of the device 108 to practice the invented method in its various preferred embodiments in interaction with the smart module 202 of the cap 100.
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
Referring now generally to the Figures and particularly to
While selected embodiments have been chosen to illustrate the invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. For example, the size, shape, location or orientation of the various components can be changed as needed and/or desired. Components that are shown directly connected or contacting each other can have intermediate structures disposed between them. The functions of one element can be performed by two, and vice versa. The structures and functions of one embodiment can be adopted in another embodiment, it is not necessary for all advantages to be present in a particular embodiment at the same time. Every feature which is unique from the prior art, alone or in combination with other features, also should be considered a separate description of further inventions by the applicant, including the structural and/or functional concepts embodied by such feature(s). Thus, the foregoing descriptions of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
This Nonprovisional patent application is a Continuation-in-Part patent application to Nonprovisional patent application Ser. No. 15/946,734 as filed on Apr. 6, 2018 by Inventor Nicholas Evan MOTT. Said Nonprovisional patent application Ser. No. 15/946,734 is hereby incorporated into its entirety and for all purposes into the present disclosure.
Number | Date | Country | |
---|---|---|---|
Parent | 15946734 | Apr 2018 | US |
Child | 17128897 | US |