The present disclosure relates generally to a method and system for facilitating automated acceptance of authorized deliveries. More particularly, the present disclosure relates smart door with a movable access panel and access opening which allows authorized delivery items to be passed therethrough.
The secure and safe delivery of mail, packages, and other items has long been a concern for both businesses and homes, especially as consumers are turning to internet-based retailers for an ever increasing proportion of goods, groceries, and other items. Conventional mail slots are too small to allow the passage of packages, and deliveries are often left unattended when no one is available to receive them, thus creating a high risk of theft. Drop boxes and other large mail receptacles designed to receive packages are bulky, and homes are rarely equipped with them.
Various devices for automated or unattended receipt of mail and other delivered items can be found within the prior art. For example, doors equipped with trap doors or movable panels allow packages to be deposited into buildings, thus negating the need for a standalone drop box. Often, these doors require authentication through passcodes, biometrics, or other common security methods before the trap doors or panels can be accessed. However, these devices have several key disadvantages. Firstly, the reliance on general authentication does not permit the screening of specific items to ensure that only authorized packages are allowed to be deposited. Secondly, the trap doors must be sufficiently large to permit larger boxes to pass through, thus compromising the protective value of the door by presenting an unnecessarily large opening.
A need therefore exists for a door with an integrated opening for receiving deliveries which permits access only to authorized items, which is also capable of automatically varying the size of the opening in proportion to the dimensions of the items being delivered.
In the present disclosure, where a document, act or item of knowledge is referred to or discussed, this reference or discussion is not an admission that the document, act or item of knowledge or any combination thereof was at the priority date, publicly available, known to the public, part of common general knowledge or otherwise constitutes prior art under the applicable statutory provisions; or is known to be relevant to an attempt to solve any problem with which the present disclosure is concerned.
While certain aspects of conventional technologies have been discussed to facilitate the present disclosure, no technical aspects are disclaimed and it is contemplated that the claims may encompass one or more of the conventional technical aspects discussed herein.
An aspect of an example embodiment in the present disclosure is to provide a smart door which allows delivery items to be securely delivered. Accordingly, the present disclosure provides a smart door having a main panel, a scanning device, an access opening, a movable access panel adapted to selectively cover or reveal the access opening, and a control module. The control module is operably connected to a delivery service device, such as an ecommerce platform server, and is adapted to receive delivery data identifying one or more authorized items. The scanning device scans an information tag disposed on each delivery item to obtain the delivery item identifier of the delivery item. If the delivery item identifier matches the delivery item identifier of one of the authorized items, the access panel will reveal the access opening, thus allowing the delivery item to be passed therethrough.
It is another aspect of an example embodiment in the present disclosure to provide a smart door which allows the access panel to minimize the size of the access opening while still allowing authorized delivery items to pass through. Accordingly, the present disclosure provides an access panel adapted to variably control an access opening height in proportion to a delivery item height. The delivery item height may be transmitted to the control module via the delivery data, or be encoded within the information tag. In certain embodiments, the scanning device may function as a dimensional scanner to automatically determine the delivery item height.
It is yet another aspect of an example embodiment in the present disclosure to allow a user to receive status updates from the smart door as well as manually control the access panel. Accordingly, the present disclosure provides a user device operably connected to the control module via the communication network, the user device is adapted to execute a control application which provides the user with access to user commands and status updates.
It is a further aspect of an example embodiment in the present disclosure to allow video to be captured for the purpose of identifying persons approaching the smart door, and to observe the access opening. Accordingly, the present disclosure provides a smart door with an external camera oriented towards an exterior space, and an interior camera positioned above the access opening, which is adapted to capture video of the delivery item or other objects which pass through the access opening.
The present disclosure addresses at least one of the foregoing disadvantages. However, it is contemplated that the present disclosure may prove useful in addressing other problems and deficiencies in a number of technical areas. Therefore, the claims should not necessarily be construed as limited to addressing any of the particular problems or deficiencies discussed hereinabove. To the accomplishment of the above, this disclosure may be embodied in the form illustrated in the accompanying drawings. Attention is called to the fact, however, that the drawings are illustrative only. Variations are contemplated as being part of the disclosure.
In the drawings, like elements are depicted by like reference numerals. The drawings are briefly described as follows.
The present disclosure now will be described more fully hereinafter with reference to the accompanying drawings, which show various example embodiments. However, the present disclosure may be embodied in many different forms and should not be construed as limited to the example embodiments set forth herein. Rather, these example embodiments are provided so that the present disclosure is thorough, complete and fully conveys the scope of the present disclosure to those skilled in the art.
In a preferred embodiment, the smart door 10 further has an exterior camera 54 for capturing images and/or video of the external space, as well as an access input device 52, such as a keypad, adapted to allow inputting of access codes for disengaging the lock mechanism 50. The smart door 10 may also have a speaker 56 adapted to emit sounds, as well as a microphone for capturing sounds. Referring to
Referring to
Referring to
In a preferred embodiment, the access panel 26 is oriented vertically and is parallel with the inner and outer faces 22A, 22B of the main panel 20. The access panel 26 is adapted to selectively cover or reveal the access opening 32 by sliding across the access frame 34. Referring to
In one embodiment, the access panel bottom edge 28B and the access panel top edge 28T are oriented towards the bottom edge 24B and top edge 24T of the main panel 20 respectively. The access panel 26 is adapted to slide vertically in relation to the access frame 34, with the access panel 26 sliding upwardly or downwardly to reveal or cover the access opening 32. The opening height 36 may correspond to the distance between the access panel bottom edge 28B, and the access frame bottom edge 34B. Note that in an alternate embodiment, the access panel 26 may instead be adapted to slide horizontally in either a rightward or leftward direction, and an opening width may be employed in place of the opening height. The opening width is sufficient to accommodate the width of the delivery item and may be measured as the distance between one of the access panel side edges 28S and the corresponding access frame side edge 34S.
In certain embodiments, the inner face 22B of the main panel 12 may have an actuation recess 48 positioned above the access frame 34, corresponding to a depressed or hollow space. The access panel 26 may be positioned towards the inner face 22B of the main panel, and the actuation recess 48 is adapted to receive the access panel 26 as it slides upwardly. The actuation recess 48 may alternatively be positioned between the inner and outer faces 22B, 22A of the main panel 20. By allowing the access panel 26 to partially nest within the actuation recess 48, the overall thickness of the smart door 10 may be reduced.
In one alternative embodiment, the access panel 26 may have a panel thickness which is less than the thickness of the main panel. The access panel 26 may be positioned approximately midway between the inner and outer faces 22B, 22A of the main panel 20, while the access frame top, bottom, and side edges 34T, 34B, 34S may remain flush with the inner and outer faces 22B, 22A. This configuration creates an ornamental sunken space between the access panel outer and inner face 30A, 30B and the outer and inner face 22A, 22B of the main panel 20.
Note that in alternate embodiments, the access frame 34 may be positioned at an alternate location in relation to the main panel 20. For example, the access frame bottom edge 34B may be omitted, and the access panel bottom edge 28B may instead abut against the horizontal surface 120 when the access panel 26 is in the closed position. In certain other embodiments, the panel actuator 40 may be substituted with a motorized hinged mechanism which allows the access panel 26 to be hingedly raised to reveal the access opening 32.
In a preferred embodiment, the smart door 10 further has one or more access panel sensors 38 positioned proximate or adjacent to the access frame 34 or the access panel 26. The access panel sensors 38 may be adapted to determine the position of the access panel 26 relative to the access frame 34, detect the magnitude of the opening height 36 by measuring the distance between the access panel bottom edge 28B and the access frame bottom edge 34B, and/or as determine whether a blockage is present within the access opening 32 which would obstruct the movement of the access panel 26. The access panel 26 may be prevented from closing when the access opening 32 is blocked in order to prevent the access panel 26 from damaging the delivery item 150 if it remains positioned within the access opening 32, and may further prevent injury to persons or animals. Various sensing technologies may be employed, as will be apparent to a person of ordinary skill in the art in the field of the invention.
The access panel sensors 38 may also be adapted to detect an attempt to force open the access panel, whereupon the control module 64 may be adapted to automatically alert emergency services of a potential break-in. The speaker 56 may also be adapted to emit a high volume alert tone or other audio signal.
Referring now to
Referring to
Turning to
Referring to
Turning now to
At step 706, the delivery item 150 may be carried to the smart door 10 by a courier 180 or other person, thus allowing the delivery item 150 to be presented to the scanning device 58. To initiate scanning of the delivery item 150 by the scanning device 58, the courier 180 may position the delivery item 150 within operable scanning distance of the scanning device 58 to allow the smart door to read the delivery data 86 associated with the delivery item 150 to obtain the delivery item ID 87. Scanning may also be initiated by pressing the activation switch 59, or via a command inputted via the access input device 52. At step 708, the smart door control system 12 initiates a comparison of the scanned delivery item ID with the authorized delivery list 84. The delivery item 150 will be confirmed as authorized if its delivery item ID matches the delivery item ID 87 associated with one of the authorized items in the authorized delivery list 84. In a preferred embodiment, the comparison between the delivery item ID 87 of the scanned delivery item 150 with the authorized delivery list 84 may be performed locally by the control module 64, or remotely by the remote platform server 68. Where the comparison is performed by the remote platform server 68, the scanned delivery item ID 87 is transmitted by the control module 64 to the remote server platform. In certain embodiments, the information tag 152 (or RFID tag 152R) of the delivery item 150 may display or contain an authorization code 92, which may be compared with the authorization code 92 contained within the matching delivery item record 85 in order for the delivery item 150 to be confirmed as authorized, thus providing additional security.
At step 710, if the scanned delivery item is confirmed to be authorized, the process proceeds to step 712 whereupon the smart door control system 12 will determine if the dimension data 88 of the delivery item 150 is available. However, if the delivery item ID 87 of the scanned delivery item 150 does not correspond to any of the delivery item records within the authorized delivery list 84, the process proceeds to step 724 and the access panel 26 remains in the closed position. Returning to step 712, in one embodiment, the delivery item height 150H may be retrieved from the dimension data 88 contained within the delivery data 86 associated with the scanned delivery item 150. In an alternate embodiment, the delivery item height 150H may instead be obtained by using the scanning device 58 at step 726 if the dimension data 88 is not contained within the delivery item record 85. The dimension data 88 of the delivery item 150 may also be contained within the information tag 152, thus allowing the delivery item height 150H to be obtained directly as the information tag 152 is read. Referring to
Once the delivery item 150 has passed through the access opening 32, the access panel 26 may be automatically lowered to cover the access opening 32 at step 720. The access panel sensors 38 may be used to first ensure that the access opening 32 is not obstructed by the delivery item 150 or another object prior to the lowering of the access panel 26, while the interior camera 54B may be employed to detect intrusion or other unauthorized activity which may occur prior to the access panel 26 returning to the closed position. Next, a delivery confirmation 102 may be transmitted to the delivery service device 70 indicating that the delivery item 150 has been successfully delivered. The delivery confirmation 102 may also be transmitted to the user via the user device 66.
Note that the steps within the exemplary access panel control process 700 may be varied and/or omitted, while remaining in accordance with the principles of the present disclosure. For example, in certain embodiments, the smart door control system 12 may operate without the remote platform server. User commands 98 and delivery data 86 may be transmitted directly to the control module 64 of the smart door 10. In another embodiment, the delivery item 150 may be confirmed as authorized only if delivery occurs during the date/and or time specified in the delivery schedule information 90. In one embodiment, the access panel 26 may be configured to operate in a manual mode which disables the automatic operation of the access panel. Instead, the user device 66 may be configured to alert the user upon the delivery item 150 being scanned and confirmed as an authorized item, thus allowing the user to manually raise the access panel 26 to permit the delivery item 150 to pass through the access opening 32.
Turning to
Referring to
Referring now to
Turning to
Returning to
As will be appreciated by one skilled in the art, aspects of the present disclosure may be embodied as a system, method or computer program product. Accordingly, aspects of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium (including, but not limited to, non-transitory computer readable storage media). A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus or device.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate or transport a program for use by or in connection with an instruction execution system, apparatus or device.
Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. Other types of languages include XML, XBRL and HTML5. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Aspects of the present disclosure are described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the disclosure. Each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. Each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. The embodiment was chosen and described in order to best explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.
The flow diagrams depicted herein are just one example. There may be many variations to this diagram or the steps (or operations) described therein without departing from the spirit of the disclosure. For instance, the steps may be performed in a differing order and/or steps may be added, deleted and/or modified. All of these variations are considered a part of the claimed disclosure.
In conclusion, herein is presented a smart door with controllable access panel. The disclosure is illustrated by example in the drawing figures, and throughout the written description. It should be understood that numerous variations are possible, while adhering to the inventive concept. Such variations are contemplated as being a part of the present disclosure.
This application claims priority to patent application Ser. No. 17/734,452 filed in the United States Patent Office on May 2, 2022, which in turn claims priority to U.S. patent Ser. No. 11/346,150 filed in the United States Patent Office on Dec. 12, 2019. U.S. patent Ser. No. 11/346,150 claims priority to provisional patent application, Ser. No. 62/788,042 filed in the United States Patent Office on Jan. 3, 2019, and provisional patent application, Ser. No. 62/788,215 filed in the United States Patent Office on Jan. 4, 2019. The aforementioned patent and patent applications are expressly incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
7815112 | Volpe et al. | Oct 2010 | B2 |
9504344 | Sarvestani | Nov 2016 | B2 |
9619955 | Eichenblatt | Apr 2017 | B2 |
9745130 | Rawal | Aug 2017 | B1 |
9926737 | Wanjohi | Mar 2018 | B2 |
10413106 | Valeriano et al. | Sep 2019 | B1 |
10512351 | Valeriano et al. | Dec 2019 | B1 |
10588440 | Kajgana | Mar 2020 | B1 |
10624484 | Mountford | Apr 2020 | B1 |
10772451 | Vernal Silva et al. | Sep 2020 | B2 |
10808449 | Goetz | Oct 2020 | B1 |
10817824 | Richardson et al. | Oct 2020 | B2 |
10881233 | Walsh | Jan 2021 | B1 |
10888189 | Pointeau | Jan 2021 | B2 |
11085234 | Hunt | Aug 2021 | B2 |
11346150 | Johnston | May 2022 | B1 |
11369223 | Plummer | Jun 2022 | B2 |
11495068 | Valentine | Nov 2022 | B1 |
11534015 | Janas | Dec 2022 | B2 |
11536079 | Schler | Dec 2022 | B2 |
11797914 | Yamamoto | Oct 2023 | B2 |
11806879 | Spurgeon | Nov 2023 | B2 |
11832751 | Gatke | Dec 2023 | B2 |
11839319 | Parr | Dec 2023 | B1 |
11896151 | Myrick | Feb 2024 | B2 |
20020035857 | Stein et al. | Mar 2002 | A1 |
20020162883 | Arvonio et al. | Nov 2002 | A1 |
20030006275 | Gray | Jan 2003 | A1 |
20060010077 | Dohrmann et al. | Jan 2006 | A1 |
20130264381 | Kim | Oct 2013 | A1 |
20130293074 | Skouboe | Nov 2013 | A1 |
20140190081 | Wanjohi | Jul 2014 | A1 |
20150120529 | Faaborg | Apr 2015 | A1 |
20160101874 | McKinnon et al. | Apr 2016 | A1 |
20160140496 | Simms et al. | May 2016 | A1 |
20160247344 | Eichenblatt | Aug 2016 | A1 |
20160374494 | Geng | Dec 2016 | A1 |
20170091710 | Van Dyke | Mar 2017 | A1 |
20170286905 | Richardson et al. | Oct 2017 | A1 |
20180080275 | Borobio Munera et al. | Mar 2018 | A1 |
20180101820 | Peynet et al. | Apr 2018 | A1 |
20180114256 | Lee | Apr 2018 | A1 |
20180228310 | Enobakhare et al. | Aug 2018 | A1 |
20190180544 | Newcomb | Jun 2019 | A1 |
20190231105 | Pointeau | Aug 2019 | A1 |
20190261802 | Vernal et al. | Aug 2019 | A1 |
20200035051 | Kane | Jan 2020 | A1 |
20200071991 | Patel | Mar 2020 | A1 |
20200308903 | Anderson | Oct 2020 | A1 |
20200352376 | Vernal Silva et al. | Nov 2020 | A1 |
20210005033 | Roman et al. | Jan 2021 | A1 |
20210038004 | Grana Dominguez | Feb 2021 | A1 |
20210059456 | Fontanilla | Mar 2021 | A1 |
20210079720 | Hunt | Mar 2021 | A1 |
20210082219 | Kane | Mar 2021 | A1 |
20210230926 | Schler | Jul 2021 | A1 |
Number | Date | Country | |
---|---|---|---|
62788215 | Jan 2019 | US | |
62788042 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17734452 | May 2022 | US |
Child | 18233097 | US | |
Parent | 16712318 | Dec 2019 | US |
Child | 17734452 | US |