This non-provisional application claims priority under 35 U.S.C. § 119(a) on Patent Application No(s). 107114592 filed in Taiwan, R.O.C. on Apr. 27, 2018, the entire contents of which are hereby incorporated by reference.
The present disclosure relates to smart garments, and more particularly to a smart garment capable of obtaining two different sensed data from a wearer and external environment, respectively.
With the progress of science and technology, many manufacturers are now trying to add electronic components to garments (such as T-shirts, pants, jackets, coats, hats, scarves or shoes) to form smart garments. However, the smart garments have shortcomings. For example, the existing smart garments only sense the data of external environment. Thus, the heating control of the smart garments is imprecise.
According to at least one embodiment of the present disclosure, the present disclosure provides a smart garment that can obtain two different sensed data from a wearer and external environment, respectively. Therefore, the two different sensed data can be collected and used for comparing and analyzing or performing a control operation based on the comparing result or analyzing result. For example, in some of the embodiments of the present disclosure, the smart garment controls the temperature thereof more precisely, so as for the smart garment to be more comfortable to the wearer.
According to an embodiment of the present disclosure, a smart garment to be worn by a wearer comprises a smart garment body, a control module disposed at the smart garment body and electrically connected to the smart garment body for controlling the smart garment body and a sensing module disposed at the smart garment body. The sensing module comprises a first sensor for obtaining a first sensed data from the wearer and a second sensor for obtaining a second data from the smart garment, with the first sensed data and the second sensed data serving as a basis for controlling the smart garment body or being merely used for data analysis.
Optionally, the smart garment further has a calculation module disposed at the smart garment body and electrically connected to the sensing module. The calculation module receives the first sensed data and the second sensed data for generating a calculation result. The control module generates a control signal according to the calculation result for controlling the smart garment body automatically.
Optionally, the smart garment further has a communication module disposed at the smart garment body. The communication module enables the smart garment to communicate with an external computer device for transmitting the first sensed data and the second sensed data to the external computer device.
Optionally, the sensing module of the smart garment communicates with the calculation module of the external computer device through the communication module. The calculation module generates the calculation result according to the first sensed data and the second sensed data. The control module generates the control signal according to the calculation result for controlling the smart garment body automatically.
Optionally, the external computer device generates an operation instruction according to an input operation performed by a user, and the control module generates the control signal according to the operation instruction for controlling the smart garment body.
Optionally, the smart garment body has a first signaling yarn having a first staple fiber, a first sheet conductor and an insulating layer. A stretching resistance of the first staple fiber is 26 to 40 strands and the first staple fiber functions as a supporting material. The first sheet conductor is enlacing a surrounding surface of the first staple fiber in a spiral extending manner. An aspect ratio of a cross section of the first sheet conductor corresponding to the spiral extending manner is about 10 to 30, and preferably about 20. The insulating layer surrounds the surrounding surface of the first staple fiber for covering the first sheet conductor and the first staple fiber.
Optionally, a material of the first sheet conductor is one selected from copper-nickel alloy, copper-tin alloy, copper-nickel-silicon alloy, copper-nickel-zinc alloy, copper-nickel-tin alloy, copper-chromium alloy, copper-silver alloy, nickel-brass alloy, phosphor bronze alloy, beryllium copper alloy, nickel-chromium alloy, copper-tungsten alloy and stainless steel.
Optionally, a material of the insulating layer is one selected from polytetrafluoroethylene (PTFE, also known as Teflon®), ethylene tetrafluoroethylene (ETFE), polyethylene terephthalate (PET), polyvinyl chloride (PVC) and polyethylene (PE).
Optionally, a conductive wire is rolled for providing the first sheet conductor, wherein a diameter of a circular section of a first conductive wire is X, a length of the cross section of the first sheet conductor is about 4X, and a width of the cross section of the first sheet conductor is about X/5.
Optionally, the smart garment body has a touch control textile disposed at the smart garment body and electrically connected to the control module. The touch control textile has a plurality of yarns and a plurality of second signaling yarns, and the touch control textile is worn by the yarns and the second signaling yarns. The second signaling yarn has a second staple fiber and a second sheet conductor. A stretching resistance of the second staple fiber is 26 to 40 strands and the second staple fiber functions as a supporting material. The second sheet conductor is enlacing a surrounding surface of the second staple fiber in a spiral extending manner. An aspect ratio of a cross section of the second sheet conductor corresponding to the spiral extending manner is about 10 to 30, and preferably about 20.
Optionally, a material of the second sheet conductor is one selected from copper-nickel alloy, copper-tin alloy, copper-nickel-silicon alloy, copper-nickel-zinc alloy, copper-nickel-tin alloy, copper-chromium alloy, copper-silver alloy, nickel-brass alloy, phosphor bronze alloy, beryllium copper alloy, nickel-chromium alloy, copper-tungsten alloy and stainless steel.
Optionally, a second conductive wire is rolled for providing the second sheet conductor, wherein a diameter of a circular section of the second conductive wire is X, a length of the cross section of the second sheet conductor is about 4X, and a width of the cross section of the second sheet conductor is about X/5.
Optionally, the calculation module uses an artificial intelligence algorithm to generate the calculation result according to the first sensed data and the second sensed data.
In summary, the embodiments of the present disclosure provide a smart garment that is capable of obtaining two different sensed data from the wearer and external environment, respectively.
For better understanding of the features and technical contents of the present disclosure, please refer to the detailed descriptions and drawings of the present disclosure, but such descriptions and drawings are merely illustrative of the present disclosure and not intended to limit the present disclosure.
In order to describe embodiments of the present disclosure or the related art more clearly, drawings are presented. The drawings are only illustrative of the embodiments of the present disclosure, and persons of ordinary skill in the art may still derive other drawings from these drawings without creative efforts.
To make it easier for the examiner to understand the objects, characteristics and effects of this present disclosure, embodiments together with the attached drawings for the detailed description of the present disclosure are provided.
According to an embodiment of the present disclosure, a smart garment is provided. The smart garment is capable of obtaining two different sensed data from a wearer and the external environment, respectively. Therefore, the two different sensed data can be collected and used, such as comparing and analyzing the two different sensed data or performing a control operation based on the comparing result or analyzing result. For example, a temperature sensed data of the wearer (apparent temperature) and a temperature sensed data of the external environment (ambient temperature) can be collected, that a temperature of a smart garment body can be controlled by comparing and analyzing the temperature sensed data of the wearer and the temperature sensed data of the external environment.
To make it easier for the examiner to understand the objects, characteristics and effects of this present disclosure, embodiments together with the accompanying drawings for the detailed description of the present disclosure are provided.
Please refer to
In the embodiment, the smart garment body 110 is a kid garment, but is not intended to limit the present disclosure. The smart garment body 110 can be pet clothes or garments (T-shirts, pants, jackets, coats, hats, scarves, skirts, shoes or socks) for children or adults.
In the embodiment, the control module 120 is electrically connected to the smart garment body 110 for providing the power to the smart garment body 110 and controlling the smart garment body 110. For example, the control module 120 controls the temperature of the smart garment body 110. The control module 120 may have a controller (e.g., microcontroller).
In the present embodiment, the first sensor 131 and the second sensor 132 are disposed approximately on the inner and outer surfaces of the chest position of the smart clothing body 110. However, the present disclosure is not intended to limit the position of the first sensor 131 and the second sensor 132. Moreover, the present disclosure also is not intended to limit the numbers of the sensors of the sensing module 130 and the sensing module 130 may have two or more sensors.
In the embodiment, the first sensor 131 collects the temperature sensed data of the wearer (apparent temperature), and the second sensor 132 collects the temperature sensed data of the external environment (ambient temperature). However, the present disclosure is not to limit the type of the first sensor 131 and the second sensor 132. For example, the first sensor 131 and the second sensor 132 collect a humidity sensed data of the wearer (apparent humidity) and a humidity sensed data of the external environment (ambient humidity) respectively. For another example, the first sensor 131 collects a heart rate sensed data or a respiratory rate sensed data of the wearer, and the second sensor 132 collects the temperature sensed data and the humidity sensed data of the external environment.
Compared with existing smart garments, the smart garment of the present disclosure is capable of collecting the sensed data from the wearer and the external environment simultaneously. The sensed data collected by the smart garment of the present disclosure can be applied to the big data analytics to improve the production process of the smart garment, adjust the material or position of components in the smart garment, correct the control mode or parameters of the control module and analyze the impact of different environments for the smart garments (the control elements, the control mode or the control parameters of the smart garment in tropical and frigid climates may need to be adjusted).
Please refer to
In the embodiment, the calculation module 140 and the control module 120 can be implemented as a single element (e.g., a single microcontroller), but is not intended to limit the present disclosure. In another embodiment, the calculation module 140 and the control module 120 are implemented as different elements and are capable of communicating with each other in multiple ways.
Optionally, in the embodiment, the calculation module 140 uses an artificial intelligence algorithm (for example, building computational models through neural network technology) to generate the calculation result CR according to the first sensed data DATA1 and the second sensed data DATA2, but is not intended to limit the present disclosure. For example, the calculation module 140 is capable of generating the calculation result CR by Fuzzy Control or other method.
Compared with existing smart garments, the smart garment of the present disclosure is advantageous in that the temperature is controlled accurately by the calculation module 140 that integrating and analyzing the sensed data of the wearer and the external environment and transmitting the calculation result CR to the control module 12.
Please refer to
Optionally, in the embodiment, the computer device 1000 has a calculation module 1100. The sensing module 130 of the smart garment 300 communicates with the calculation module 1100 of the computer device 1000 disposed at outside through the communication module 150. The calculation module 1100 generates the calculation result CR according to the first sensed data DATA1 and the second sensed data DATA2. The calculation result CR of the calculation module 1100 is transmitted back to the control module 120 of the smart garment 300 through the communication module 150. The control module 120 generates the control signal CS according to the calculation result CR for controlling the smart garment body 110 automatically. Since the control module 120 of the embodiment controls the smart garment body 110 according to the calculation result CR from external components, the control (for example, increase temperature, decrease temperature, increase humidity or reduce humidity of the smart garment body 110) mentioned above can complete automatically with no manual operation from the user.
Optionally, in the embodiment, the calculation module 1100 uses an artificial intelligence algorithm (for example, building computational models through neural network technology) to generate the calculation result CR according to the first sensed data DATA1 and the second sensed data DATA2, but is not intended to limit the present disclosure. For example, the calculation module 1100 can generate the calculation result CR by Fuzzy Control or other method.
Compared with existing smart garments, the smart garment of the present disclosure is advantageous in that the temperature is controlled accurately by the calculation module 1100 that integrates and analyzes the sensed data of the wearer and the external environment for obtaining the calculation result CR and transmits the calculation result CR to the control module 120.
Please refer to
In the embodiment, the computer device 1000 is a mobile phone. The mobile phone installed with an application. The application enables a user (not limited to the wearer) to perform the input operation through a screen of the mobile phone and thus generate the operation instruction OP. However, the present disclosure is not limited thereto. The computer device 1000 may be a tablet, personal computer or other computer device that enables the user to perform the input operation.
A point worth noting is that the automatic control related to the control signal CS generated according to the calculation result CR and the automatic control related to the control signal CS generated according to the operation instruction OP are not mutually exclusive. In other words, in some embodiments, the control module of the smart garment can have the automatic control and the manual control at the same time. For example, when the smart garment enables the control module to perform heating control according to the calculation result CR, the user performs the input operation to further adjust the intended temperature and speed of the heating process.
The embodiments mentioned above and other embodiments of the smart garment may have a cable device 210 for connecting to one or more external electrical components 3000. For example, two or more electrical components 3000 are disposed at two or more ends of the cable device 210, respectively. The cable device 210 can be sewn to the smart garment after being made individually or made with the smart garment and become a part of the smart garment. Referring to
The cable device 210 has a first connector 220 and a connecting cable 230, and the first connector 220 is electrically connected to one end of the connecting cable 230 and the electrical component 3000 is electrically connected to the other end of the connecting cable 230. Electric signals are propagated between the electrical component 3000 and the first connector 220 through the connecting cable 230. Although the cable device 210 in the embodiment has the connector (first connector 220), but is not intended to limit the present disclosure. For example, in other embodiment, the cable device 210 may have no connector.
In the embodiment, the first connector 220 is a first connector plug for being electrically connected to the electrically device relating to the first connector plug. The first connector 220 is one selected from USB Type-A plug, USB Type-C plug, USB Micro-B plug, USB Mini-B plug, magnetic plug, Lightning plug and TRS connector, but the present disclosure is not limited thereto. The electronic device is, for example, a portable electronic device, a computer host, a power bank, and the like, but the present disclosure is not limited thereto.
The connecting cable 230 has a first textile 231 and a conductive wire element 232. The first textile 231 is elastic material or non-elastic material. The conductive wire element 232 is disposed within the first textile 231 periodically. One end of the conductive wire element 232 is electrically connected to the first connector 220, and the other end of the conductive wire element 232 is electrically connected to the electrical component 3000. Therefore, the electric signals or electrical energy can be propagated between the first connector 220 and the electrical component 3000 through the conductive wire element 232. The first textile 231 is disposed between the first connector 220 and the electrical component 3000 for connecting the first connector 220 to the electrical component 3000, and the conductive wire element 232 is disposed within the first textile 231 to be electrically connected to the first connector 220 and the electrical component 3000.
In the embodiment illustrated by
In the embodiment illustrated by
In the embodiment illustrated by
In the embodiment, the conductive wire element 232 is made of the signaling yam or enameled wire, but the present disclosure is not limited thereto. Moreover, the conductive wire element 232 of a variable type can be disposed within the connecting cable 230. For example, in the embodiment illustrated by
In the embodiment, the enameled wire has an insulating paint, a material of the insulating paint is one selected from polytetrafluoroethylene (PTFE, i.e. Teflon®), ethylene tetrafluoroethylene (ETFE), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyethylene (PE) and other polymer insulating materials, but the present disclosure is not limited thereto.
In the embodiment, the first textile 231 is one selected from polyester, polyamide, polyacrylonitrile, polyethylene, polypropylene, cellulose, protein, elastic fiber, poly perfluoroethylene, polyparaphenylene benzoxazole, polyether ketone, carbon and glass fiber, but the present disclosure is not limited thereto.
In the embodiment, the electrical component 3000 can be implemented as a speaker or audio signal receiving element. For example, the electrical component 3000 can be the speaker of headphones or the audio signal receiving element of microphone.
In the embodiment, the electrical component 3000 can be a converter. For example, the electrical component 3000 is one selected from card reader, RJ45 converter, 30 pin converter, TRS converter, HDMI converter, VGA converter and USB converter, but the present disclosure is not limited thereto.
In the embodiment, the electrical component 3000 can be a second connector plug. For example, the electrical component 3000 is one selected from USB Type-A plug, USB Type-C plug, USB Micro-B plug, USB Mini-B plug, magnetic plug and Lightning plug, but the present disclosure is not limited thereto.
In the embodiment, the electrical component 3000 can be a battery device (for example, power bank), and the present disclosure is not limited thereto.
In the embodiment, the electrical component 3000 is of any appropriate type selected as needed and in accordance with the first connector 220. For example, when the first connector 220 is USB Type-C plug, the electrical component 3000 is one selected from card reader, USB Type-A plug and USB converter accordingly, but the present disclosure is not limited thereto.
When the first textile 231 is the elastic material, the first textile and the conductive wire element can be woven into an elastic textile. Please refer to
As shown in
As shown in
As shown in
The smart garment of the embodiments mentioned above and other embodiments may have a touch control textile 410. Please refer to
The touch control textile 410 can be formed by weaving a plurality of signaling yarns 420 and a plurality of yarns 430, wherein the outer surface of each signaling yarn 420 has no insulating layer. Every two adjacent signaling yarns 420 are spaced apart by five yarns 430. The signaling yarns 420 and the yarns 430 are extending in a horizontal direction and arranged in sequence in the vertical direction. However, the aforesaid spacing and arrangement of the signaling yarns 420 and the yarns 430 are not restrictive of the present disclosure and thus are subject to changes as needed.
One end of the signaling yarn 420 receives a scan signal SCAN transmitted from the control module 120, and the control module 120 receives a touch control signal SENSE transmitted from another end of the signaling yarn 420, and the control module 120 determines whether the touch object 2000 (such as, a finger or other touch object) contacts the touch control textile 410 according to the touch control signal SENSE. Since the signaling yarn 420 has no insulating layers covering it outer surface, when the touch object 2000 contacts the touch control textile 410, the induced resistance changes the touch control signal SENSE, such that the control module 120 can determine whether the touch object 2000 contacts the touch control textile 410 according to the touch control signal SENSE. That is, the signaling yarn 420 is provided as the resistance touch control sensing device.
In addition, a material of the yarn 430 can be selected from one of a polyester, a polyamide, a polyacrylic, a polyethylene, a polypropylene, a cellulose, a protein, an elastomeric, a polytetrafluoroethylene, a poly-p-phenylenebenzobisthiazole (PBO), a polyetherketone, a carbon and a glass fiber, but the present disclosure is not limited thereto.
In the embodiment, the touch control textile 410 functions as a control switch. For example, the touch control textile 410 controls the temperature, by functioning as a switch for disabling or enabling a temperature control function or a switch for increasing or decreasing the temperature. In brief, the controller can determine whether the touch control textile 410 be touched and generate a control signal for controlling the temperature. Please note that, in other embodiment, the smart garment can have no touch control textile 410 but have other control switch to implement the function mention above.
The smart garment of the embodiment mentioned above and other embodiments may have an electrical component protection device. An embodiment of the electrical component protection device 500 will be described below with
Referring to
As shown in
Therefore, another end of the at least one conductive wire element 560 is electrically connected to at least one textile conductive wire of the outside of the electronic component protection device 500 through the outlet wire groove 512. The at least one textile conductive wire is conductive fabric, for example, nano-silver wire or conductive yarn, but the type of the textile conductive wire is not intended to limit the present disclosure.
Please refer to
As shown in
In the embodiment, when the electronic component 530 is accommodated in the accommodating groove 511 and the at least one conductive wire element 560 is sorted and accommodated in the outlet wire groove 512, the box 520 and cover 510 can be smeared with waterproof glue. Thus, the cover 520 covers and sticks to the box 510 by the waterproof glue, and the waterproof glue fills a vacant space between the outlet wire groove 512 and the conductive wire element 560.
The shape of the accommodating groove 511 and the outlet wire groove 512 are polygonal, round or oval. The cover 520 corresponds in shape to the box 510. As shown in
The embodiments and implementation method of the signaling yarn of the present disclosure will be described below with the following figs.
Please refer to the
Optionally, the stretching resistance of the signaling yarn 600 can be further increased by selecting the strength of the staple fiber 610 and/or an aspect ratio of a cross section of the sheet conductor 620 corresponding to the spiral extending manner. In this embodiment, the strength of the staple fiber 610 is selected to be 30 strands, and the aspect ratio of the cross section of the sheet conductor 620 corresponding to the spiral extending manner is selected to be about 20, but the present disclosure is not limited thereto. For example, the staple fiber 610 may have the strength of 26, 28, or 40 strands, or the aspect ratio of the cross section of the sheet conductor 620 corresponding to the spiral extending manner may be selected to be about between 10 and 30.
In the embodiment, a material of the staple fiber 610 is one selected from polyester, polyamides, polyacrylonitriles, polyethylenes, polypropylenes, celluloses, proteins, elastic fibers, poly perfluoroethylene, polyparaphenylene benzoxazole, polyether ketone, carbon and glass fiber, but the present disclosure is not limited thereto. The material of the short staple fiber 610 can be selected as needed.
In the embodiment, a material of the sheet conductor 620 is alloy, such as copper-nickel alloy, copper-tin alloy, copper-nickel-silicon alloy, copper-nickel-zinc alloy, copper-nickel-tin alloy, copper-chromium alloy, copper-silver alloy, nickel-brass alloy, phosphor bronze alloy, beryllium copper alloy, nickel-chromium alloy, copper-tungsten alloy, stainless steel and other commercially conductive alloys, but the present disclosure is not limited thereto. In different embodiments, the type of alloy may have different options. For example, the signaling yarn 600 can be used as a touch sensing element in a touch control textile. One end of the signaling yarn 600 receives a scan signal and the other end of the signaling yarn 600 transmits a touch sensing signal. Therefore, a smaller resistance value of the alloy can be selected as the material of the sheet conductor 12.
Referring to
In the embodiment, a material of the insulating layer 730 is one selected from polytetrafluoroethylene, ethylene tetrafluoroethylene, polyethylene terephthalate, polyvinyl chloride, polyethylene and other polymer insulation materials, but the present disclosure is not limited thereto. The material of the sheet conductor 620 and the insulating layer 730 can be selected as needed For example, the signaling yarn 700 can be used as a heating element for heating textiles, so the sheet conductor 620 can be made of an alloy with a large resistance value, and the insulating layer 730 can be made of an insulating material with high heat resistance (for example, polytetrafluoroethylene).
Referring to
Referring to
Please refer to
Furthermore, in order to manufacture the signaling yarn 600 of
In summary, the present disclosure provides a smart garment that can obtain two different sensed data from the wearer and the external environment, respectively.
While the present disclosure has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of the present disclosure set forth in the claims.
Number | Date | Country | Kind |
---|---|---|---|
107114592 | Apr 2018 | TW | national |