The disclosure generally relates to a brush or comb device and, more particularly, to a device that measures data related to interaction of the device with hair of a person.
Traditionally, hair brushes and combs have been used to interact with or groom a person's hair. This interaction can be related to a condition of the hair.
An embodiment relates to a method for measuring interaction of a hair grooming device with hair of a person during a hair grooming event that includes collecting data from at least one sensor integrated with the hair grooming device during the hair grooming event, wherein the at least one sensor measures interaction of the hair grooming device with the hair; concurrent with collecting the data, determining, using a proximity sensor integrated with the hair grooming device, at least one value indicative of a proximity of the hair grooming device to the hair of the person; based on the at least one value indicative of the proximity of the hair grooming device to the hair, filtering the data collected from the at least one sensor; and storing the filtered data. In particular, the hair grooming device can be a brush or a comb. The proximity sensor can include a light dependent resistor. As such, the at least one value indicative of the proximity of the hair grooming device to the hair of the person indicates whether or not the hair grooming device is proximate to the hair of the person.
In accordance with this embodiment the hair grooming device may include a structural feature configured to contact the hair of the person when in use and the at least one value indicative of the proximity of the hair grooming device to the hair of the person is indicative of the proximity of the structural feature to the hair of the person.
Furthermore, filtering the data can include determining a weighting amount based on the at least one value indicative of the proximity of the hair grooming device to the hair; and adjusting the collected data based on the weighting amount. Also, collecting data from the at least one sensor can include collecting a respective first data value for each of a series of discrete time periods; wherein determining the at least one value indicative of a proximity of the hair grooming device to the hair of the person may comprise determining a respective second data value corresponding to each of the discrete time periods; and wherein filtering the data collected from the at least one sensor may comprise: a) determining a respective weighting value for each of the discrete time periods based on the respective second data value corresponding to each discrete time period; and b) calculating a respective adjusted data value for each discrete time period based on the respective first data value and the respective weighting value corresponding to each discrete time period, wherein the filtered data may comprise the respective adjusted values.
The sensor, other than the light dependent resistor, can include at least one sensor comprising one or more of a pressure sensor, a load cell, an accelerometer, or a gyroscope.
In one embodiment, storing the filtered data comprises storing the filtered data in memory circuitry integrated with the hair grooming device. In a different embodiment, storing the filtered data may comprise transmitting the filtered data to an apparatus external to the hair grooming device, the apparatus comprising memory circuitry configured to store the filtered data. In yet a different embodiment, the method may include transmitting the collected data to an apparatus external to the hair grooming device; transmitting, to the apparatus, the at least one value indicative of the proximity of the hair grooming device to the hair of the person; and wherein the filtering of the data collected from the at least one sensor may comprise filtering, by the apparatus, the transmitted collected data based on the transmitted at least one value indicative of the proximity of the hair grooming device to the hair of the person.
In accordance with an embodiment, filtering the collected data may comprise discarding the collected data when the at least one value indicative of the proximity of the hair grooming device to the hair of the person indicates that the hair grooming device is not proximate to the hair of the person.
Another embodiment relates to a method for measuring interaction of a hair grooming device with hair of a person during a hair grooming event, that includes collecting first data from at least one sensor integrated with the device during a first hair grooming event, wherein the at least one sensor measures interaction of the hair grooming device with the hair; concurrent with collecting the first data, determining, using a proximity sensor integrated with the device, at least one first value indicative of a proximity of the device to the hair of the person; based on the at least one first value indicative of the proximity, filtering the first data collected from the at least one sensor; storing the filtered first data; collecting second data from the at least one sensor integrated with the device during a second hair grooming event; concurrent with collecting the second data, determining, using the proximity sensor integrated with the device, at least one second value indicative of the proximity of the device to the hair of the person; based on the at least one second value indicative of the proximity, filtering the second data collected from the at least one sensor; and comparing the filtered first data to the filtered second data.
Yet another embodiment relates to a system for measuring interaction of a hair grooming device with hair of a person during a hair grooming event. The system can include a hair grooming device; a processor readable storage medium, storing executable instructions; and a processor in communication with the processor readable storage medium. In particular, the processor when executing the executable instructions: collects data from at least one sensor integrated with the hair grooming device during the hair grooming event, wherein the at least one sensor measures interaction of the hair grooming device with the hair; concurrent with collecting the data, determines, using a proximity sensor integrated with the hair grooming device, at least one value indicative of a proximity of the hair grooming device to the hair of the person; based on the at least one value indicative of the proximity of the hair grooming device to the hair, filters the data collected from the at least one sensor; and stores the filtered data. In particular, the hair grooming device can be a brush or a comb. The proximity sensor can include a light dependent resistor. As such, the at least one value indicative of the proximity of the hair grooming device to the hair of the person indicates whether or not the hair grooming device is proximate to the hair of the person.
In accordance with this embodiment the hair grooming device includes a structural feature configured to contact the hair of the person when in use and the at least one value indicative of the proximity of the hair grooming device to the hair of the person is indicative of the proximity of the structural feature to the hair of the person.
Furthermore, filtering the data can include determining a weighting amount based on the at least one value indicative of the proximity of the hair grooming device to the hair; and adjusting the collected data based on the weighting amount. Also, collecting data from the at least one sensor can include collecting a respective first data value for each of a series of discrete time periods; wherein determining the at least one value indicative of a proximity of the hair grooming device to the hair of the person comprises determining a respective second data value corresponding to each of the discrete time periods; and wherein filtering the data collected from the at least one sensor comprises: a) determining a respective weighting value for each of the discrete time periods based on the respective second data value corresponding to each discrete time period; and b) calculating a respective adjusted data value for each discrete time period based on the respective first data value and the respective weighting value corresponding to each discrete time period, wherein the filtered data comprises the respective adjusted values.
The sensor, other than the light dependent resistor can include at least one sensor comprising one or more of a pressure sensor, a load cell, an accelerometer, or a gyroscope.
In one embodiment, storing the filtered data comprises storing the filtered data in memory circuitry integrated with the hair grooming device. In a different embodiment, storing the filtered data comprises transmitting the filtered data to an apparatus external to the hair grooming device, the apparatus comprising memory circuitry configured to store the filtered data. In yet a different embodiment, the processor when executing the instructions transmits the collected data to an apparatus external to the hair grooming device; transmits, to the apparatus, the at least one value indicative of the proximity of the hair grooming device to the hair of the person; and the filtering of the data collected from the at least one sensor comprises filtering, by the apparatus, the transmitted collected data based on the transmitted at least one value indicative of the proximity of the hair grooming device to the hair of the person.
In accordance with an embodiment, filtering the collected data comprises discarding the collected data when the at least one value indicative of the proximity of the hair grooming device to the hair of the person indicates that the hair grooming device is not proximate to the hair of the person.
Another embodiment relates to a system for measuring interaction of a hair grooming device with hair of a person during a hair grooming event. The system can include a hair grooming device; a processor readable storage medium, storing executable instructions; and a processor in communication with the processor readable storage medium. In particular, the processor when executing the executable instructions: collects first data from at least one sensor integrated with the device during a first hair grooming event, wherein the at least one sensor measures interaction of the hair grooming device with the hair; concurrent with collecting the first data, determines, using a proximity sensor integrated with the device, at least one first value indicative of a proximity of the device to the hair of the person; based on the at least one first value indicative of the proximity, filters the first data collected from the at least one sensor; stores the filtered first data; collects second data from the at least one sensor integrated with the device during a second hair grooming event; concurrent with collecting the second data, determines, using the proximity sensor integrated with the device, at least one second value indicative of the proximity of the device to the hair of the person; based on the at least one second value indicative of the proximity, filters the second data collected from the at least one sensor; and compares the filtered first data to the filtered second data.
Yet another embodiment relates to a hair grooming device for measuring interaction with hair of a person during a hair grooming event in which the hair grooming device can include a brush; a processor readable storage medium, storing executable instructions; and a processor in communication with the processor readable storage medium. In particular, the processor when executing the executable instructions: collects data from at least one sensor integrated with the hair grooming device during the hair grooming event, wherein the at least one sensor measures an interaction of the hair grooming device with the hair, and concurrent with collecting the data, determines, using a proximity sensor integrated with the hair grooming device, at least one value indicative of a proximity of the hair grooming device to the hair of the person; filters the data collected from the at least one sensor, based on the at least one value indicative of the proximity of the hair grooming device to the hair; and stores the filtered data.
In accordance with this embodiment, the hair grooming device can include a structural feature configured to contact the hair of the person when in use, wherein the at least one value indicative of the proximity of the hair grooming device to the hair of the person is indicative of the proximity of the structural feature to the hair of the person.
Furthermore, the processor when executing the executable instructions can determine a weighting amount based on the at least one value indicative of the proximity of the hair grooming device to the hair; and adjust the collected data based on the weighting amount.
In accordance with the present disclosure, a hair grooming device 100 is provided that comprises a brush 102 including a handle 104, a casing 106 coupled to the handle 104 for movement with the handle 104, and a plurality of bristles, tines or teeth 108 coupled to a base 110, which base 110 may be flexible and fixedly coupled to the casing 106 for movement with the casing 106, see
The structural feature 112 can include within its perimeter a proximity sensor 114 that is configured to measure, determine, or indicate when the structural feature 112, e.g., the bristles, tines or teeth 108, is proximate to a person's hair that is being engaged or interacted with by the hair grooming device 100. The proximity sensor 114 can, for example, be a light-dependent resistor which provides a resistance value, in ohms, that depends on the amount of light, e.g., ambient light, that is incident on the light-dependent resistor. The proximity sensor 114 may be mounted at or near a center location of the base 110 or extend through the base 110 at or near a center location of the base 110, see
For example, when the hair grooming device 100 is proximate to, or in contact with, a person's hair, then the proximity sensor 114 can sense a relatively high resistance value because there is little or no light incident on the proximity sensor 114. However, as the hair grooming device 100 becomes more distant from the person's hair, then there is more light incident on the proximity sensor 114 which can result in a lower resistance value. Thus the sensed current passing through the light dependent resistor is inversely related to the resistance of the light dependent resistor (i.e., the proximity sensor) 114. As illustrated in
In addition to the proximity sensor 114, the hair grooming device 100 can include one or more additional sensors. As an example, the handle 104 can include one or more force, or pressure, sensors that sense a value related to a force or pressure a user applies to the handle 104 while the hair grooming device 100 is engaged with the person's hair. The force or pressure applied to the handle 104 by the user may comprise or be related to a gripping force applied by the user's hand to the handle 104, which gripping force may be equal to or defined by a force or pressure applied by the hand, e.g., the user's thumb, at one or more locations on the handle 104. In the embodiment illustrated in
Depending on how difficult, or how much effort is needed, to move the structural feature 112 through a person's hair, the force-sensitive resistors 120 and 122 may sense or record different values during different brushing strokes of a same or a different hair grooming event. When the structural feature 112 of the hair grooming device 100 easily passes through a person's hair, e.g., the hair is untangled, then the force-sensitive resistors 120 and 122 may record a lower value than when the condition of the person's hair, e.g., the hair is tangled, requires a greater effort to pass through the person's hair.
In the embodiment illustrated in
In the embodiment illustrated in
As described, the hair grooming device 100 of
The data or values collected from the proximity sensor 114, and one or more of the first and second force-sensitive resistors 120 and 122, the load cell 124 and the gyroscope-accelerometer 130 can be stored on the hair grooming device 100.
The processor and/or the communication interface 240 may communicate data or values from the proximity sensor 114 and one or more of the first and second force-sensitive resistors 120 and 122, load cell 124 and gyroscope-accelerometer 130 to the external processor 250 using a cable or equivalent medium 131. The communications medium 131 can, for example, be a cable such as Universal Serial Bus (USB) cable or can be wireless such as, for example, WiFi or Bluetooth. The processor 250 may comprise a microprocessor or microcontroller or similar, equivalent device that is in communication with a memory, a memory circuitry, a processor readable storage medium or storage device 252, that receives and stores data received from the processor 250.
In addition to the first and second force-sensitive resistors 120 and 122, load cell 124 and gyroscope-accelerometer 130 on the hair grooming device 100 or 200, a variety of additional sensors can be integrated with the hair grooming device. These additional sensors can include one or more of a temperature sensor and an acoustic sensor, etc.
In practice, the hair grooming device 100 or 200 alone or in combination with the apparatus 250 can be utilized to collect and filter data during a hair grooming event involving a person's hair. The hair grooming device 100 or 200 can be used by the person herself/himself or by another person that is using the hair grooming device 100 or 200 to groom that person's hair.
In step 350, the method of
In step 352, concurrent with collecting the data from the one or more of the first and second force-sensitive resistors 120 and 122, load cell 124 or gyroscope-accelerometer 130, the method also includes determining from data collected using a proximity sensor integrated with the hair grooming device, at least one value indicative of a proximity of the hair grooming device to the hair of the person. The sensor value(s) or data from the proximity sensor of the hair grooming device can be evaluated as a binary value such as either a) the hair grooming device is proximate to the person's hair or b) the hair grooming device is not proximate to the person's hair. As an alternative, the data from the proximity sensor can be evaluated as a probabilistic value. In this alternative, the data from the proximity sensor can vary from a minimum value to a maximum value and the actual measured value is indicative of the likelihood that the hair grooming device is proximate to the person's hair.
The phrase “proximate to” is intended to encompass when the hair grooming device is near or in contact with the person's hair. More particularly, the phrase “proximate to” is intended to encompass when the structural feature 112 is near or in contact with the person's hair. For example, where the proximity sensor is a light dependent resistor, the occurrence of little or no incident light on the resistor is an indication that the hair grooming device is proximate to or in contact with the person's hair. When there is almost full incident light on the resistor, then that likely indicates that the hair grooming device is not proximate to or not in contact with the person's hair. Between these two extremes, there can be a value where the hair grooming device is considered to be proximate to or in contact with the person's hair even though there may be some uncertainty. For example, if the absence of incident light on the light dependent resistor is considered to result in a sensed value of current passing through the light dependent resistor of about 0 units of current and the presence of full incident light is considered to result in a sensed value of current passing through the light dependent resistor of 1000 units of current, then some threshold value between the range of 0 and 1000 units of current can be chosen, or empirically determined, to be indicative that the hair grooming device is proximate to or in contact with the person's hair. One of ordinary skill will recognize that the units of current is used by way of an example and other circuitry is contemplated in which units other than that of current can be used. For example, units of resistance or units of voltage can be considered as equivalent to those of units of current and can also be used without departing from the scope of the present invention. Thus, in the discussion below, units of current may be referred to by way of example but units of voltage or resistance that can be sensed or measured can be considered as being a functionally equivalent substitute as well. In an embodiment, that threshold value can be between about 40% to 50% of the range (e.g., from about 400 to about 500 units of current). Thus, when the value or data sensed based on the light dependent resistor is below about 500 units of current, then the hair grooming device is considered to be proximate to or in contact with the person's hair. When the value or data sensed based on the light dependent resistor is above that threshold (e.g., above about 500 units of current), then the hair grooming device is considered to be not proximate to or not in contact with the person's hair. Hence, the sensed data based on the light dependent resistor does not directly measure the distance from the hair grooming device to a person's hair, but provides a value which is indicative of how close or proximate the hair grooming device is to a person's hair or how likely it is that the hair grooming device is close to or near a person's hair.
In step 354, the method comprises filtering the data collected from the at least one sensor based on the at least one value indicative of the proximity of the hair grooming device to the hair. The data or values from the one or more of the first and second force-sensitive resistors 120 and 122, load cell 124 and gyroscope-accelerometer 130 or other sensors can be collected at all times; however, the most pertinent data is when the hair grooming device is actually engaging or interacting with the person's hair. The proximity sensor indicates when the hair grooming device is proximate to the person's hair and, thus, provides an indication when the data and values from the one or more of the first and second force-sensitive resistors 120 and 122, load cell 124 and gyroscope-accelerometer 130 or other sensors are relevant. When the hair grooming device is not proximate to the person's hair, then the data from the one or more of the first and second force-sensitive resistors 120 and 122, load cell 124 and gyroscope-accelerometer 130 or other sensors have little or no relevance about a condition of the person's hair. Accordingly, the data from the one or more of the first and second force-sensitive resistors 120 and 122, load cell 124 and gyroscope-accelerometer 130 or other sensors, are filtered based on the concurrently collected proximity sensor data. When the hair grooming device is proximate to the person's hair, then the data from the one or more of the first and second force-sensitive resistors 120 and 122, load cell 124 and gyroscope-accelerometer 130 or other sensors is determined to be meaningful and stored for later processing, evaluation or review but when the hair grooming device is not proximate to the person's hair then the sensor data from the one or more of the first and second force-sensitive resistors 120 and 122, load cell 124 and gyroscope-accelerometer 130 or other sensors can be ignored or discarded. In this manner filtering of the sensor data can take place dependent on the values or data being sensed by the proximity sensor.
Finally, in step 356, the method can include storing the filtered data for later processing, evaluation or review which implies discarding or ignoring the sensor data collected when the hair grooming device was not proximate to the person's hair.
For the hair grooming device 100 of
For the hair grooming device 200 of
Thus, the processor 140, when executing instructions stored in the storage device 142, can implement or embody a filter that is applied to the data collected from the at least one sensor (e.g. sensors 120, 122), wherein the behavior of the filter, or the effect of the implemented filter, is a result of the proximity of the hair grooming device 100 to the person's hair that are collected, based on, or sensed from the proximity sensor 114. As discussed above, a similar filter can also be implemented using an apparatus 250 that is external to the hair grooming device 100.
In the top graph 400, a threshold value is shown as a dotted line 404. When the value of the current based on the light dependent resistor (e.g., the proximity sensor) was below the threshold 404, then the pressure data 422 was retained and when the value of the current based on the light dependent resistor was above the threshold, then the pressure data 422 was discarded. The result is the bottom graph 430 with only data segments 406, 408 and 410 being retained as a result of the filtering of the pressure sensor data 422. In one embodiment, these filtered data segments 406, 408 and 410 can be averaged to arrive at an average value 432, 80.88 units of pressure in the illustrated example, that is believed to be indicative of the condition of a person's hair during a hair grooming event. The three spaced apart data segments 406, 408 and 410 may correspond to different brushing strokes during a same hair grooming event.
In the bottom graph 430, the values of the data segments 406, 408 and 410 correspond to the same values 402 indicated in the top graph 400 during the corresponding time periods. In other words, to arrive at the bottom graph 430 of the filtered data, the values 402 from the top graph 400 can be considered to be assigned a weight of “1” during the time periods corresponding to segments 406, 408 and 410 but have a weight of “0” assigned during the other time periods (i.e., when the value the current based on the light dependent resistor was above the threshold value 404).
As mentioned above, the value from the proximity sensor can be considered as a probabilistic value indicative of how likely is it that the hair grooming device 100 or 200 is proximate to a person's hair during a hair grooming event. Accordingly, weighting values other than simply “0” and “1” are contemplated. The closer the sensor data values 402 of the top graph 400 are to “0”, the more probable or likely it is that the hair grooming device is proximate to the person's hair. Conversely, the closer the sensor data values 402 of the top graph 400 are to “1000”, then it is less likely or less probable that the hair grooming device is proximate to the person's hair. It may be beneficial, therefore, to apply a variable weighting value to the sensor data values (e.g., values from one or both of the first and second force-sensitive resistors 120 and 122) that varies depending on the probability that the hair grooming device is proximate to the person's hair. Thus, a weighting value for a sample time period or interval can be determined (e.g., between 0 and 1) depending on the relative value of the light dependent resistor that is sensed during that same time period or interval. The force sensor value, or other sensor value, during that same time period can then multiplied or adjusted by the weighting value. As a result, filtering of sensor values can be accomplished which weights data collected when the hair grooming device is likely proximate to the person's hair greater than data collected when the hair grooming device is likely not proximate to the person's hair.
The present disclosure also contemplates using only a partial range of the possible proximity sensor data values 402 of the top graph 400. For example, proximity sensor values between about 0 and about 500 can be used to determine a variable weighting value as just described. However, proximity sensor values between about 500 and about 1000 can result in assignment of a weighting value of “0” rather than a variable weighting value. As used herein, the term “about” when referring to a value is meant to encompass a variance of 10% or less of its referenced value.
Furthermore, a variable “weighting amount”, “weighting value” or “weighting factor” based on the proximity sensor data can be used in conjunction with the data values collected from one or both of the first and second force-sensitive resistors 120 and 122, or any other type of sensors mentioned above. The weighting amount can be used to apply or assign more significance to some data values from a sensor relative to other values collected from that sensor during a hair grooming event.
Referring to
For example, when the proximity sensor value 422 during a particular time interval is between “0” and “240” units of current that indicates that the hair grooming device is more likely to be proximate to the person's hair than when the proximity sensor value 422 is between “241” and “480” units of current. Further, when the proximity sensor value 422 is above the threshold value 404 (which in
Accordingly, a weighting amount of “1”, for example, can be applied or assigned for a time interval in which the proximity sensor value is below or equal to “240” units of current. A weighting amount of “0.5” can be applied or assigned for any time interval in which the proximity sensor value is between “241” and “480” units of current. Also, a weighting amount of “0” can be applied or assigned during any time interval in which the proximity sensor value 422 is greater than the threshold value 404. One of ordinary skill will recognize that these values are provided merely by way of example and can be varied without departing from the scope of the present disclosure.
Thus, respective filtered data can be calculated for each discrete time interval by multiplying the assigned weighting amount for that time interval and the sensor data value 422 for that same time interval. The filtered data values having non-zero weighting amounts for the multiple time intervals can then be summed together and divided by the number of filtered data values having non-zero weighting amounts so that an average value can be calculated that is indicative of, or is a measure of, an interaction of the hair grooming device with the hair of the person during a hair grooming event.
During the second hair grooming event, a graph based on light dependent resistor data was collected over a second collection time period. Concurrently, a third graph of pressure sensor data from the first force-sensitive resistor 120 was collected during the second collection period and a fourth graph of pressure sensor data from the second force-sensitive resistor 122 was collected during the second collection period. When the value based on the light dependent resistor (e.g., the proximity sensor) was below a predefined threshold, then the pressure data from both the first and second force-sensitive resistors 120 and 122 was retained and when value from the light dependent resistor was above the threshold, then the pressure data from the resistors 120 and 122 was discarded. The filtered data from the first force-sensitive resistor 120 was averaged for the second hair grooming event, where conditioner was not applied to the hair after shampooing, wherein the averaged value was 80 units of pressure, see bar chart 504. Likewise, the filtered data from the second force-sensitive resistor 122 was averaged for the second hair grooming event, where conditioner was not applied to the hair after shampooing, which averaged value was 145 units of pressure, see bar chart 508.
The y-axis of the graph of
Accordingly, embodiments disclosed herein allow the comparison of data during different hair grooming events. As used herein, a hair grooming event is when a hair grooming device (e.g., a comb, a brush, or the like) is caused to interact with or engage the hair of a person. This event can involve the person performing the hair grooming event or can involve another party performing the hair grooming event on the person. While a comb or a brush has been used by way of example, other hair grooming devices (e.g., scissors, clippers, etc.) when being operated according their intended purpose can be used to perform a hair grooming event. A hair grooming event, such as one involving a comb or brush, can include multiple, separate interactions (e.g., strokes) between the hair grooming device and the person's hair. A hair grooming event could also include just a single interaction between the hair grooming device and the person's hair. The embodiments include collecting first data from at least one sensor integrated with a hair grooming device during a first hair grooming event, wherein the at least one sensor measures interaction of the hair grooming device with the hair. Concurrent with collecting this first data, a determination is made using a proximity sensor integrated with the hair grooming device of a proximity of the hair grooming device to the hair of the person. As explained above, this first data collected from the at least one sensor can then be filtered based on the first value indicative of the proximity and stored. To accomplish the comparison, second data from the at least one sensor integrated with the device can be collected during the second hair grooming event. Concurrent with collecting this second data, a determination is made using the proximity sensor integrated with the hair grooming device of a proximity of the hair grooming device to the hair of the person. This second data collected from the at least one sensor can then be filtered based on the value indicative of the proximity and stored. After storing both the first and second filtered data, a comparison between the filtered first data to the filtered second data can be performed.
While particular embodiments of the present disclosure have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the disclosure. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this disclosure.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
10470545 | Thiebaut | Nov 2019 | B2 |
20030226397 | Sherman | Dec 2003 | A1 |
20150342515 | Hutchings | Dec 2015 | A1 |
20160278690 | Hyde | Sep 2016 | A1 |
20170020276 | Brewer | Jan 2017 | A1 |
20180184796 | Balooch | Jul 2018 | A1 |
20190098977 | Thiebaut | Apr 2019 | A1 |
20190209078 | Charraud et al. | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
203563823 | Apr 2014 | CN |
105495973 | Apr 2016 | CN |
205923310 | Feb 2017 | CN |
106596394 | Apr 2017 | CN |
107048665 | Aug 2017 | CN |
108669763 | Oct 2018 | CN |
102017209225 | Dec 2018 | DE |
3586673 | Jan 2020 | EP |
2442607 | Jun 1980 | FR |
201711023062 | Dec 2017 | IN |
2016073526 | May 2016 | JP |
WO2019018151 | Jan 2019 | WO |
WO2019034635 | Feb 2019 | WO |
Entry |
---|
“What is a Light Dependent Resistor and Its Applications” Jul. 18, 2019, https://www.watelectronics.com/light-dependent-resistor-ldr-with-applications/. (Year: 2019). |
PCT Search Report and Written Opinion for PCT/US2021 /070538 dated Aug. 5, 2021, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20210361059 A1 | Nov 2021 | US |