SMART HELMET WITH ELECTRONIC PROCESSING/ RECORDING/ STORING INDIVIDUAL AND CUMULATIVE IMPACTS

Information

  • Patent Application
  • 20240164465
  • Publication Number
    20240164465
  • Date Filed
    November 22, 2022
    2 years ago
  • Date Published
    May 23, 2024
    9 months ago
  • Inventors
    • Levy; Peter L. (San Francisco, CA, US)
Abstract
A concussion resistant smart helmet is disclosed for electronic processing of individual and cumulative impacts, helmet having capability to decompose all external impacts into tangential component force impacts to the helmet edges and away from user. The helmet integrated sensors distinguish tangential from normal force vector impacts. The electronic components contains sensor and logic for recording impact forces transmitted to helmet to determine individual and cumulative damaging impacts. sustained during each period of use in realtime.
Description
BACKGROUND
Field

The field of the present invention relates generally to head impact protection helmets, and in particular to helmets having capabilities to reconfigure rotational forces to helmet peripheries away from the head impacted as well as replace damaged absorbing layers quickly for helmet reuse.


Background of the Invention

The primary purpose of a helmet is to protect the user's head. A helmet typically includes a hard outer shell and one or more energy absorbing layers. The outer shell is designed to distribute forces over the shell area to distribute the energy over a greater volume of the energy absorbing layers. These usually have a compressible material that absorbs impact energy by distorting and absorbing the impact using the resilient and/or compressible properties of the material or by crushing and absorbing energy by material fracture.


Conventional helmets are primarily designed to manage direct or normal forces to a helmet and are less effective at managing shear or rotational forces. Various solutions intended to manage rotational motions have been developed and proposed, such as providing a slippery surface material to cover the helmet thereby decreasing friction between the surface of the helmet and the impacting object. Other solutions include the use of low friction layer between the helmet shell and an inner head-gripping member, or a layer that consists of a gel, liquid or other soft material between the shell and liner, or other layers of materials, to allow the outer shell to rotate and/or slide horizontally independent of the liner or the user's head.


There are many helmet designs as head injures abound in many different activities and uses requiring the safety of perhaps different helmet designs. Taking a spill, hit or flying object to the brain on the street or playground can be a life changing injury.


Some consumer helmets prevent some injury via lightweight yet rigid insulating foam called Expanded Polystyrene, or EPS. Crashing on a bicycle and hitting ones head into something rigid, the foam reduces the amount of energy that would enter the skull by deflecting and redistributing that impact away from any one area of the skull. The more that the direction and magnitude of the impact is redistributed and reduced, the more likely the impact will be spread over a larger area when it impacts the skull. In some instances, this protection does a good job of preventing cracks to the skull that could be sustained during a fall or play.


But styrofoam-like, EPS, helmets are far from good enough for several reasons. Often they are meant to be used once per large impact as in the event of a crash, the outer shell cracks, and the EPS foam takes that crushing blow by deforming and absorbing the force, thereby reducing the impact to the skull. Further, the foam inside is either incapable of bouncing back, or it's impossible to tell the extent of its damage. Often one protective blow to the head is all the helmet can take before it is useless protection against future concussions.


In more recent years, researchers have also found that simply distributing energy at the point of impact is not the most ideal way to prevent a concussion. EPS helmets mainly absorb energy in a helmet's normal direction, or directly on. But that leaves the tangent component direction free to cause most of the damage in concussions. What is often the case, is that the head turns and pivots and its this rotational-style concussion that poses the most danger. Inside the brain, cerebrospinal fluid which is typically the brain's natural protection, shifts and allows the head to jostle around unprotected, irritating and potentially damaging the delicate nerves inside.


In the last few decades researchers have begun to better understand head injuries, particularly concussions, but only the most recent prior art designs contain designs and methods for absorbing rotational energy from an impact, which is largely responsible for dangerous concussions. What is needed are helmet designs that can absorb energy continuously with accommodation for material absorption deformation. What is needed are helmet devices that repel the impact of rotation or divert its force away from adding rotational energy to the brain.


One example of a rotation energy reducing technology is MIPS, an acronym for multi-directional impact protection system. The MIPS technology teaches a shell layer that acts as a human body's natural cerebrospinal fluid. Rather than reducing the impact of direct or normal force, as the foam helmets do, MIPS works to redirect the impact of rotational forces from angled impacts. MIPS is essentially a thin liner. When placed between it and the helmet's hard shell, it creates a low friction layer which allows the helmet to slide back and forth just like your body's natural fluid cushioning.


As some researchers found, impacts causing head rotation can be far more damaging to the brain than direct, normal to the head, collisions. Repeated helmet impacts reach a certain high energy impact, and friction starts to build between the MIPS layer and the EPS layers in the helmet such that resistance in the layers is unable to deflect that rotational energy anymore. As impacts continue, and sufficient friction builds, the layers bind up, and too much energy starts to reach the brain.


What is needed are designs that prevents friction from building by transferring the energy rotationally as it starts to build up to another structure which bypasses the head altogether. What is needed are more effective ways for reusing helmets with damaged EPS foam, usesless at preventing concussions from head collisions whether on the street, field or on the playground.


SUMMARY

The present invention discloses a concussion resistant smart helmet with a perforated outer shell and perforated regions or openings is disclosed. The outer is shell coupled to helmet edges adjacent to a neck or shoulders for transferring loads away from the wearer's head. An inner shell is coupled to the helmet edges adjacent to a neck or shoulders and rigidly coupled to the outer shell at the edges. A layer of independently slidable freely in all directions tiles are snuggly fitted between the inner and outer shells with the tiles protruding the outer shell perforated regions proving sliding stops and the tiles having polygonal shape commensurate with margins to each tile accommodating outer shell protrusion region. The slidable tiles have spring-like material spacers separating them but allowing for transferring any tangential component forces from impacts to travel from tile to tile. An restorable energy absorbing layer is snuggle coupled between the inner shell and a helmet wearer's head such that external force impacts to the helmet are decoupled to normal and tangential components in the helmet layers, tangential component forces are redirected to the helmet edges and the normal component forces are distributed and absorbed by the absorbing layer. The absorbing inner layer boundary is fitted with 3D force sensors and wifi logic for recording all impacts reaching the head.





BRIEF DESCRIPTION OF DRAWINGS

Specific embodiments of the invention will be described in detail with reference to the following figures.



FIG. 1 shows a concussion resistant helmet sliding tile outer layer in an embodiment of the invention



FIG. 2 illustrates a concussion resistant helmet bearing slider outer layer in an embodiment of the invention



FIG. 3 displays detailed aspects of layers of a concussion resistant helmet in an embodiment of the invention



FIG. 4 shows detailed aspects of removable-installable absorption layers of a concussion resistant helmet in an embodiment of the invention



FIG. 5 illustrates damage management of replaceable absorption layers of a concussion resistant helmet in an embodiment of the invention





DETAILED DESCRIPTION

In the following detailed description of embodiments of the invention, numerous specific details are set forth in order to provide a more thorough understanding of the invention. However, it will be apparent to one of ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.


Objects and Advantages


The concussion resistant smart helmet disclosed herein addresses the above needs and concerns in the following manner.


It is, therefore, an object of the invention is to provide concussion resistant smart helmet by decoupling the normal and tangential component force impacts and manage them separately.


Another object of the invention is to provide an impact decoupling mechanism to redirect tangential component forces from external helmet impacts to helmet edges for absorption by neck or shoulder pads.


A still further object of the invention is to provide a removable replaceable energy absorbing layer.


It is an objective of the invention to create a smart helmet, one capable of recording impacts and notification of absorption layer replacement.


It is yet another object of the invention to record all absorption layer normal force impacts for magnitude of and cumulative concussive force history.


The present invention discloses several embodiments for making a concussion resistant smart helmet.



FIG. 1 shows a concussion resistant helmet 101 sliding tile outer layer 115 in an embodiment of the invention. A perforated outer hard shell 105 of the outer layer 115 with perforated regions or openings 107 in outer layer 115 coupled to helmet edges 103 adjacent to a neck or shoulders is shown and snuggly fitting the tiles against the outer hard shell 105. A base outer shell 103 of outer shell layer 115 is rigidly coupled to the helmet edges 103 adjacent to a neck or shoulders and rigidly coupled to the outer hard shell 105 at the helmet edges 103. A layer of independently slidable freely in all directions tiles 109 snuggly fitted between the base 103 and hard outer shells 105, tiles 109 protruding the outer hard shell 105 perforated regions 107 having polygonal shape commensurate with margins 107 of each tile 109 accommodating a hard outer shell protrusion region 107. The slidable tiles 109 are adjacent to spring-like material 111 spacing the locally movable tiles apart for movably transferring any tangential component forces from impacts anywhere on the helmet exterior to the helmet edges. An additional and restorable energy absorbing layer lies between the outer base shell 103 and a helmet wearer's head. Thereby external force 117 impacts to the helmet are decoupled to a helmet normal 121 and tangential components 119 in the helmet layers, tangential component 119 forces are redirected to the helmet edges 103 by the sliding tiles or platelets and the normal component forces are distributed and absorbed by an absorbing layer below. Face protection 113 may or may not be present but it would act in the same way transferring impact loads into the normal 121 and tangential component forces by deflection 119.or glancing blow.



FIG. 2 illustrates a concussion resistant helmet bearing slider outer layer in an embodiment of the invention. A slider bearing 203 tile 205 populates an outer shell regions 207 coupled to helmet edges 213 is shown adjacent to a neck or shoulders. An inner layer shell(s) is coupled 209211 to the helmet edges adjacent to a neck or shoulders and rigidly coupled to the outer shell at the edges 213. The outer bearing populated layer provides and independently slidable freely in all directions provides a head shield from any tangential impacts by redirecting those components to the helmet edges. Any normal component impacts are distributed in and across a restorable adjacent snuggly fitted absorbing layer(s) 209211. The restorable energy absorbing layer(s) 209211 may have embedded sensors and diminish any helmet blows to wearer's head.


Helmet concussion resistance is designed into an embodiment of the invention of a smart helmet by decoupling the normal and tangential component force impacts by the outer layers slidable property of deflecting tangential force components away from a helmet users head, thus removing any potential rotational energy from reaching the head.


Layer composition is of major concern along with structural mechanics. Graphene is the strongest material ever tested. Materials testing have shown that graphene showed a greater ability to distribute force from an impact than any known material, ten times that of steel per unit weight. Therefore it is a very good candidate for materials used for making the outer layer tougher and lighter than conventional helmet materials used, providing added strength against very high impact loads which would otherwise penetrate the outer layer and cause damage in the normal component of the force.



FIG. 3 shows detailed aspects of layers of a concussion repellant and resistant helmet layer in an embodiment of the invention. An outer layer 311301 has movable tiles or platelets 309 with affixed rolling bearing 302, the platelets have spring-like components 303 surrounding the platelet 309 and allowing 360Ā° constrained movement on the bearing 302 rotational surface and also within the outer layer 307 volume 305. The tiles 309 remain somewhat local to the outer layer 307 perforations 308 or openings retaining the tiles 302 locally. A network of tiles 302 populating the outer layer 301311 allow that impact force components are decoupled, with the tangential component diverted to adjacent tiles and normal component force is absorbed by the spring-like components 303 and further downstream by an absorber layer(s) 313.


A slidable tile or platelet 309 can be made of plastic, composite, graphite coating, graphene-titanium, graphene layers, synthetics, metal and combinations. The spring-like interstitial material 303 is made from materials including but not limited to rubber, foam, composites, elastic synthetic and combinations. In some embodiments a liner 313 bounding an absorbing layer 314 can have smart sensors 321 for recording forces affecting the head. The sensors will be 3D force or acieration sensors 315 with memory 317, wifi logic 318 and power 319.



FIG. 4 shows detailed aspects of removable-installable absorption layer 401 of a concussion resistant helmet in an embodiment of the invention. Normal or direct force impacts are decoupled by the external layer 404 and outer layer shell 407 redirected to an impact absorption layer 402405 between an external layer 404 and user. But with continued use, an absorption layer 402405 suffers damage in its ability to deform further to absorb direct impact energy and must be replace or recycled. The damage will come from crushed fluidic bearings 417 with deformableā€”breaching sphere outer layers 419 or from the crushing of honey comb or other cellular structured 413 material absorbent layer 405413. The absorbent layer 405402413 are removable-replaceable having hard edge boundaries, coupled to the helmet base at a snap-on or screw-on edge 403415. The helmet base will have rigid hard shell layers 411 made from plastic, composite, graphite grid, graphene-titanium, graphene layers, spongy interior, other synthetic material and combinations, the base to snuggly fit but removable-replaceable absorbing layers 413402405 as shown.



FIG. 5 illustrates absorption layer 501 damage management of a concussion resistant helmet in an embodiment of the invention.


An absorbing layer top 503 and side or base 505 are snap or screw coupled at a snug fit edge 509 between the top 503 and base 505 absorbing layer 501 providing for replacement of damaged absorbent layer 503505. In an embodiment of the invention an absorbent layer base 505 is rotatably coupled to a helmets neck/shoulder edge 507. The top 503 of the absorbent layer can be of deformable energy absorbing material and structure previously mentioned.


Through the course of its life, the absorption layer is expected to absorb impacts through physical deformation of its material and structure. Absorbing material can be made of combination of Styrofoam, honey comb, FOAM, composites, plastic-rubber, fluidic spheres and is replaceable when called for by removing a damaged absorption layer and replacing it with an undamaged absorbing layer. The 3D force sensor 510 logic measuring, recording and storing the actual brain reaching impacts can have limits set to inform wearers when the helmet has been compromised.


Replacing the absorbent layer at end of life is managed through sensor(s) 510517 securely affixed in the absorber layer lining adjacent to user, such that impact magnitudes reaching the user are recorded and a time history 511 of impacts can be read from wireless devices from sensor 517 stored memory 519 and wifi logic 521 transmission, powered by rechargeable power 523. In replaceable absorbent layers embodiments there may be at least one 3D force or 3D accelerometer sensor 517 coupled to electrical power 523, memory 519 and wifi 521 logic for digitally recording helmet individual and cumulative impact forces reaching the bottom of the absorbing layer 503.


Therefore, while the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this invention, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Other aspects of the invention will be apparent from the following description and the appended claims.

Claims
  • 1. A concussion resistant smart helmet comprising: a helmet with a hard outer shell having perforated regions, on an outer helmet layer rigidly coupled to helmet edges;a base outer shell of the outer helmet layer fitting below the outer hard shell in the outer helmet layer, and base outer shell of the outer helmet layer coupled to the helmet edges;a layer of independent slidable tiles fitted in the outer helmet layer between the outer hard shell and base outer shell, the slidable tiles protruding the outer hard shell perforated regions having a polygonal shape commensurate with margins to the independently slidable tiles;the independently slidable tiles with material spacers for transferring any tangential component forces from impacted tile to tile to helmet edge tangential force component transfer anda liner coupled to the outer helmet layer bounding the absorbing layer, the liner having electronics, logic and sensors registering the normal and tangential components forces at the tiles,whereby external force impacts to the helmet are decoupled to normal and tangential component impact forces for recording and processing at tile impacts.
  • 2. The concussion resistant smart helmet of claim 1 further comprising an energy absorbing layer with removable electronics and sensors whereby damaged absorbing material sensors can be removed and replaced with undamaged absorbing layer sensors, electronics and logic.
  • 3. The concussion resistant smart helmet of claim 1 further comprising a smart absorbing layer with the liner having at least one 3D force or 3D accelerometer sensor coupled to power, memory and wife logic for recording helmet normal and tangential individual and cumulative impact forces.
  • 4. The concussion resistant smart helmet of claim 1 wherein the electronics, logic and sensors store and transmit sensed component forces of impacts via wireless devices for a tangential and normal component impact force time histories.
  • 5. The concussion resistant smart helmet of claim 1 wherein electronic devices including sensors, stored memory and wifi logic are powered by rechargeable power.
  • 6. The concussion resistant smart helmet of claim 1 further comprising an absorbing layer made from a set of energy absorbing materials selected from the group consisting of honey comb, Styrofoam, Expanded Polystyrene, graphene-titanium, graphene layers, and composites.
  • 7. A method for a concussion resistant smart helmet comprising the steps of: providing a helmet with an outer hard shell with perforated regions or openings on an outer helmet layer, the outer helmet layer rigidly coupled to helmet edges;providing a base outer shell of the outer helmet layer fitting below the outer hard shell of the outer helmet layer, the base outer shell of the outer helmet layer coupled to the helmet edges;providing a base outer shell of the outer helmet layer fitting below the outer hard shell of the outer helmet layer, the base outer shell of the outer helmet layer coupled to the helmet edges;inserting removable-replaceable energy absorbing layer between an base outer shell shell liner and a helmet interior boundary,spacing the-slidable tiles with material spacers for transferring any tangential component forces from impacted tile to tile to helmet edge tangential force component transfer, andcoupling a liner to the base outer shell layer bounding an energy absorbing layer, the liner having electronics, logic and sensors for registering the normal and tangential components forces at impacted slidable tile positions,whereby external impacts to the helmet are decoupled to normal and tangential components for recording and processing at the slidable impacted tile locations.
  • 8. The method for a concussion resistant smart helmet as in claim 7 further comprising the steps of providing an energy absorbing layer with removable electronics and sensors whereby damaged absorbing material sensors can be removed and replaced with undamaged absorbing layer sensors, electronics and logic.
  • 9. The method for a concussion resistant smart helmet as in claim 7 further comprising the steps of providing a smart absorbing layer with the liner having at least one 3D force or 3D accelerometer sensor coupled to power, memory and wifi logic for recording helmet normal and tangential individual and cumulative impact forces at the slidable tile locations.
  • 10. The method for a concussion resistant smart helmet as in claim 7 wherein the electronics, logic and sensors store and transmit sensed component of impacts via wireless devices for a tangential and normal component impacts time histories.
  • 11. The method for a concussion resistant smart helmet as in claim 7 wherein electronic devices including sensors, stored memory and wifi logic are powered by rechargeable power.
  • 12. The method for a concussion resistant smart helmet as in claim 7 further comprising an absorbing layer made from a set of energy absorbing materials selected from the group consisting of honey comb, Styrofoam, Expanded Polystyrene, graphene-titanium, graphene layers, and composites.