The present invention relates to the technology field of lighting devices, and more particularly to a smart light source capable of automatically providing an illumination contributed by lights resemblance with respect to sunlight (daylight) in at least one session of local real time which is selected by an user through an controller module.
With the development of science technologies, artificial light source is developed from the incandescent bulb invented by Thomas Alva Edison to fluorescent lamp. Furthermore, solid-state lighting devices are recent newly-created artificial light sources, including light-emitting diode (LED), organic light-emitting diode (OLED) and polymer light-emitting diode (PLED).
Long-term research reports made by George C. Brainard (PhD. and director of light research program of Thomas Jefferson University in Philadelphia) and NASA have documented how various visible and nonvisible light sources influence both hormonal balance and behavior. Moreover, their current studies further include elucidating the action spectrum of melatonin regulation, investigating the phase shifting capacities of light, studying the influence of light on tumor progression, and testing new light treatment devices for winter depression. For example, the steroid hormone cortisol is known serving a variety of important functions in the human body. In humans, cortisol levels decrease across the habitual waking day and are lowest near habitual bedtime after which time they increase across the habitual night and peak near habitual wake time, regardless of continuous wakefulness or sleep. Moreover, influence of exposure to bright light on cortisol levels has been proved. On the other hand, the pineal gland hormone melatonin is released during the biological night and provides the body's internal biological signal of darkness. Exposure to light both resets the circadian rhythm of melatonin and acutely inhibits melatonin synthesis. It is well known that sunlight is a gift from God. As the sun rises, illumination provided by the sunlight make people feel be spiritful and get activity. On the contrary, people gradually get mental relaxation and let their mind rest during the session of sunset. However, for the specific workers staying in an environment unable to normally receive sunlight illumination, such as spaceman, miner and underground worker, it is difficult or impossible for them to receive potent stimulus induced by sunlight illumination so as to regulate circadian, hormonal, and behavioral systems thereof. As a result, it is presumed that, after working for a certain time period, these specific workers may suffer from physical disorder which further brings health problems to the workers.
Accordingly, illuminous device manufactures develop and provide a color temperature tunable (CTT) illuminous device for users to decide and adjust the brightness and color temperature of a light emitted from the CTT illuminous device by themselves.
Although the CTT illuminous device 1′ is developed for users to decide and adjust the brightness and color temperature of the light emitted from the CTT illuminous device 1′ by themselves, long-term collections of user feedbacks make engineers skilled in development and manufacture of illuminous devices know that, the CCT illuminous device 1′ still exhibits many drawbacks in practical use as follows:
From above descriptions, it is clear and understood that how to design a lighting device or apparatus with luminance and color temperature both tunable function has now became an important issue. Accordingly, the inventors of the present application have made great efforts to make inventive research thereon and eventually provided a smart light source.
The primary objective of the present invention is to provide a smart light source, comprising: an illumination module, a driver module, and a controller module. The illumination module comprises a plurality of first lighting elements and at least one second lighting element, wherein one or more color temperature (CT) reducing films are disposed on a light emission surface of each of the plurality of first lighting elements. By such arrangement, first lights radiated from different first lighting elements would be converted to a light resemblance with respect to sunlight in morning sessions, a light resemblance with respect to sunlight in early morning sessions or early evening sessions, an orange-white light, or an orange-red light by the CT reducing films. Moreover, the second lighting element is configured to emit a high CT light, i.e., a light resemblance with respect to sunlight in noon sessions or a light resemblance with respect to blue sky sunlight.
In order to achieve the primary objective of the present invention, the inventor of the present invention provides one embodiment for the smart light source, comprising:
an illumination module, comprising:
The invention as well as a preferred mode of use and advantages thereof will be best understood by referring to the following detailed description of an illustrative embodiment in conjunction with the accompanying drawings, wherein:
To more clearly describe a smart light source according to the present invention, embodiments of the present invention will be described in detail with reference to the attached drawings hereinafter.
First Embodiments of the Smart Light Source
With reference to
From
Particularly, the color temperature reducing films 112 are connected a light emission surface of each of the plurality of first lighting elements 111 and stacked to each other, so as to apply a color temperature reducing process to each of first lights radiated from the plurality of first lighting elements 111. It is interesting that both the color temperature and the luminance of the first lights are changed after the color temperature reducing process is completed. It is worth mentioning that, comparing to the first lighting elements 111 connected with only one color temperature reducing film 112, the first lights emitted by the first lighting elements 111 connected with two or more color temperature reducing films 112 present better and obvious effect on color temperature reducing. Experimental data for describing the reduction of the luminance and color temperature of the first lights in response to the stack numbers of the temperature reducing films 112 are integrated in following Table (2).
Please continuously refer to
In the present invention, the color temperature reducing film 112 is a light conversion film comprising a polymer substrate PM and a plurality of light conversion particles LP, wherein the light conversion particles LP are doped in or enclosed by the polymer substrate PM. Moreover, the manufacturing material of the polymer substrate can be polydimethylsiloxane (PDMS), polystyrene (PS), polyethylene terephthalate (PET), polycarbonate (PC), cycloolefin co-polymer (COC), cyclic block copolymer (CBC), polylactide (PLA), polyimide (PI), or combination of the above-mentioned two or above materials. On the other hand, the light conversion particles LP can be quantum dots, wherein the quantum dot is selected from the group consisting of Group II-VI compounds, Group III-V compounds, Group II-VI compounds having core-shell structure, Group III-V compounds having core-shell structure, Group II-VI compounds having non-spherical alloy structure, and combination of the aforesaid two or above compounds. Exemplary materials of the quantum dots for being used as the light conversion particles LP are integrated and listed in following Table (3). Moreover, relations between the fluorescence color of the excitation light and the QDs sizes are also summarized in following Table (4).
In addition, the light conversion particles LP can also be particles of a phosphor, and the phosphor can an aluminate phosphor, a silicate phosphor, a phosphate phosphor, a sulfide phosphor, or a nitride phosphor. Exemplary materials of the phosphor for being used as the light conversion particles LP are integrated and listed in following Table (5).
Table (3) and Table (5) are not used for limiting the formation or manufacturing material of the color temperature reducing film 112. For example, the color temperature reducing film 112 can also be constituted by a polymer substrate and at least one light conversion coating layer formed on the polymer substrate. In addition, when the color temperature reducing film 112 is constituted by the polymer substrate PM and a plurality of QDs (i.e., light conversion particles LP), it is able to further formed an oxygen and moisture barrier on the color temperature reducing film 112. The oxygen and moisture barrier is made of a specific material selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), poly(methyl methacrylate) (PMMA), silica, titanium oxide, aluminum oxide, and combination of the aforesaid two or above materials.
On the other hand,
An LED component capable of emitting a pure-white light with color temperature of 6,000K is used as the first lighting elements 111 and the second lighting element 113 in experiment I. In experiment I, the smart light source 1 comprises four first lighting elements 111 and one second lighting element 113. It needs further explain that, No. 1 of the four first lighting elements 111 is connected with one color temperature reducing film 112, and No. 2, No. 3 and No. 4 of the four first lighting elements 111 are connected with the color temperature reducing films 112 with stacked numbers of two, three and four, respectively. Moreover, in experiment I, the color temperature reducing film 112 comprises a polymer substrate PM and a plurality of QDs (i.e., light conversion particles LP), wherein the QDs are spread in the polymer substrate PM and having a particle size in a range from 5 nm to 20 nm.
The LED component capable of emitting a pure-white light with color temperature of 6,000K is also used as the first lighting elements 111 and the second lighting element 113 in experiment II. In experiment II, the smart light source 1 comprises eight first lighting elements 111 and one second lighting element 113. It needs further explain that, No. 1 of the eight first lighting elements 111 is connected with one color temperature reducing film 112, and No. 2 of the eight first lighting elements 111 are connected with two stacked color temperature reducing films 112. Moreover, No. 3, No. 4, No. 5, No. 6, No. 7, and No. 8 of the eight first lighting elements 111 are covered by the color temperature reducing films 112 with stacked numbers of from three to eight, respectively. On the other hand, in experiment II, the color temperature reducing film 112 comprises a polymer substrate PM and a plurality of QDs (i.e., light conversion particles LP), wherein the QDs are spread in the polymer substrate PM and having a particle size in a range from 3 nm to 10 nm.
According to the particular design of the present invention, the smart light source 1 are mainly constituted by an illumination module 11, a driver module 12, and a controller module 13, wherein the illumination module 11 are designed to have a plurality of first lighting elements 111 and at least one second lighting element 113, and wherein one or more color temperature (CT) reducing films 112 are disposed on a light emission surface of each of the first lighting elements 111. Obviously, experimental data of
Furthermore, an OLED component capable of emitting a pure-white light with color temperature of 5,400K is used as the first lighting elements 111 and the second lighting element 113 in experiment III. It is known that the light with color temperature of 5,400 K is classified to a pure-white light. In experiment III, the smart light source 1 comprises eight first lighting elements 111 and one second lighting element 113. It needs further explain that, No. 1 of the eight first lighting elements 111 is connected with one color temperature reducing film 112, and No. 2 of the eight first lighting elements 111 are connected with two stacked color temperature reducing films 112. Moreover, No. 3, No. 4, No. 5, No. 6, No. 7, and No. 8 of the eight first lighting elements 111 are covered by the color temperature reducing films 112 with stacked numbers of from three to eight, respectively. On the other hand, in experiment II, the color temperature reducing film 112 comprises a polymer substrate PM and a plurality of QDs (i.e., light conversion particles LP), wherein the QDs are spread in the polymer substrate PM and having a particle size in a range from 5 nm to 20 nm.
Referring to
Second Embodiments of the Smart Light Source
With reference to
Therefore, through above descriptions, the smart light source 1 proposed by the present invention has been introduced completely and clearly; in summary, the present invention includes the advantages of:
(1) Although conventional color temperature tunable (CCT) illuminous device 1′ (as shown in
Moreover, by operating the controller module 13, users are able to select a specific area like Taiwan area of Asian or New York area of America USA, so as to make the microprocessor 134 be configured to generates a controlling signal to the driver module 12 based on the daylight data and the local real time. Therefore, the driver module 12 drives at least one of the plurality of first lighting elements 111 and/or the at least one second lighting element 113 to make light emission according to the controlling signal. As a result, the smart light source 1 of the present invention provides an illumination to an environment unable to receive enough sunlight illumination, wherein the illumination is contributed by lights resemblance with respect to the local daylight (sunlight) in at least one session of local real time.
The above description is made on embodiments of the present invention. However, the embodiments are not intended to limit scope of the present invention, and all equivalent implementations or alterations within the spirit of the present invention still fall within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
107118497 | May 2018 | TW | national |