Smart messages and alerts for an infusion delivery and management system

Information

  • Patent Grant
  • 9782076
  • Patent Number
    9,782,076
  • Date Filed
    Monday, July 18, 2011
    13 years ago
  • Date Issued
    Tuesday, October 10, 2017
    7 years ago
Abstract
Method and system for providing diabetes management is provided.
Description
BACKGROUND

With increasing use of pump therapy for Type 1 diabetic patients, young and old alike, the importance of controlling the infusion device, such as external infusion pumps, is evident. Indeed, presently available external infusion devices typically include an input mechanism such as buttons through which the patient may program and control the infusion device. Such infusion devices also typically include a user interface such as a display which is configured to display information relevant to the patient's infusion progress, status of the various components of the infusion device, as well as other programmable information such as patient specific basal profiles.


The external infusion devices are typically connected to an infusion set which includes a cannula that is placed transcutaneously through the skin of the patient to infuse a select dosage of insulin based on the infusion device's programmed basal rates or any other infusion rates as prescribed by the patient's doctor. Generally, the patient is able to control the pump to administer additional doses of insulin during the course of wearing and operating the infusion device, such as for administering a carbohydrate bolus prior to a meal. Certain infusion devices include a food database that has associated therewith, an amount of carbohydrate, so that the patient may better estimate the level of insulin dosage needed for, for example, calculating a bolus amount.


However, in general, most estimation or calculation of a bolus amount for administration, or a determination of a suitable basal profile, for that matter, are educated estimates based on the patient's physiology as determined by the patient's doctor, or an estimate performed by the patient. Moreover, the infusion devices do not generally include enhancement features that would better assist the diabetic patients to control and/or manage the glucose levels.


In view of the foregoing, it would be desirable to have an approach to provide methods and system for providing proactive notifications to the patients using infusion devices that may assist in better controlling and treating diabetes, such as, for example, by programming the pump and/or determining frequency of event occurrences that are relevant to different types of diabetes-associated episodes such as hyperglycemic state, hypoglycemic state, monitoring of glucose levels and the like.


SUMMARY OF THE INVENTION

In accordance with the various embodiments of the present invention, there are provided methods and system for notification of patient parameters and physiological states to prompt the user to take proactive measures such as additional capillary blood glucose testing, consumption of snacks, and/or other diabetes management related alerts to the patient prior to the onset of the relevant condition such that the patients may better control the glucose levels during the course of the day when using an insulin infusion pump. In addition, system and methods in accordance with the present inventions include data analysis of the patient's glucose levels over extended periods of time to generate notification to the patients to inform them of the analysis results so as to provide additional motivation or incentive to improve upon the existing glucose management.


These and other objects, features and advantages of the present invention will become more fully apparent from the following detailed description of the embodiments, the appended claims and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating an insulin therapy management system for practicing one embodiment of the present invention;



FIG. 2 is a block diagram of the insulin delivery device of FIG. 1 in one embodiment of the present invention;



FIG. 3 is a flow chart illustrating a notification procedure to prevent DKA from persistent high blood glucose level in accordance with one embodiment of the present invention;



FIG. 4 is a flow chart illustrating a notification procedure for minimizing nocturnal hypoglycemia in accordance with one embodiment of the present invention;



FIG. 5 is a flow chart illustrating a notification procedure for improving blood glucose level control in a patient in accordance with one embodiment of the present invention; and



FIG. 6 is a flow chart illustrating a notification procedure for improving blood glucose level control in a patient in accordance with another embodiment of the present invention.





DETAILED DESCRIPTION


FIG. 1 is a block diagram illustrating an insulin therapy management system for practicing one embodiment of the present invention. Referring to FIG. 1, the insulin therapy management system 100 includes an analyte monitoring system 110 operatively coupled to an insulin delivery device 120, which may be, in turn, operatively coupled to a remote terminal 140. As shown the Figure, the analyte monitoring system 110 is, in one embodiment, coupled to the patient 130 so as to monitor or measure the analyte levels of the patient. Moreover, the insulin delivery device 120 is coupled to the patient using, for example, an infusion set and tubing connected to a cannula (not shown) that is placed transcutaneously through the skin of the patient so as to infuse medication such as, for example, insulin, to the patient.


Referring to FIG. 1, in one embodiment the analyte monitoring system 110 in one embodiment may include one or more analyte sensors subcutaneously positioned such that at least a portion of the analyte sensors are maintained in fluid contact with the patient's analytes. The analyte sensors may include, but are not limited to, short term subcutaneous analyte sensors or transdermal analyte sensors, for example, which are configured to detect analyte levels of a patient over a predetermined time period, and after which, a replacement of the sensors is necessary.


The one or more analyte sensors of the analyte monitoring system 110 is coupled to a respective one or more of a data transmitter unit which is configured to receive one or more signals from the respective analyte sensors corresponding to the detected analyte levels of the patient, and to transmit the information corresponding to the detected analyte levels to a receiver device, and/or insulin delivery device 120. That is, over a communication link, the transmitter units may be configured to transmit data associated with the detected analyte levels periodically, and/or intermittently and repeatedly to one or more other devices such as the insulin delivery device and/or the remote terminal 140 for further data processing and analysis.


The transmitter units of the analyte monitoring system 110 may in one embodiment be configured to transmit the analyte related data substantially in real time to the insulin delivery device 120 and/or the remote terminal 140 after receiving it from the corresponding analyte sensors such that the analyte level, such as glucose level, of the patient 130 may be monitored in real time. In one aspect, the analyte levels of the patient may be obtained using one or more of a discrete blood glucose testing device, such as blood glucose meters, or a continuous analyte monitoring system, such as continuous glucose monitoring systems.


Additional analytes that may be monitored, determined or detected the analyte monitoring system 110 include, for example, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be determined.


Moreover, within the scope of the present invention, the transmitter units of the analyte monitoring system 110 may be configured to directly communicate with one or more of the remote terminal 140 or the insulin delivery device 120. Furthermore, within the scope of the present invention, additional devices may be provided for communication in the analyte monitoring system 100 including additional receiver/data processing unit, remote terminals (such as a physician's terminal and/or a bedside terminal in a hospital environment, for example). In addition, within the scope of the present invention, one or more of the analyte monitoring system 110, the insulin delivery device 120 and the remote terminal 140 may be configured to communicate over a wireless data communication link such as, but not limited to, RF communication link, Bluetooth® communication link, infrared communication link, or any other type of suitable wireless communication connection between two or more electronic devices, which may further be uni-directional or bi-directional communication between the two or more devices. Alternatively, the data communication link may include wired cable connection such as, for example, but not limited to, RS232 connection, USB connection, or serial cable connection.


The insulin delivery device 120 may include in one embodiment, but is not limited to, an external infusion device such as an external insulin infusion pump, an implantable pump, a pen-type insulin injector device, a patch pump, an inhalable infusion device for nasal insulin delivery, or any other type of suitable delivery system. In addition, the remote terminal 140 in one embodiment may include for example, a desktop computer terminal, a data communication enabled kiosk, a laptop computer, a handheld computing device such as a personal digital assistant (PDA), or a data communication enabled mobile telephone.


Referring back to FIG. 1, in one embodiment, the analyte monitoring system 100 includes a strip port configured to receive a test strip for capillary blood glucose testing. In one aspect, the glucose level measured using the test strip may in addition, be configured to provide periodic calibration of the analyte sensors of the analyte monitoring system 100 to assure and improve the accuracy of the analyte levels detected by the analyte sensors.



FIG. 2 is a block diagram of an insulin delivery device of FIG. 1 in one embodiment of the present invention. Referring to FIG. 2, the insulin delivery device 120, in one embodiment, includes a processor 210 operatively coupled to a memory unit 240, an input unit 220, a display unit 230, an output unit 260, and a fluid delivery unit 250. In one embodiment, the processor 210 includes a microprocessor that is configured to and capable of controlling the functions of the insulin delivery device 120 by controlling and/or accessing each of the various components of the insulin delivery device 120. In one embodiment, multiple processors may be provided as a safety measure and to provide redundancy in case of a single processor failure. Moreover, processing capabilities may be shared between multiple processor units within the insulin delivery device 120 such that pump functions and/or control may be performed faster and more accurately.


Referring back to FIG. 2, the input unit 220 operatively coupled to the processor 210 may include a jog dial, key pad buttons, a touch pad screen, or any other suitable input mechanism for providing input commands to the insulin delivery device 120. More specifically, in case of a jog dial input device, or a touch pad screen, for example, the patient or user of the insulin delivery device 120 will manipulate the respective jog dial or touch pad in conjunction with the display unit 230 which performs as both data input and output units. The display unit 230 may include a touch sensitive screen, an LCD screen, or any other types of suitable display units for the insulin delivery device 120 that are configured to display alphanumeric data as well as pictorial information such as icons associated with one or more predefined states of the insulin delivery device 120, or graphical representation of data such as trend charts and graphs associated with the insulin infusion rates, trend data of monitored glucose levels over a period of time, or textual notification to the patients.


Referring to FIG. 2, the output unit 260 operatively coupled to the processor 210 may include an audible alarm including one or more tones and/Nor preprogrammed or programmable tunes or audio clips, or vibratory alert features having one or more pre-programmed or programmable vibratory alert levels. In one embodiment, the vibratory alert may also assist in priming the infusion tubing to minimize the potential for air or other undesirable material in the infusion tubing. Also shown in FIG. 2 is the fluid delivery unit 250 which is operatively coupled to the processor 210 and configured to deliver the insulin doses or amounts to the patient from the insulin reservoir or any other types of suitable containment for insulin to be delivered (not shown) in the insulin delivery device 120 via an infusion set coupled to a subcutaneously positioned cannula under the skin of the patient.


Referring yet again to FIG. 2, the memory unit 240 may include one or more of a random access memory (RAM), read only memory (ROM), or any other types of data storage units that is configured to store data as well as program instructions for access by the processor 210 and execution to control the insulin delivery device 120 and/or to perform data processing based on data received from the analyte monitoring system 110, the remote terminal 140, the patient 130 or any other data input source.



FIG. 3 is a flow chart illustrating a notification procedure to prevent diabetic ketoacidosis (DKA) from persistent high blood glucose level in accordance with one embodiment of the present invention. Referring to FIG. 3, in one embodiment of the present invention, the insulin delivery device 120 may be programmed such that at step 310, a predetermined number of consecutive glucose readings is received over a predefined period of time. The glucose readings may be received from the analyte monitoring system 110 and stored, for example, in the memory unit 240 of the insulin delivery device 120. For example, in one embodiment, the patient may be prompted to provide a predetermined number, such as three, of consecutive readings of blood glucose measurements over the predefined time period such as within a thirty minute window to a four hour window.


Within the scope of the present invention, the insulin delivery device 120 may be configured to ascertain these consecutive glucose readings from the data stream received from the analyte monitoring system 110. Moreover, the predefined time period may additionally include any other suitable time period where the monitored analyte levels may provide information associated with the patient's physiological condition as pertains to the insulin therapy and diabetes management. For example, the predefined time period may include a 4-7 day period (or longer or shorter as may be appropriate), where the insulin delivery device 120 may be configured to receive the glucose readings at a specific time of the day (for example, at 7 am in the morning). In this case, the consecutive glucose readings may include each measured glucose level at 7 am in the morning for the 4-7 day period.


Referring to FIG. 3, at step 320, a predetermined target high glucose level which is pre-programmed and pre-stored in the memory unit 240 of the insulin delivery device 120, for example, may be retrieved by the processor 210 of the insulin delivery device 120. Alternatively, the patient may be prompted to provide a suitable target high glucose level at step 320 by the insulin delivery device 120. Thereafter, at step 330, the consecutive glucose readings over the predefined time period received at step 310 are compared with the target high glucose level from step 320. If it is determined at step 330 that the predetermined number of consecutive glucose readings over the predefined time period are not equal to or greater than the target high glucose level retrieved from step 320, then at step 350, the predefined time period may be optionally reset, and the routine returns to step 310. For example, the system may be configured to wait for the subsequent predefined time period, for example, between a time period of 30 minutes to one or two hour windows depending upon the time of the day and also, depending upon the time of the day in close proximity to a meal or physical activity, as may be programmed by the patient or the patient's physician or care provider, before executing the routine as described in FIG. 3 again.


Referring back to FIG. 3, if, at step 330, it is determined that the predetermined number of consecutive glucose readings over the predefined time period is greater or equal to the predetermined target high glucose level retrieved from memory unit 240 (FIG. 2), or received from the patient via the input unit 220 (FIG. 2) at step 320, then at step 340, an alert or notification is generated and output to the patient, either visually, audibly, tactily, or any combination of the output mechanism such as a visual alert displayed on the display unit 230 in combination with a vibratory alert providing tactile notification to the patient, and/or an audible alert. In one embodiment, the output alert notification provided to the patient may include a warning notification that the patient's consecutive blood glucose readings are persistently above the predetermined or programmed target high glucose level, and also provide a recommendation to take possible corrective or confirmatory actions such as intake of insulin, and/or additional glucose testing such as, for example, using fingerstick capillary blood glucose measurements. By way of an example, the insulin delivery device 120 may be configured to display a notification such as, but not limited to:

    • “3 High BGs in a Row—Consider Insulin Injection and Site Change”,
    • “Test Ketones”,
    • “If vomiting Go to Emergency Room”,
    • “Take Insulin Bolus”,
    • “Change Infusion Site”,
    • “Retest Glucose Level in 30 Minutes”,
    • “Call Doctor if Glucose Remains Elevated”,


      or any other suitable notification that may assist the patient in preventing diabetic ketoacidosis (DKA) which is associated with disruption of insulin delivery. As it is important for patients using insulin delivery device 120 to prevent going into DKA on the delivery device 120, the notification may be accompanied by one or more associated audible or tactile alerts such that the patients are readily and quickly able to ascertain the condition for which the insulin delivery device 120 is prompting the patients, and to take corrective actions immediately or as soon as possible.


Referring to FIG. 3, in one embodiment, the predetermined target high glucose level stored in the memory unit 240 of the insulin delivery device 120 may be 250 mg/dL, and which may be adjustable by the patient or the patient's care provider. For example, a diabetic patient experiencing thirst and irritation which are generally symptoms of elevated glucose readings, at 2 pm, determines, based on measured glucose readings (for example, received from the analyte monitoring system 110), that the glucose level is at 263 mg/dL. The patient has programmed the insulin delivery device 120 to a target high glucose level of 250 mg/dL, with a predetermined number of consecutive glucose readings at two readings, and the predefined time period to be a 2 hour window.


With the initial glucose reading of 263 mg/dL, the patient may initially be prompted to trouble shoot certain settings of the delivery device 120, for example, to confirm that the lunch bolus was delivered, no additional carbohydrate was ingested, verify the infusion tubing (fluid delivery unit 250) for possible air bubbles. If all settings are in their accurate modes, then a correction bolus may be administered using the insulin delivery device 120. Thereafter, the glucose level after 2 hours is retrieved, for example, from the memory unit 240 as received from the analyte monitoring system 110 (including, a separate real time capillary blood fingerstick testing, for example), and compared with the target high glucose level of 250 mg/dL. If it is determined that the second glucose measurement is still above the 250 mg/dL level, then the patient is provided with one or more of the alerts or notifications as described above to troubleshoot the persistent high glucose level condition, and thus take corrective measures to avoid the onset of DKA condition.


Referring yet again to FIG. 3, while the above description of processes and routines related to preventing DKA is provided in the context of the insulin delivery device 120, within the scope of the present invention, the calculation, determination or any programming and data processing to achieve the functions as set forth in FIG. 3 may be performed either alternately or in conjunction with the insulin delivery device 120, by the analyte monitoring system 110, or the remote terminal 140, as may be convenient or practical to the patient 130.



FIG. 4 is a flow chart illustrating a notification procedure for minimizing nocturnal hypoglycemia in accordance with one embodiment of the present invention. Referring to FIG. 4, at step 410 a pre-sleep mode is detected. That is, the insulin delivery device 120 may be configured to automatically enter the pre-sleep mode based on a clock mechanism in the insulin delivery device 120 which provides real time timing data, and further, in conjunction with the patient specified meal and sleep schedule as they may be individual and different from patient to patient. For example, the patient using the insulin delivery device 120 may program a pre-sleep mode to be defined as a time period post dinner or the last meal of the day, and prior to the patient sleeping. One example may be the time period of 9 pm to midnight, with the assumption that the patient has consumed dinner or the last substantial carbohydrate intake two to three hours prior to the onset of the pre-sleep mode time period of 9 pm.


Referring to FIG. 4, upon initiation or detection of the pre-sleep mode at step 410, the insulin delivery device 120 in one embodiment is configured to retrieve consecutive glucose readings during the pre-sleep mode time period for example, from the analyte monitoring system 110 (FIG. 1). In one embodiment, the number of predetermined consecutive glucose readings received at step 420 may include three consecutive readings, two consecutive readings, or any other suitable number of consecutive readings that may be appropriate to detecting the potential onset of hypoglycemic condition.


After receiving the predetermined consecutive glucose readings during the pre-sleep time period at step 420, a predetermined and/or pre-programmed target low glucose level is retrieved from, for example, the memory unit 240 of the insulin delivery device 120 (FIG. 2) at step 430. Thereafter, at step 440, the predetermined number of consecutive glucose readings are each compared with the predetermined target low glucose level (for example, 80 mg/dL). If it is determined that one or more of the predetermined number of consecutive glucose readings during the pre-sleep time period is higher than the predetermined target low glucose level at step 440, then the routine returns to step 410 and awaits to enter the subsequent pre-sleep mode initiation.


On the other hand, referring back to FIG. 4, if at step 440 it is determined that each of the predetermined number of consecutive glucose readings during the pre-sleep time period is lower or equal to the predetermined target low glucose level, then at step 450, an alert and/or notification is generated and output to the patient to take certain predefined and appropriate corrective actions and device status verifications. Examples of such alerts and/or notifications may include one or more of a visual, audible, or tactile notification of the measured consecutive low glucose levels, and a suggestion or recommendation to ingest a snack and or modify the existing basal rate of the insulin delivery device 120 prior to going to sleep.


In this manner, in one embodiment of the present invention, early onset of nocturnal hypoglycemic state may be detected and the patient may be notified prior to going to sleep to take one or more certain appropriate corrective actions to prevent entering into hypoglycemic state while sleeping. Suitable alerts or notifications include, for example, but are not limited to, the following:

    • “Three Pre-sleep Low BGs in a Row—Check Bedtime Basal”,
    • “Consider Basal Adjustment”,
    • “Eat a Bedtime Snack”


In the manner described above, in accordance with one embodiment of the present invention, there is provided an approach to prevent or minimize the potential for nocturnal hypoglycemia for the Type-1 diabetic patient. Moreover, while the above description of processes and routines related to minimizing nocturnal hypoglycemia is provided in the context of the insulin delivery device 120, within the scope of the present invention, the calculation, determination or any programming and data processing to achieve the functions as set forth in FIG. 3 may be performed either alternately or in conjunction with the insulin delivery device 120, by the analyte monitoring system 110, or the remote terminal 140, as may be convenient or practical to the patient 130.



FIG. 5 is a flow chart illustrating a notification procedure for improving blood glucose level control in a patient in accordance with one embodiment of the present invention. Referring to FIG. 5, at step 510 insulin delivery device 120 may be configured to retrieve a first glucose data set based on measured glucose levels of the patient 130 for a first predetermined time period (which may be a 7 day period, for example). Thereafter at step 520, a first running average glucose level is determined based on the first date set for the first predetermined time period. The calculated first running average glucose level may be optionally stored in the memory unit 240 of the insulin delivery device 120.


Referring back to FIG. 5, after determining the first running average glucose level for the first predetermined time period at step 520, a second glucose data set is retrieved at step 530, which corresponds to the measured glucose levels of the patient 130 for a second predetermined time period (for example, a 30 day period). Thereafter, at step 540, a second average glucose level based on the second glucose data set is determined for the second predetermined time period. Again, optionally, the calculated second average glucose level may be stored in the memory unit 240 of the insulin delivery device 120.


Thereafter, referring again to FIG. 5, at step 550, the first average glucose level is compared with the second average glucose level. If it is determined at step 550 that the first average glucose levels is not less than the second average glucose level, then the routine terminates. On the other hand, if at step 550, it is determined that the first average glucose level calculated based on the first predetermined time period is less than the second average glucose level calculated over the second predetermined time period, then at step 560, a predetermined target low glucose level is retrieved (for example, from memory unit 240), and at step 570 the retrieved predetermined target low glucose level is compared with the first average glucose level calculated at step 520. In one embodiment, the predetermined target low glucose level may be set by the patient or the patient's care provider at a suitable level, such as, for example, but not limited to, 80 mg/dL.


If at step 570 it is determined that the first average glucose level calculated for the first predetermined time period is greater than the retrieved predetermined target low glucose level, then at step 580, an appropriate notification is generated and output to the patient on one or more of the output unit 260 or the display unit 230 of the insulin delivery device 120. An example of such notification may include “Congratulations!—better BG control than Last Week,” or “Good BG Control is Worth the Effort!”.


In this manner, one or more of notifications providing encouragements to the patients may be provided based on monitored glucose levels so that the patients continue to make efforts in controlling and improving their blood glucose levels. Moreover, while 7 days and 30 days are described as the predetermined first and second time period, respectively, within the scope of the present invention, these time periods may be altered as suited to each patient and as appropriate so as to accurately and effectively evaluate monitored glucose levels of the patients over extended periods of time and to provide notifications to the patients. Moreover, within the scope of the present invention, the calculation, determination or any programming and data processing to achieve the functions as set forth in FIG. 5 may be performed either alternately or in conjunction with the insulin delivery device 120, by the analyte monitoring system 110, or the remote terminal 140, as may be convenient or practical to the patient 130.



FIG. 6 is a flow chart illustrating a notification procedure for improving blood glucose level control in a patient in accordance with another embodiment of the present invention. Referring to FIG. 6, at step 610, a first glucose data set corresponding to the measured glucose levels of the patient 130 is retrieved, for example, from the memory unit 240 of the insulin delivery device 120 as received from, for example, the analyte monitoring system 110 (FIG. 1) for a predetermined time period (such as 7 days, for example). Thereafter, a first standard deviation is determined at step 620 based on the first glucose data set. Thereafter, a second glucose data set for a second predetermined time period (such as 30 days, for example) is retrieved at step 630, and a second standard deviation based on the second glucose data set is determined at step 640.


Referring to FIG. 6, after determining the first and second standard deviations based on the first glucose data set and the second glucose data set, respectively, at step 650, the first standard deviation is compared with the second standard deviation. If at step 650 the first standard deviation is not less than the second standard deviation, then the routine terminates. On the other hand, if at step 650 it is determined that the first standard deviation is less than the second standard deviation, then at step 660, an output notification is generated and output to the patient on one or more of the output unit 260 or the display unit 230. Examples of the output notification may include, for example, a notification including “Congratulations!—Fewer Highs and Lows Than Last Week!” or “Good BG Control is Important!”, or any other suitable notification which corresponds to the glucose level standard deviations determined and compared based on the patient's monitored glucose levels.


Optionally, within the scope of the present invention, the step outputting the generated notification may be performed upon the first reactivation of the insulin delivery device 120 after the routine in FIG. 6 is performed. In this manner, the insulin delivery device 120 may be configured to provide one or more notifications based on the patient's monitored glucose levels, and to assist the patient 130 in continuing to improve monitoring and management of the glucose levels.


In a further embodiment, the patient's analyte levels may be monitored over an extended time period such as over a 4-7 day period (for example), at a specific time of the day (for example, at 7 am every morning), and the system may be configured to analyze the obtained or monitored analyte levels each day at the specified time of day to determine or generate one or more appropriate patient notifications or alerts to be provided to the patient. In this manner, the patient may be able to improve insulin therapy and diabetes management.


Moreover, within the scope of the present invention, the calculation, determination or any programming and data processing to achieve the functions as set forth in FIG. 6 may be performed either alternately or in conjunction with the insulin delivery device 120, by the analyte monitoring system 110, or the remote terminal 140, as may be convenient or practical to the patient 130. In addition, in the manner described above, any other types of glucose related data may be monitored or analyzed over a period of time in conjunction with the basal profile of the patient 130 to provide a comprehensive insulin therapy management and diabetes care system.


The various processes described above including the processes performed by the processor 210 in the software application execution environment in the insulin delivery device 120 as well as any other suitable or similar processing units embodied in the analyte monitoring system 110 and the remote terminal 140, including the processes and routines described in conjunction with FIGS. 3-6, may be embodied as computer programs developed using an object oriented language that allows the modeling of complex systems with modular objects to create abstractions that are representative of real world, physical objects and their interrelationships. The software required to carry out the inventive process, which may be stored in the memory unit 240 (or similar storage devices in the analyte monitoring system 110 and the remote terminal 140) of the processor 210, may be developed by a person of ordinary skill in the art and may include one or more computer program products.


Accordingly, a method of diabetes management in one embodiment of the present invention includes comparing each of a predetermined number of consecutive analyte related levels for a predefined time period to a predetermined target level, and generating an alert when each of the predetermined number of consecutive analyte related levels deviates from the predetermined target level.


The method may further include the step of measuring an analyte level of a patient to determine the one or more of the predetermined number of consecutive analyte related levels, where the measuring step may, in one embodiment, include the step of using one or more of a discrete blood glucose meter or a continuous analyte monitoring system.


The method may further include the step of outputting the alert on an infusion device.


Moreover, in one embodiment, the predefined time period may include one of a time period between 30 minutes and four hours.


The predetermined number of consecutive analyte related levels in another aspect may include one of two, three, four or five analyte related levels.


Additionally, the predetermined target level may include a target high analyte level.


The analyte levels may include glucose levels, and the predetermined target level may include a target high glucose level.


The alert may, in one embodiment, include one or more of an audible alert, a visual alert, or a tactile alert, where the visual alert may include one or more of an alphanumeric output display, a graphical output display, an icon display, a video output display, a color display and an illumination display.


The color display may include a change in color of an output image, animation, or background of the display unit 230, for example, and the illumination display may include, for example, but is not limited to, a persistent or sequential flashing of the backlight feature on the display unit 230.


The method may further include the step of outputting the generated alert.


The predefined time period, in one embodiment, may include a pre-sleep time period, which, in one embodiment, may be configured to begin at approximately a predetermined number of hours past the last meal of the day, and to terminate at the beginning of entering sleep cycle.


Alternatively, the pre-sleep time period may be configured to begin at approximately 9 pm and to terminate at approximately 12 am in a 24 hour daily time period.


Alternatively, the pre-sleep time period maybe configured to begin at approximately 9 pm and to terminate at approximately at 12 am in a 24 hour daily time period.


In a further aspect, the predetermined target level may include a target low analyte level, where the alert may be generated when each of the predetermined number of analyte related levels falls below the target low analyte level.


A system for providing diabetes management in accordance with another embodiment of the present invention includes an interface unit configured to receive one or more analyte related data, a processor unit operatively coupled to the interface unit, the processor unit configured to perform data processing based on the one or more received analyte related data, the processing unit further configured to generate one or more of an alert or a notification for output via the interface unit, where the processor unit is configured to compare the one or more analyte related data to one or more of a predetermined target analyte level, and, in accordance therewith, generate the one or more of the alert or the notification for one or more of an audible output, visual output or a tactile output.


The interface unit may include an input unit and an output unit, the input unit configured to receive the one or more analyte related data, and the output unit configured to output the one or more of the alert of the notification.


The processor unit may be configured to receive substantially, in real time, a plurality of analyte levels of a patient.


The interface unit and the processor unit may be operatively coupled to a housing of an infusion device.


The infusion device may include an external insulin pump.


A system for providing diabetes management in accordance with yet another embodiment includes an analyte monitoring system configured to monitor an analyte level of a patient substantially in real time, a medication delivery unit operatively for wirelessly receiving data associated with the monitored analyte level of the patient substantially in real time from the analyte monitoring system, and a data processing unit operatively coupled to the one or more of the analyte monitoring system or the medication delivery unit, the data processing unit configured to perform data processing based on the monitored analyte level of the patient, and to generate and output one or more of an alert or notification corresponding to the monitored analyte levels.


The analyte monitoring system may be configured to wirelessly communicate with the medication delivery unit over a radio frequency (RF) communication link, a Bluetooth® communication link, an Infrared communication link, or a local area network (LAN).


Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A method of managing hypoglycemia in real time performed by an electronic therapy device, comprising: detecting a pre-sleep time period comprising a time period prior to when a user enters a sleep cycle and entering a pre-sleep mode in response thereto;receiving, automatically without user input and during the pre-sleep time period, a predetermined number of consecutive analyte related level readings for the pre-sleep time period, wherein the predetermined number of consecutive analyte related level readings includes two or more consecutive analyte related level readings;retrieving, automatically without user input and during the pre-sleep time period, a predetermined target analyte level for the pre-sleep time period from a memory;comparing, automatically without user input and during the pre-sleep time period, each of the predetermined number of consecutive analyte related level readings for the pre-sleep time period to the predetermined target analyte level;in response to one or more of the predetermined number of consecutive analyte related level readings being greater than the predetermined target analyte level, exiting the pre-sleep mode and waiting for a subsequent pre-sleep time period; andin response to all of the predetermined number of consecutive analyte related level readings being equal to or lower than the predetermined target analyte level, generating and outputting an alert.
  • 2. The method of claim 1, further including measuring an analyte related level of the user during the pre-sleep time period to determine the predetermined number of consecutive analyte related level readings.
  • 3. The method of claim 2, wherein measuring the analyte related level includes using one or more of a discrete blood glucose meter or a continuous analyte monitoring system.
  • 4. The method of claim 1, further including outputting the alert on a medication delivery unit.
  • 5. The method of claim 1, wherein the alert includes one or more of an audible alert, a visual alert, or a tactile alert.
  • 6. The method of claim 5, wherein the visual alert includes one or more of an alphanumeric output display, a graphical output display, an icon display, a video output display, a color display or an illumination display.
  • 7. The method of claim 1, wherein the pre-sleep time period begins at approximately a predetermined number of hours after the last meal of the day, and terminates at the beginning of entering the sleep cycle.
  • 8. The method of claim 1, wherein generating the alert includes generating a treatment recommendation.
  • 9. A system for managing hypoglycemia in real time, comprising: a processor unit coupled to a non-transitory memory, the non-transitory memory comprising a plurality of instructions that, when executed, cause the processor unit to: detect a pre-sleep time period comprising a time period prior to when a user enters a sleep cycle and enter a pre-sleep mode in response thereto;automatically receive, without user input and during the pre-sleep time period, a predetermined number of consecutive analyte related level readings, wherein the predetermined number of consecutive analyte related level readings includes two or more consecutive analyte related level readings;automatically retrieve from the non-transitory memory, without user input and during the pre-sleep time period, a predetermined target analyte level for the pre-sleep time period,automatically compare, without user input and during the pre-sleep time period, each of the predetermined number of consecutive analyte related level readings for the pre-sleep time period to the predetermined target analyte level,in response to one or more of the predetermined number of consecutive analyte related level readings being greater than the predetermined target analyte level, exit the pre-sleep mode and wait for a subsequent pre-sleep time period; andin response to all of the predetermined number of consecutive analyte related level readings being equal to or lower than the predetermined target level, automatically generate and output one or more of an alert and a notification for one or more of an audible output, a visual output and a tactile output.
  • 10. The system of claim 9, wherein the processor unit is operatively coupled to a housing of an infusion device.
  • 11. The system of claim 10, wherein the infusion device includes an insulin pump.
  • 12. A system for managing hypoglycemia in real time, comprising: an analyte monitoring system configured to monitor an analyte level of a user substantially in real time;a medication delivery unit operatively coupled to the analyte monitoring system for wirelessly receiving data associated with the monitored analyte level of the user substantially in real time from the analyte monitoring system automatically without user input; anda data processing unit operatively coupled to one or more of the analyte monitoring system and the medication delivery unit and operatively coupled to a non-transitory memory, the non-transitory memory comprising a plurality of instructions that, when executed, cause the data processing unit to: detect a pre-sleep time period comprising a time period prior to when a user enters a sleep cycle and, upon detection of the pre-sleep time period, enter a pre-sleep mode;automatically receive, without user input and during the pre-sleep time period, a predetermined number of consecutive monitored analyte level readings, wherein the predetermined number of consecutive analyte related level readings includes two or more consecutive analyte related level readings,automatically retrieve from the non-transitory memory, without user input and during the pre-sleep time period, a predetermined target analyte level for the pre-sleep time period,compare automatically, without user input and during the pre-sleep time period, each of the predetermined number of consecutive monitored analyte level readings during the pre-sleep time period to the predetermined target level,in response to one or more of the predetermined number of consecutive analyte related level readings is greater than the predetermined target analyte level, exit the pre-sleep mode and wait for a subsequent pre-sleep time period, andin response to all of the predetermined number of consecutive monitored analyte related level readings being equal to or lower than the predetermined target level, automatically generate and output, without user input and during the pre-sleep time period, one or more of an alert and a notification to the user.
  • 13. The system of claim 12, wherein the analyte monitoring system is configured to wirelessly communicate with the medication delivery unit over a radio frequency (RF) communication link, a Bluetooth communication link, an Infrared communication link, or a local area network (LAN).
RELATED APPLICATION

The present application is a continuation of U.S. patent application Ser. No. 11/365,168 filed Feb. 28, 2006, now U.S. Pat. No. 7,981,034, the disclosure of which is incorporated herein by reference for all purposes.

US Referenced Citations (659)
Number Name Date Kind
3923060 Ellinwood, Jr. Dec 1975 A
4003379 Ellinwood, Jr. Jan 1977 A
4055175 Clemens et al. Oct 1977 A
4076182 Stites Feb 1978 A
4151845 Clemens May 1979 A
4360019 Portner et al. Nov 1982 A
4387863 Edmonston Jun 1983 A
4441968 Emmer et al. Apr 1984 A
4464170 Clemens et al. Aug 1984 A
4601707 Albisser et al. Jul 1986 A
4629145 Graham Dec 1986 A
4667896 Frey et al. May 1987 A
4685903 Cable et al. Aug 1987 A
4725010 Lothamer Feb 1988 A
4802638 Burger et al. Feb 1989 A
4847785 Stephens Jul 1989 A
4886505 Haynes et al. Dec 1989 A
5019096 Fox, Jr. et al. May 1991 A
5051688 Murase et al. Sep 1991 A
5067665 LoStracco et al. Nov 1991 A
5097834 Skrabal Mar 1992 A
5109577 Young May 1992 A
5135004 Adams et al. Aug 1992 A
5202261 Musho et al. Apr 1993 A
5209414 Clemens et al. May 1993 A
5210778 Massart May 1993 A
5228449 Christ et al. Jul 1993 A
5231988 Wernicke et al. Aug 1993 A
5236143 Dragon Aug 1993 A
5237993 Skrabal Aug 1993 A
5250023 Lee Oct 1993 A
5251126 Kahn et al. Oct 1993 A
5266359 Spielvogel Nov 1993 A
5344411 Domb et al. Sep 1994 A
5349852 Kamen et al. Sep 1994 A
5384547 Lynk et al. Jan 1995 A
5390671 Lord et al. Feb 1995 A
5394877 Orr et al. Mar 1995 A
5402780 Faasse, Jr. Apr 1995 A
5410326 Goldstein Apr 1995 A
5437656 Shikani et al. Aug 1995 A
5451424 Solomon et al. Sep 1995 A
5526844 Kamen et al. Jun 1996 A
5533389 Kamen et al. Jul 1996 A
5552997 Massart Sep 1996 A
5558640 Pfeiler Sep 1996 A
5569186 Lord et al. Oct 1996 A
5593852 Heller et al. Jan 1997 A
5599321 Conway et al. Feb 1997 A
5601435 Quy Feb 1997 A
5609575 Larson et al. Mar 1997 A
5662904 Ferguson et al. Sep 1997 A
5673691 Abrams et al. Oct 1997 A
5726646 Bane et al. Mar 1998 A
5748103 Flach et al. May 1998 A
5807375 Gross et al. Sep 1998 A
5822715 Worthington et al. Oct 1998 A
5833603 Kovacs et al. Nov 1998 A
5899855 Brown May 1999 A
5918603 Brown Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5954643 VanAntwerp et al. Sep 1999 A
5956501 Brown Sep 1999 A
5975120 Novosel Nov 1999 A
5987353 Khatchatrian et al. Nov 1999 A
5988545 King Nov 1999 A
6028413 Brockmann Feb 2000 A
6052565 Ishikura et al. Apr 2000 A
6066243 Anderson et al. May 2000 A
6083248 Thompson Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6093146 Filangeri Jul 2000 A
6096364 Bok et al. Aug 2000 A
6129823 Hughes et al. Oct 2000 A
6134461 Say et al. Oct 2000 A
6141573 Kurnik et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6175752 Say et al. Jan 2001 B1
6233539 Brown May 2001 B1
6247664 Petersen et al. Jun 2001 B1
6248067 Causey et al. Jun 2001 B1
6254586 Mann et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6284478 Heller et al. Sep 2001 B1
6314317 Willis Nov 2001 B1
6359270 Bridson Mar 2002 B1
6379301 Worthington et al. Apr 2002 B1
6387048 Schulman et al. May 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6471689 Joseph et al. Oct 2002 B1
6482156 Iliff Nov 2002 B2
6484045 Holker et al. Nov 2002 B1
6485461 Mason et al. Nov 2002 B1
6493069 Nagashimada et al. Dec 2002 B1
6544212 Galley et al. Apr 2003 B2
6546268 Ishikawa et al. Apr 2003 B1
6554798 Mann et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6571128 Lebel et al. May 2003 B2
6572542 Houben et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6585644 Lebel et al. Jul 2003 B2
6598824 Schmidt Jul 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6641533 Causey, III et al. Nov 2003 B2
6641562 Peterson Nov 2003 B1
6648821 Lebel et al. Nov 2003 B2
6656114 Poulsen et al. Dec 2003 B1
6656158 Mahoney et al. Dec 2003 B2
6656159 Flaherty Dec 2003 B2
6658396 Tang et al. Dec 2003 B1
6659948 Lebel et al. Dec 2003 B2
6668196 Villegas et al. Dec 2003 B1
6669669 Flaherty et al. Dec 2003 B2
6676816 Mao et al. Jan 2004 B2
6687546 Lebel et al. Feb 2004 B2
6692457 Flaherty Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6699218 Flaherty et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6723072 Mahoney et al. Apr 2004 B2
6733446 Lebel et al. May 2004 B2
6736797 Larsen et al. May 2004 B1
6740059 Flaherty May 2004 B2
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6744350 Blomquist Jun 2004 B2
6749587 Flaherty Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6768425 Flaherty et al. Jul 2004 B2
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6830558 Flaherty et al. Dec 2004 B2
6837858 Cunningham et al. Jan 2005 B2
6850790 Berner et al. Feb 2005 B2
6852104 Blomquist Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6882940 Potts et al. Apr 2005 B2
6887270 Miller et al. May 2005 B2
6896666 Kochamaba et al. May 2005 B2
6902207 Lickliter Jun 2005 B2
6916159 Rush et al. Jul 2005 B2
6923763 Kovatchev et al. Aug 2005 B1
6931327 Goode, Jr. et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6946446 Ma et al. Sep 2005 B2
6950708 Bowman IV et al. Sep 2005 B2
6958705 Lebel et al. Oct 2005 B2
6960192 Flaherty et al. Nov 2005 B1
6974437 Lebel et al. Dec 2005 B2
6999854 Roth Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7015817 Copley et al. Mar 2006 B2
7016713 Gardner et al. Mar 2006 B2
7018360 Flaherty et al. Mar 2006 B2
7024245 Lebel et al. Apr 2006 B2
7027848 Robinson et al. Apr 2006 B2
7027931 Jones et al. Apr 2006 B1
7029455 Flaherty Apr 2006 B2
7034677 Steinthal et al. Apr 2006 B2
7041468 Drucker et al. May 2006 B2
7046153 Oja et al. May 2006 B2
7052251 Nason et al. May 2006 B2
7052472 Miller et al. May 2006 B1
7066922 Angel et al. Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7077328 Krishnaswamy et al. Jul 2006 B2
7079977 Osorio et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7092891 Maus et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7133717 Coston et al. Nov 2006 B2
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7137964 Flaherty Nov 2006 B2
7144384 Gorman et al. Dec 2006 B2
7153265 Vachon Dec 2006 B2
7155112 Uno et al. Dec 2006 B2
7155290 Von Arx et al. Dec 2006 B2
7167818 Brown Jan 2007 B2
7171274 Starkweather et al. Jan 2007 B2
7171312 Steinthal et al. Jan 2007 B2
7179226 Crothall et al. Feb 2007 B2
7192450 Brauker et al. Mar 2007 B2
7207974 Safabash et al. Apr 2007 B2
7216665 Sims, Jr. May 2007 B1
7226278 Nason et al. Jun 2007 B2
7226442 Sheppard et al. Jun 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7229042 Thebault et al. Jun 2007 B2
7267665 Steil et al. Sep 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7286894 Grant et al. Oct 2007 B1
7303549 Flaherty et al. Dec 2007 B2
7310544 Brister et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7329239 Safabash et al. Feb 2008 B2
7335294 Heller et al. Feb 2008 B2
7354420 Steil et al. Apr 2008 B2
7364568 Angel et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7381184 Funderburk et al. Jun 2008 B2
7402153 Steil et al. Jul 2008 B2
7424318 Brister et al. Sep 2008 B2
7429258 Angel et al. Sep 2008 B2
7455663 Bikovsky Nov 2008 B2
7460898 Brister et al. Dec 2008 B2
7462264 Heller et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7483736 Marchitto et al. Jan 2009 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7499002 Blasko et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7547281 Hayes et al. Jun 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7630748 Budiman Dec 2009 B2
7632228 Brauker et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7645263 Angel et al. Jan 2010 B2
7651596 Petisce et al. Jan 2010 B2
7651845 Doyle, III et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7697967 Stafford Apr 2010 B2
7699775 Desai et al. Apr 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7727147 Osorio et al. Jun 2010 B1
7731657 Stafford Jun 2010 B2
7736344 Moberg et al. Jun 2010 B2
7763042 Iio et al. Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7783333 Brister et al. Aug 2010 B2
7792562 Shults et al. Sep 2010 B2
7811231 Jin et al. Oct 2010 B2
7813809 Strother et al. Oct 2010 B2
7822454 Alden et al. Oct 2010 B1
7826981 Goode, Jr. et al. Nov 2010 B2
7889069 Fifolt et al. Feb 2011 B2
7899511 Shults et al. Mar 2011 B2
7899545 John Mar 2011 B2
7905833 Brister et al. Mar 2011 B2
7914450 Goode, Jr. et al. Mar 2011 B2
7938797 Estes May 2011 B2
7941200 Weinert et al. May 2011 B2
7946985 Mastrototaro et al. May 2011 B2
7970448 Shults et al. Jun 2011 B2
7972296 Braig et al. Jul 2011 B2
7974672 Shults et al. Jul 2011 B2
7976466 Ward et al. Jul 2011 B2
7978063 Baldus et al. Jul 2011 B2
8010174 Goode et al. Aug 2011 B2
8010256 Oowada Aug 2011 B2
RE43316 Brown et al. Apr 2012 E
8192394 Estes et al. Jun 2012 B2
8282549 Brauker et al. Oct 2012 B2
8597570 Terashima et al. Dec 2013 B2
20010020124 Tamada Sep 2001 A1
20010037366 Webb et al. Nov 2001 A1
20010047604 Valiulis Dec 2001 A1
20020016719 Nemeth et al. Feb 2002 A1
20020054320 Ogino May 2002 A1
20020095076 Krausman et al. Jul 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020107476 Mann et al. Aug 2002 A1
20020133107 Darcey Sep 2002 A1
20020147135 Schnell Oct 2002 A1
20020169635 Shillingburg Nov 2002 A1
20020193679 Malave et al. Dec 2002 A1
20030021729 Moller et al. Jan 2003 A1
20030023317 Brauker et al. Jan 2003 A1
20030028089 Galley et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030040661 Abraham-Fuchs et al. Feb 2003 A1
20030060692 Ruchti et al. Mar 2003 A1
20030060753 Starkweather et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030069541 Gillis et al. Apr 2003 A1
20030073414 Capps Apr 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030114836 Estes et al. Jun 2003 A1
20030114897 Von Arx et al. Jun 2003 A1
20030122021 McConnell et al. Jul 2003 A1
20030130616 Steil et al. Jul 2003 A1
20030144362 Utterberg et al. Jul 2003 A1
20030147515 Kai et al. Aug 2003 A1
20030175323 Utterberg et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030212579 Brown et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20040011671 Shults et al. Jan 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040063435 Sakamoto et al. Apr 2004 A1
20040099529 Mao et al. May 2004 A1
20040122530 Hansen et al. Jun 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040147872 Thompson Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040155770 Nelson et al. Aug 2004 A1
20040162521 Bengtsson Aug 2004 A1
20040167464 Ireland et al. Aug 2004 A1
20040172307 Gruber Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040193025 Steil et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204868 Maynard et al. Oct 2004 A1
20040210180 Altman Oct 2004 A1
20040210208 Paul et al. Oct 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040260478 Schwamm Dec 2004 A1
20050001024 Kusaka et al. Jan 2005 A1
20050004439 Shin et al. Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050027180 Goode, Jr. et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050038674 Braig et al. Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050049179 Davidson et al. Mar 2005 A1
20050060199 Siegel Mar 2005 A1
20050065464 Talbot et al. Mar 2005 A1
20050070774 Addison et al. Mar 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050096511 Fox et al. May 2005 A1
20050096516 Soykan et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050113653 Fox et al. May 2005 A1
20050113886 Fischell et al. May 2005 A1
20050116683 Cheng et al. Jun 2005 A1
20050119540 Potts et al. Jun 2005 A1
20050137530 Campbell et al. Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050171512 Flaherty Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050181010 Hunter et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050182358 Veit et al. Aug 2005 A1
20050182366 Vogt et al. Aug 2005 A1
20050187442 Cho et al. Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050203461 Flaherty et al. Sep 2005 A1
20050204134 Von Arx et al. Sep 2005 A1
20050214892 Kovatchev et al. Sep 2005 A1
20050238507 DiIanni et al. Oct 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050251033 Scarantino et al. Nov 2005 A1
20050261667 Crank et al. Nov 2005 A1
20050277872 Colby et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20060001551 Kraft et al. Jan 2006 A1
20060004603 Peterka et al. Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060017923 Ruchti et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060020300 Nghiem et al. Jan 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060041229 Garibotto et al. Feb 2006 A1
20060065772 Grant et al. Mar 2006 A1
20060079740 Silver et al. Apr 2006 A1
20060091006 Wang et al. May 2006 A1
20060095020 Casas et al. May 2006 A1
20060142651 Brister et al. Jun 2006 A1
20060154642 Scannell Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173406 Hayes et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060173712 Joubert Aug 2006 A1
20060178633 Garibotto et al. Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060193375 Lee et al. Aug 2006 A1
20060202805 Schulman et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060224141 Rush et al. Oct 2006 A1
20060226985 Goodnow et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060258929 Goode et al. Nov 2006 A1
20060272652 Stocker et al. Dec 2006 A1
20060282290 Flaherty et al. Dec 2006 A1
20060290496 Peeters et al. Dec 2006 A1
20060293577 Morrison et al. Dec 2006 A1
20060293607 Alt et al. Dec 2006 A1
20070016381 Kamath et al. Jan 2007 A1
20070016449 Cohen et al. Jan 2007 A1
20070017983 Frank et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070032717 Brister et al. Feb 2007 A1
20070033074 Nitzan et al. Feb 2007 A1
20070060869 Tolle et al. Mar 2007 A1
20070060870 Tolle et al. Mar 2007 A1
20070060871 Istoc et al. Mar 2007 A1
20070060979 Strother et al. Mar 2007 A1
20070066956 Finkel Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070078818 Zvitz et al. Apr 2007 A1
20070093786 Goldsmith et al. Apr 2007 A1
20070100222 Mastrototaro et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070118405 Campbell et al. May 2007 A1
20070128682 Rosman et al. Jun 2007 A1
20070129621 Kellogg et al. Jun 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070191702 Yodfat et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070208246 Brauker et al. Sep 2007 A1
20070213657 Jennewine et al. Sep 2007 A1
20070219480 Kamen et al. Sep 2007 A1
20070219597 Kamen et al. Sep 2007 A1
20070228071 Kamen et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070255114 Ackermann et al. Nov 2007 A1
20070255321 Gerber et al. Nov 2007 A1
20070255348 Holtzclaw Nov 2007 A1
20070299409 Whitbourne et al. Dec 2007 A1
20080004515 Jennewine et al. Jan 2008 A1
20080004601 Jennewine et al. Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080018480 Sham Jan 2008 A1
20080021436 Wolpert et al. Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080033268 Stafford Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080058773 John Mar 2008 A1
20080060955 Goodnow Mar 2008 A1
20080061961 John Mar 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080092638 Brenneman et al. Apr 2008 A1
20080093447 Johnson et al. Apr 2008 A1
20080097246 Stafford Apr 2008 A1
20080108942 Brister et al. May 2008 A1
20080114228 McCluskey et al. May 2008 A1
20080139910 Mastrototaro et al. Jun 2008 A1
20080177149 Weinert et al. Jul 2008 A1
20080183061 Goode, Jr. et al. Jul 2008 A1
20080183399 Goode, Jr. et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080189051 Goode, Jr. et al. Aug 2008 A1
20080194934 Ray et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode, Jr. et al. Aug 2008 A1
20080194937 Goode, Jr. et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode, Jr. et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080228055 Sher Sep 2008 A1
20080234663 Yodfat et al. Sep 2008 A1
20080234943 Ray et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080242963 Essenpreis et al. Oct 2008 A1
20080254544 Modzelewski et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080269687 Chong et al. Oct 2008 A1
20080269714 Mastrototaro et al. Oct 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300572 Rankers et al. Dec 2008 A1
20080306368 Goode, Jr. et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080319085 Wright et al. Dec 2008 A1
20090005666 Shin et al. Jan 2009 A1
20090012379 Goode, Jr. et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090040022 Finkenzeller Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090048503 Dalal et al. Feb 2009 A1
20090054745 Jennewine et al. Feb 2009 A1
20090054747 Fennell Feb 2009 A1
20090054748 Feldman Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090069650 Jennewine et al. Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076359 Peyser Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090082693 Stafford Mar 2009 A1
20090085873 Betts et al. Apr 2009 A1
20090088614 Taub Apr 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090102678 Mazza et al. Apr 2009 A1
20090105569 Stafford Apr 2009 A1
20090105570 Sloan et al. Apr 2009 A1
20090105571 Fennell et al. Apr 2009 A1
20090124877 Goode, Jr. et al. May 2009 A1
20090124878 Goode, Jr. et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204340 Feldman et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090216100 Ebner et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090247931 Damgaard-Sorensen Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090292188 Hoss et al. Nov 2009 A1
20090298182 Schulat et al. Dec 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100010324 Brauker et al. Jan 2010 A1
20100010329 Taub et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100105999 Dixon et al. Apr 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100141656 Krieftewirth Jun 2010 A1
20100152554 Steine et al. Jun 2010 A1
20100160759 Celentano et al. Jun 2010 A1
20100168538 Keenan et al. Jul 2010 A1
20100174266 Estes Jul 2010 A1
20100185175 Kamen et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100198142 Sloan et al. Aug 2010 A1
20100213080 Celentano et al. Aug 2010 A1
20100240975 Goode et al. Sep 2010 A1
20100274111 Say et al. Oct 2010 A1
20100292634 Kircher et al. Nov 2010 A1
20100313105 Nekoomaram et al. Dec 2010 A1
20110031986 Bhat et al. Feb 2011 A1
20110077490 Simpson et al. Mar 2011 A1
20110148905 Simmons et al. Jun 2011 A1
20110208027 Wagner et al. Aug 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110287528 Fern et al. Nov 2011 A1
20120165640 Galley et al. Jun 2012 A1
20130235166 Jones et al. Sep 2013 A1
Foreign Referenced Citations (6)
Number Date Country
WO-0152935 Jul 2001 WO
WO-0154753 Aug 2001 WO
WO-2006037109 Apr 2006 WO
WO-2007101260 Sep 2007 WO
WO-2008003003 Jan 2008 WO
WO-2008005780 Jan 2008 WO
Non-Patent Literature Citations (17)
Entry
PCT Application No. PCT/US2007/062999, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority mailed Sep. 12, 2008.
PCT Application No. PCT/US2007/062999, International Search Report and Written Opinion of the International Searching Authority mailed May 22, 2008.
U.S. Appl. No. 11/365,168, Notice of Allowance mailed Mar. 25, 2011.
U.S. Appl. No. 11/365,168, Office Action mailed Aug. 5, 2010.
U.S. Appl. No. 11/365,168, Office Action mailed Jan. 18, 2011.
Bremer, T. M., et al., “Benchmark Data from the Literature for Evaluation of New Glucose Sensing Technologies”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 409-418.
Cheyne, E. H., et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers”, Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613.
Diem, P., et al., “Clinical Performance of a Continuous Viscometric Affinity Sensor for Glucose”, Diabetes Technology & Therapeutics, vol. 6, 2004, pp. 790-799.
Garg, S., et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, vol. 29, No. 1, 2006, pp. 44-50.
Kondepati, V., et al., “Recent Progress in Analytical Instrumentation for Glycemic Control in Diabetic and Critically Ill Patients”, Analytical Bioanalytical Chemistry, vol. 388, 2007, pp. 545-563.
Kuure-Kinsey, M., et al., “A Dual-Rate Kalman Filter for Continuous Glucose Monitoring”, Proceedings of the 28th IEEE, EMBS Annual International Conference, New York City, 2006, pp. 63-66.
Li, Y., et al., “In Vivo Release From a Drug Delivery MEMS Device”, Journal of Controlled Release, vol. 100, 2004, 99. 211-219.
Lodwig, V., et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria”, Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587.
Morbiducci, U, et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation”, Clinical Science, vol. 112, 2007, pp. 257-263.
Mougiakakou, et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE, 2005, pp. 298-301.
Panteleon, A. E., et al., “The Role of the Independent Variable to Glucose Sensor Calibration”, Diabetes Technology & Therapeutics, vol. 5, No. 3, 2003, pp. 401-410.
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549.
Related Publications (1)
Number Date Country
20110275920 A1 Nov 2011 US
Continuations (1)
Number Date Country
Parent 11365168 Feb 2006 US
Child 13185468 US