As used herein, the term “molten metal” means any metal or combination of metals in liquid form, such as aluminum, copper, iron, zinc and alloys thereof. The term “gas” means any gas or combination of gases, including argon, nitrogen, chlorine, fluorine, Freon, and helium, which are released into molten metal.
Known molten-metal pumps include a pump base (also called a housing or casing), one or more inlets (an inlet being an opening in the housing to allow molten metal to enter a pump chamber), a pump chamber of any suitable configuration, which is an open area formed within the housing, and a discharge, which is a channel or conduit of any structure or type communicating with the pump chamber (in an axial pump the chamber and discharge may be the same structure or different areas of the same structure) leading from the pump chamber to an outlet, which is an opening formed in the exterior of the housing through which molten metal exits the casing. An impeller, also called a rotor, is mounted in the pump chamber and is connected to a drive system. The drive shaft is typically an impeller shaft connected to one end of a motor shaft, the other end of the drive shaft being connected to an impeller. Often, the impeller (or rotor) shaft is comprised of graphite and/or ceramic, the motor shaft is comprised of steel, and the two are connected by a coupling. As the motor turns the drive shaft, the drive shaft turns the impeller and the impeller pushes molten metal out of the pump chamber, through the discharge, out of the outlet and into the molten metal bath. Most molten metal pumps are gravity fed, wherein gravity forces molten metal through the inlet and into the pump chamber as the impeller pushes molten metal out of the pump chamber. Other molten metal pumps do not include a base or support posts and are sized to fit into a structure by which molten metal is pumped. Most pumps have a metal platform, or super structure, that is either supported by a plurality of support posts attached to the pump base, or unsupported if there is no base. The motor is positioned on the superstructure, if a superstructure is used.
This application incorporates by reference the portions of the following publications that are not inconsistent with this disclosure: U.S. Pat. No. 4,598,899, issued Jul. 8, 1986, to Paul V. Cooper, U.S. Pat. No. 5,203,681, issued Apr. 20, 1993, to Paul V. Cooper, U.S. Pat. No. 5,308,045, issued May 3, 1994, by Paul V. Cooper, U.S. Pat. No. 5,662,725, issued Sep. 2, 1997, by Paul V. Cooper, U.S. Pat. No. 5,678,807, issued Oct. 21, 1997, by Paul V. Cooper, U.S. Pat. No. 6,027,685, issued Feb. 22, 2000, by Paul V. Cooper, U.S. Pat. No. 6,124,523, issued Sep. 26, 2000, by Paul V. Cooper, U.S. Pat. No. 6,303,074, issued Oct. 16, 2001, by Paul V. Cooper, U.S. Pat. No. 6,689,310, issued Feb. 10, 2004, by Paul V. Cooper, U.S. Pat. No. 6,723,276, issued Apr. 20, 2004, by Paul V. Cooper, U.S. Pat. No. 7,402,276, issued Jul. 22, 2008, by Paul V. Cooper, U.S. Pat. No. 7,507,367, issued Mar. 24, 2009, by Paul V. Cooper, U.S. Pat. No. 7,906,068, issued Mar. 15, 2011, by Paul V. Cooper, U.S. Pat. No. 8,075,837, issued Dec. 13, 2011, by Paul V. Cooper, U.S. Pat. No. 8,110,141, issued Feb. 7, 2012, by Paul V. Cooper, U.S. Pat. No. 8,178,037, issued May 15, 2012, by Paul V. Cooper, U.S. Pat. No. 8,361,379, issued Jan. 29, 2013, by Paul V. Cooper, U.S. Pat. No. 8,366,993, issued Feb. 5, 2013, by Paul V. Cooper, U.S. Pat. No. 8,409,495, issued Apr. 2, 2013, by Paul V. Cooper, U.S. Pat. No. 8,440,135, issued May 15, 2013, by Paul V. Cooper, U.S. Pat. No. 8,444,911, issued May 21, 2013, by Paul V. Cooper, U.S. Pat. No. 8,475,708, issued Jul. 2, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 12/895,796, filed Sep. 30, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 12/877,988, filed Sep. 8, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 12/853,238, filed Aug. 9, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 12/880,027, filed Sep. 10, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 13/752,312, filed Jan. 28, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/756,468, filed Jan. 31, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/791,889, filed Mar. 8, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/791,952, filed Mar. 9, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/841,594, filed Mar. 15, 2013, by Paul V. Cooper, and U.S. patent application Ser. No. 14/027,237, filed Sep. 15, 2013, by Paul V. Cooper, U.S. Pat. No. 8,535,603 entitled ROTARY DEGASSER AND ROTOR THEREFOR, U.S. Pat. No. 8,613,884 entitled LAUNDER TRANSFER INSERT AND SYSTEM, U.S. Pat. No. 8,714,914 entitled MOLTEN METAL PUMP FILTER, U.S. Pat. No. 8,753,563 entitled SYSTEM AND METHOD FOR DEGASSING MOLTEN METAL, U.S. Pat. No. 9,011,761 entitled LADLE WITH TRANSFER CONDUIT, U.S. Pat. No. 9,017,597 entitled TRANSFERRING MOLTEN METAL USING NON-GRAVITY ASSIST LAUNDER, U.S. Pat. No. 9,034,244 entitled GAS-TRANSFER FOOT, U.S. Pat. No. 9,080,577 entitled SHAFT AND POST TENSIONING DEVICE, U.S. Pat. No. 9,108,244 entitled IMMERSION HEATHER FOR MOLTEN METAL, U.S. Pat. No. 9,156,087 entitled MOLTEN METAL TRANSFER SYSTEM AND ROTOR, U.S. Pat. No. 9,205,490 entitled TRANSFER WELL SYSTEM AND METHOD FOR MAKING SAME, U.S. Pat. No. 9,328,615 entitled ROTARY DEGASSERS AND COMPONENTS THEREFOR, U.S. Pat. No. 9,377,028 entitled TENSIONING DEVICE EXTENDING BEYOND COMPONENT, U.S. Pat. No. 9,382,599 entitled ROTARY DEGASSER AND ROTOR THEREFOR, U.S. Pat. No. 9,383,140 entitled TRANSFERRING MOLTEN METAL FROM ONE STRUCTURE TO ANOTHER, U.S. Pat. No. 9,409,232 entitled MOLTEN METAL TRANSFER VESSEL AND METHOD OF CONSTRUCTION, U.S. Pat. No. 9,410,744 entitled VESSEL TRANSFER INSERT AND SYSTEM, U.S. Pat. No. 9,422,942 entitled TENSION DEVICE WITH INTERNAL PASSAGE, U.S. Pat. No. 9,435,343 entitled GAS-TRANSFER FOOT, U.S. Pat. No. 9,464,636 entitled TENSION DEVICE GRAPHITE COMPONENT USED IN MOLTEN METAL, U.S. Pat. No. 9,470,239 THREADED TENSIONING DEVICE, U.S. Pat. No. 9,481,035 entitled IMMERSION HEATER FOR MOLTEN METAL, U.S. Pat. No. 9,482,469 entitled VESSEL TRANSFER INSERT AND SYSTEM, U.S. Pat. No. 9,506,129 entitled ROTARY DEGASSER AND ROTOR THEREFOR, U.S. Pat. No. 9,566,645 entitled MOLTEN METAL TRANSFER SYSTEM AND ROTOR, U.S. Pat. No. 9,581,388 entitled VESSEL TRANSFER INSERT AND SYSTEM, U.S. Pat. No. 9,587,883 entitled LADLE WITH TRANSFER CONDUIT, U.S. Pat. No. 9,643,247 entitled MOLTEN METAL TRANSFER AND DEGASSING SYSTEM, U.S. Pat. No. 9,657,578 entitled ROTARY DEGASSERS AND COMPONENTS THEREFOR, U.S. Pat. No. 9,855,600 entitled MOLTEN METAL TRANSFER SYSTEM AND ROTOR, U.S. Pat. No. 9,862,026 entitled METHOD OF FORMING TRANSFER WELL, U.S. Pat. No. 9,903,383 entitled MOLTEN METAL ROTOR WITH HARDENED TOP, U.S. Pat. No. 9,909,808 entitled SYSTEM AND METHOD FOR DEGASSING MOLTEN METAL, U.S. Pat. No. 9,925,587 entitled METHOD OF TRANSFERRING MOLTEN METAL FROM A VESSEL, entitled U.S. Pat. No. 9,982,945 MOLTEN METAL TRANSFER VESSEL AND METHOD OF CONSTRUCTION, U.S. Pat. No. 10,052,688 entitled TRANSFER PUMP LAUNDER SYSTEM, U.S. Pat. No. 10,072,891 entitled TRANSFERRING MOLTEN METAL USING NON-GRAVITY ASSIST LAUNDER, U.S. Pat. No. 10,126,058 entitled MOLTEN METAL TRANSFERRING VESSEL, U.S. Pat. No. 10,126,059 entitled CONTROLLED MOLTEN METAL FLOW FROM TRANSFER VESSEL, U.S. Pat. No. 10,138,892 entitled ROTOR AND ROTOR SHAFT FOR MOLTEN METAL, U.S. Pat. No. 10,195,664 entitled MULTI-STAGE IMPELLER FOR MOLTEN METAL, U.S. Pat. No. 10,267,314 entitled TENSIONED SUPPORT SHAFT AND OTHER MOLTEN METAL DEVICES, U.S. Pat. No. 10,274,256 entitled VESSEL TRANSFER SYSTEMS AND DEVICES, U.S. Pat. No. 10,302,361 entitled TRANSFER VESSEL FOR MOLTEN METAL PUMPING DEVICE, U.S. Pat. No. 10,309,725 entitled IMMERSION HEATER FOR MOLTEN METAL, U.S. Pat. No. 10,307,821 entitled TRANSFER PUMP LAUNDER SYSTEM, U.S. Pat. No. 10,322,451 entitled TRANSFER PUMP LAUNDER SYSTEM, U.S. Pat. No. 10,345,045 entitled VESSEL TRANSFER INSERT AND SYSTEM, U.S. Pat. No. 10,352,620 entitled TRANSFERRING MOLTEN METAL FROM ONE STRUCTURE TO ANOTHER, U.S. Pat. No. 10,428,821 entitled QUICK SUBMERGENCE MOLTEN METAL PUMP, U.S. Pat. No. 10,458,708 entitled TRANSFERRING MOLTEN METAL FROM ONE STRUCTURE TO ANOTHER, U.S. Pat. No. 10,465,688 entitled COUPLING AND ROTOR SHAFT FOR MOLTEN METAL DEVICES, U.S. Pat. No. 10,562,097 entitled MOLTEN METAL TRANSFER SYSTEM AND ROTOR, U.S. Pat. No. 10,570,745 entitled ROTARY DEGASSERS AND COMPONENTS THEREFOR, U.S. Pat. No. 10,641,279 entitled MOLTEN METAL ROTOR WITH HARDENED TIP, U.S. Pat. No. 10,641,270 entitled TENSIONED SUPPORT SHAFT AND OTHER MOLTEN METAL DEVICES, and U.S. patent application Ser. No. 16/877,267 entitled MOLTEN METAL CONTROLLED FLOW LAUNDER, U.S. patent application Ser. No. 16/877,364 entitled MOLTEN METAL TRANSFER SYSTEM AND METHOD, U.S. patent application Ser. No. 16/877,296 entitled SYSTEM AND METHOD TO FEED MOLD WITH MOLTEN METAL, U.S. patent application Ser. No. 16/877,182 (Now U.S. Pat. No. 11,358,216) entitled SYSTEM FOR MELTING SOLID METAL, and U.S. patent application Ser. No. 16/877,219 (Now U.S. Pat. No. 11,358,217) entitled METHOD FOR MELTING SOLID METAL, all of which were filed on the same date as this Application.
Three basic types of pumps for pumping molten metal, such as molten aluminum, are utilized: circulation pumps, transfer pumps and gas-release pumps. Circulation pumps are used to circulate the molten metal within a bath, thereby generally equalizing the temperature of the molten metal. Circulation pumps may be used in any vessel, such as in a reverbatory furnace having an external well. The well is usually an extension of the charging well, in which scrap metal is charged (i.e., added).
Standard transfer pumps are generally used to transfer molten metal from one structure to another structure such as a ladle or another furnace. A standard transfer pump has a riser tube connected to a pump discharge and supported by the superstructure. As molten metal is pumped it is pushed up the riser tube (sometimes called a metal-transfer conduit) and out of the riser tube, which generally has an elbow at its upper end, so molten metal is released into a different vessel from which the pump is positioned.
Gas-release pumps, such as gas-injection pumps, circulate molten metal while introducing a gas into the molten metal. In the purification of molten metals, particularly aluminum, it is frequently desired to remove dissolved gases such as hydrogen, or dissolved metals, such as magnesium. As is known by those skilled in the art, the removing of dissolved gas is known as “degassing” while the removal of magnesium is known as “demagging.” Gas-release pumps may be used for either of both of these purposes or for any other application for which it is desirable to introduce gas into molten metal.
Gas-release pumps generally include a gas-transfer conduit having a first end that is connected to a gas source and a second end submerged in the molten metal bath. Gas is introduced into the first end and is released from the second end into the molten metal. The gas may be released downstream of the pump chamber into either the pump discharge or a metal-transfer conduit extending from the discharge, or into a stream of molten metal exiting either the discharge or the metal-transfer conduit. Alternatively, gas may be released into the pump chamber or upstream of the pump chamber at a position where molten metal enters the pump chamber. The gas may also be released into any suitable location in a molten metal bath.
Molten metal pump casings and rotors often employ a bearing system comprising ceramic rings wherein there are one or more rings on the rotor that align with rings in the pump chamber (such as rings at the inlet and outlet) when the rotor is placed in the pump chamber. The purpose of the bearing system is to reduce damage to the soft, graphite components, particularly the rotor and pump base, during pump operation.
Generally, a degasser (also called a rotary degasser) includes (1) an impeller shaft having a first end, a second end and a passage for transferring gas, (2) an impeller, and (3) a drive source for rotating the impeller shaft and the impeller. The first end of the impeller shaft is connected to the drive source and to a gas source and the second end is connected to the impeller.
Generally a scrap melter includes an impeller affixed to an end of a drive shaft, and a drive source attached to the other end of the drive shaft for rotating the shaft and the impeller. The movement of the impeller draws molten metal and scrap metal downward into the molten metal bath in order to melt the scrap. A circulation pump is preferably used in conjunction with the scrap melter to circulate the molten metal in order to maintain a relatively constant temperature within the molten metal.
The materials forming the components that contact the molten metal bath should remain relatively stable in the bath. Structural refractory materials, such as graphite or ceramics, that are resistant to disintegration by corrosive attack from the molten metal may be used. As used herein “ceramics” or “ceramic” refers to any oxidized metal (including silicon) or carbon-based material, excluding graphite, or other ceramic material capable of being used in the environment of a molten metal bath. “Graphite” means any type of graphite, whether or not chemically treated. Graphite is particularly suitable for being formed into pump components because it is (a) soft and relatively easy to machine, (b) not as brittle as ceramics and less prone to breakage, and (c) less expensive than ceramics.
Ceramic, however, is more resistant to corrosion by molten aluminum than graphite. It would therefore be advantageous to develop vertical members used in a molten metal device that are comprised of ceramic, but less costly than solid ceramic members, and less prone to breakage than normal ceramic.
A smart molten metal pump system and method is one that automatically controls the operating speed of the pump rather than requiring an operator to control the speed. An operator can, however, override or turn off the system and manually control the pumping if desired.
The system includes a pump, a controller for controlling the speed of the pump, and one or more of: (1) one or more thermocouples (which could be any device for measuring temperature), (2) one or more devices (referred to herein sometimes as “depth device”), such as a laser, to measure the depth of molten metal in one or more structures, and (3) one or more vibration sensors, such as an accelerometer, to measure vibration. The controller receives input (or “communications”) from the thermocouple(s) about the temperature of the molten metal at one or more locations, and/or from the depth device(s) about the depth of the molten metal at one or more locations, and/or from the vibration sensor about the vibration of the pump, or of one or more pump components. The controller may also receive inputs about one or more of: the pump speed, load, length of time the pump has been operating, prior maintenance performed on the pump, and the amount of molten metal in structures, such as a launder, mold, or other vessel, adjacent or in communication with the vessel in which the pump is positioned. The controller analyzes the one or more inputs to vary the speed of the pump, to turn the pump off, and/or send messages to a human monitor or operator.
The thermocouple(s) is preferably positioned at a location under the surface of the molten metal in the vessel in which the molten metal pump is positioned. The thermocouple should not be directly exposed to the molten metal, but should still accurately measure the temperature of the molten metal. The thermocouple may be positioned in a support post, pump base, rotor, or rotor shaft of the molten metal pump and housed so that it is not directly exposed to molten metal. Alternatively, the thermocouple could be positioned remote to the molten metal pump and, regardless of where it is located, communicate through a wired or wireless connection with the controller.
The device to measure the depth of the molten metal may be a laser that is positioned on a superstructure (also called a motor support or platform) of the molten metal pump, which is above the molten metal in the vessel in which the pump is positioned. Alternatively, the laser may be remote to the molten metal pump and, regardless of where it is located, communicate through a wired or wireless connection with the controller.
The vibration sensor may be an accelerometer. The vibration sensor may be positioned at any suitable location, such as in or on a support post, pump base, rotor, rotor shaft, motor shaft, superstructure, or motor of the molten metal pump. The vibration sensor should be positioned or housed so that it is not directly exposed to molten metal. The vibration sensor may communicate through a wired or wireless connection with the controller.
All the pump information can optionally be shared to a user's computer or hand-held electronic device, so the user can view it at his/her office, at home, or any remote location. The pump operational and input information can also be stored over time, for troubleshooting the pump, the vessel in which the pump operates, and/or the operational system and method used at the processing facility. In addition, software can make it possible for the pump manufacturer to remotely access the controller in order to troubleshoot or modify the pump's operation.
The controller may be positioned on the superstructure or be remote to the pump, and communicate through a wired or wireless connection with the pump.
Turning now to the figures, wherein the purpose is to describe an embodiment of this disclosure and not to limit same, a smart molten metal pump system 10 can include a molten metal circulation pump, gas-injection (or gas-release) pump, or transfer pump. Currently, most molten metal pumps use a variable frequency drive (“VFD”) to control the speed of the pump. An operator controls the pump speed based on observing various operating parameters.
A smart pump system 10 as disclosed uses a program logic controller (“PLC” or “controller”) 170 and human machine interface (“HMI”) for additional functionality and feedback. It optionally utilizes SCADA (supervisory control and data acquisition) hardware/software with a GE IFIX 75 tag for remote monitoring of the pump 22, such as from an office at an aluminum processing facility.
A computer 500 for accessing and monitoring data received by the controller 170, and/or controlling the pump 22, may be located at an operator's location, such as at an office at the processing facility. The controller 170 may also be accessible by a hand-held device 510 such as a cellular phone. Further, the controller 170 may also be accessible by a computer 520 at the pump manufacturer's facility. Any suitable wired or wireless connection between a computer 500, hand-held device 510, manufacturer's computer 520, and the controller, such as an Ethernet connection, may be utilized. The pump's operational and input information can also be stored over time for troubleshooting: the pump 22, the vessel in which the pump 22 operates, other vessels, and/or the operational system and method used at the processing facility in which the pump 22 is located.
The measured inputs (or “inputs”) to the controller 170 are one or more of: (1) the molten metal temperature in one or more vessels (such as the furnace pump well, a launder and/or a ladle); (2) the depth (or level) of the molten metal in one or more of the afore-mentioned vessels, which could be measured in any suitable manner, such as by a laser measuring device or float; (3) the vibration of the pump 22, or of a pump component (such as the drive shaft 42 or rotor 100), by a vibration sensor at any suitable location on the pump; (4) the weight of molten metal in a structure, such as a mold or ladle; and (5) pump speed, pump load, and other information. The controller 170 may also include the date the pump 22 was installed and maintenance history for the pump 22.
The controller 170 may control the speed of the pump 22, turn the pump 22 on, turn the pump 22 off, and/or send a signal to an operator, based on one or more of the measured inputs. For example, if shaft 42 breaks, a vibration sensor would detect it and turn the pump 22 off. The controller 170 can also be programmed to develop a relationship between two or more of the inputs, e.g., two or more of: temperature of the molten metal, level of the molten metal, vibration, speed of the pump, and pump load.
When a furnace or other vessel is charging (which means adding solid aluminum to the molten metal in a vessel), or when the molten metal temperature is relatively low or dropping in a vessel, the pump 22 should generally run faster to increase the solid metal melt rate and/or molten metal mixing rate. The pump 22 can be slowed when the measured temperature is proper and/or a vessel is not being charged with solid aluminum. Utilizing a slower speed when a higher speed is not necessary increases the life of pump components such as the rotor shaft 42 and rotor 100.
Some benefits of the teachings of this disclosure are one or more of: (1) increased production from an existing molten metal processing vessel; (2) increased solid metal melting efficiency; (3) more uniform temperature distribution in a vessel; (4) longer component life for the pump; and (5) less time required of a human operator.
Thermocouples in the drawings are designated by the letter “T” followed by a numeral. Vibration sensors are designated by the letter “V” followed by a numeral. Molten metal level detectors are designated by the letter “D” followed by a numeral. Scales are designated by the letter “W” followed by a numeral.
Referring now to the drawings where the purpose is to illustrate and describe non-limiting embodiments of this disclosure,
The components of exemplary pump 22, including rotor 100, that are exposed to the molten metal are preferably formed of structural refractory materials, which are resistant to degradation in the molten metal. Pump 22 can be any structure or device for pumping or otherwise conveying molten metal, and may be an axial pump having an axial, rather than tangential, discharge.
Molten metal pump 22 can be a constant speed pump, but is most preferably a variable speed pump. Its speed can be varied depending on any of one or more of the amount or temperature, of molten metal in a structure, such as a furnace, ladle or launder, or whether solid metal scrap must be melted, or the pump vibration, or of other inputs to controller 170.
Preferred pump 22 has a pump base (also called a “casing” or “housing”) 24 for being submersed in a molten metal bath. Pump base 24 preferably includes a generally nonvolute pump chamber 26, such as a cylindrical pump chamber or what has been called a “cut” volute, although pump base 24 may have any suitable shape pump chamber, including a volute-shaped pump chamber. Pump chamber 26 may be constructed to have only one opening, either in its top or bottom, if a tangential discharge is used, since only one opening is required to introduce molten metal to enter pump chamber 26. Generally, pump chamber 26 has two coaxial openings of the same diameter and usually one is blocked by a flow blocking plate mounted on the bottom of, or formed as part of, rotor 100. As shown, pump chamber 26 includes a top opening 28, bottom opening 29, and wall 31.
Base 24, in this embodiment, further includes a tangential discharge 30 in fluid communication with pump chamber 26. A preferred base 24 has sides 112, 114, 116, 118 and 120 and a top surface 110. The invention is not limited to any particular type or configuration of base, however. A pump base used with the invention could be of any suitable size, design or configuration. The top portion of wall 31 is machined to receive a bearing surface, which (in this Figure) is not yet mounted to wall 31. The bearing surface is typically comprised of ceramic and cemented to wall 31.
One or more support post receiving bores 126 are formed in base 24 and are for receiving support posts 34.
As shown in
One or more support posts 34 connect pump base 24 to a superstructure 36 of pump 22 thus connecting superstructure 36 to pump base 24. In a preferred embodiment, post clamps 35 secure support posts 34 to superstructure 36. Any suitable structure or structures capable of connecting superstructure 36 to pump base 24 may be used. Additionally, pump 22 could be constructed so there is no physical connection between the base and the superstructure. The motor, drive shaft and rotor could be suspended without a superstructure, and there need not be a pump base.
A motor 40, which can be any structure, system or device suitable for driving pump 22, but is preferably an electric or pneumatic motor, is positioned on superstructure 36 and is connected to a first end of a drive shaft 42. Motor 40 preferably is at least partially surrounded by a cooling shroud 41. Some pumps that may be used with the invention are shown in U.S. Pat. Nos. 5,203,681, 6,123,523, and 6,354,964 to Cooper.
A drive shaft 42 can be any structure suitable for connecting motor 40 to rotor 100, and for rotating rotor 100. Drive shaft 42 preferably comprises a motor shaft 42A coupled by a coupling 43 to a rotor shaft 44. The motor shaft 42A has a first end and a second end, wherein the first end of the motor shaft 42A is connected to motor 40 and the second end of the motor shaft 42A is connected to coupling 43. Rotor shaft 44 has a first end 44A and a second end 44B, wherein the first end 44A is connected to the coupling 43 and the second end 44B is connected to rotor 100.
One preferred rotor 100 is sized to fit through both openings 28 and 29, although it could be of any suitable shape or size suitable to be used in a molten metal pump. The preferred dimensions of rotor 100 will depend upon the size of pump 22 because the size of a rotor invention varies with the size of the pump and on manufacturer's specifications. Rotor 100 can be comprised of a single material, such as graphite or ceramic, or can be comprised of different materials. For example, inlet structure 104 may be comprised of ceramic and the displacement structure 102 may be comprised of graphite, or vice versa. Any part or all of rotor 100 may also include a protective coating.
As rotor 100 is rotated by drive shaft 42, displacement structure 102 and inlet structure 104 rotate. Thus, in the preferred embodiment, rotor blades 102A, 102B and 102C and inlets 106A, 106B and 106C rotate as a unit.
Turning to
Using heating elements (not shown in the figures), furnace 1 is raised to a temperature sufficient to maintain the metal therein (usually aluminum or zinc) in a molten state. The level of molten metal M in holding furnace 1A and in at least part of vessel 12 changes as metal is added or removed to furnace 1A, as can be seen in
For explanation, furnace 1 includes a furnace wall 2 having an archway 3. Archway 3 allows molten metal M to flow into vessel 12 from holding furnace 1A. In this embodiment, furnace 1A and vessel 12 are in fluid communication, so when the level of molten metal in furnace 1A rises, the level of molten metal also rises in at least part of vessel 12. It most preferably rises and falls in first chamber 16, described below, as the level of molten metal rises or falls in furnace 1A. This can be seen in
As previously mentioned, dividing wall 14 separates vessel 12 into at least two chambers, a pump well (or first chamber) 16 and a skim well (or second chamber) 18, and any suitable structure for this purpose may be used as dividing wall 14. As shown in this embodiment, dividing wall 14 has planar sides, a top edge, an opening 14A, and an optional overflow spillway 14B (best seen in
In the embodiment shown in
Second chamber 18 has a portion 18A, which has a height H2, wherein H2 is less than H1 (as can be best seen in
Dividing wall 14 may also have an opening 14A that is located at a depth such that opening 14A is submerged within the molten metal during normal usage. Opening 14A preferably has an area of between 6 in.2 and 24 in.2, but could be any suitable size. The opening 14A is preferably entirely below the level that is 50% of the height, or 40% of the height, or 30% of the height, or 20% of the height, of dividing wall 14. Further, dividing wall 14 need not have an opening if a transfer pump were used to transfer molten metal from first chamber 16, over the top of wall 14, and into second chamber 18 as described below.
Dividing wall 14 may also include more than one opening between first chamber 16 and second chamber 18, and opening 14A (or the more than one opening) could be positioned at any suitable location(s) in dividing wall 14 and be of any size(s) or shape(s) to enable molten metal to pass from first chamber 16 into second chamber 18.
Utilizing system 10, as pump 22 pumps molten metal from first chamber 16 into second chamber 18, the level of molten metal in chamber 18 rises.
A system according to this disclosure could also include one or more pumps in addition to pump 22, in which case the additional pump(s) may circulate molten metal within first chamber 16 and/or second chamber 18, or from chamber 16 to chamber 18, and/or may release gas into the molten metal first in first chamber 16 or second chamber 18. For example, first chamber 16 could include pump 22 and a second pump, such as a circulation pump or gas-release pump, to circulate and/or release gas into molten metal M.
If pump 22 is a circulation pump or gas-release pump, it may include a snout on the pump base that is at least partially received in opening 14A in order to help maintain a relatively stable level of molten metal in second chamber 18 during normal operation and to allow the level in second chamber 18 to rise independently of the level in first chamber 16. The snout could be connected in opening 14A to form a tight seal.
As shown in
In this embodiment, launder 20 has a first end 20A and a second end 20B. An optional stop may be included in a launder 20 juxtaposed the second end 20B. If launder 20 has a stop, the stop can be opened to allow molten metal to flow past end 20B, or closed to help prevent molten metal from flowing past end 20B.
Exemplary Smart Pump/System Features
An exemplary smart pump system 10 or 10′ according to this disclosure includes pump 22, and a controller 170 for controlling the speed of the pump, and further includes one or more of: (1) one or more thermocouples (which could be any device for measuring temperature) to measure molten metal temperature at one or more locations; (2) one or more devices (referred to herein sometimes as a “depth device”), such as a laser or float, to measure the depth (or level) of molten metal in one or more structures; and (3) one or more vibration sensors, such as an accelerometer(s), to measure vibration of the pump and/or one or more pump components, such as the rotor 100 and/or rotor shaft 44. The controller 170 receives a measured input (or “input” or “communication”) from one or more of: (a) the thermocouple(s) about the temperature of the molten metal at one or more locations; (b) the depth device(s) about the depth (or level) of the molten metal at one or more locations; and (c) the vibration sensor(s) about the vibration of the pump, and/or of one or more pump components. The controller may also receive input about one or more of: the pump speed, pump load, the length of time the pump has been operating, prior maintenance performed on the pump, and the weight of molten metal in structures, such as a launder, mold, or other vessel. The controller can analyze the one or more inputs to turn the pump on, to vary the speed of the pump, to turn the pump off, and/or send messages to an operator.
The thermocouple(s) is preferably configured to be positioned at a location in which it is under the surface of the molten metal when the molten metal pump is operating. The thermocouple may be positioned in a support post, pump base, rotor, or rotor shaft of the molten metal pump and housed so that it is not directly exposed to molten metal. As shown in the example in the Figures, there is a thermocouple T1 mounted in a support post 34, a thermocouple T2 mounted in base 24, a thermocouple T3 mounted in rotor 100, a thermocouple T4 positioned in second chamber 18, a thermocouple T5 positioned in vessel 1, and a thermocouple T6 positioned in a side wall of launder 20. Controller 170 may receive input from one or more of these thermocouples, and/or from one or more other thermocouples positioned at different locations.
The system 10 may also include one or more depth devices. As shown in the example, there is a depth device D1 on the pump superstructure 36 that measures the depth (or level) of molten metal in the vessel (which for D1 is the level of molten metal in first chamber 16) in which molten metal pump 22 is positioned. A depth device D2 is positioned above launder 20, and may be mounted on a side wall of launder 20, and measures the level of molten metal in the launder 20. A depth device D3 is positioned above vessel 1, and may be mounted on a side wall of vessel 1, and measures the level of molten metal in vessel 1. A depth device D4 is above ladle 52 and measures the level of molten metal in ladle 52. Controller 170 may receive input from one or more of the depth devices, and/or from other depth devices positioned at different locations.
The system 10 may also include one or more vibration sensors. A vibration sensor, which may be an accelerometer, V1 is shown in this example as being positioned on drive shaft 44. A vibration sensor V2 is shown as being positioned in rotor 100. Controller 170 may receive input from one or more of the vibration sensors, and/or from other vibration sensor(s) positioned at different locations.
The system may also include one or more weight sensors, which may be scales, to measure the weight of molten metal in one or more structures. In the example shown, there is a weight sensor W1 that measures the weight of molten metal in ladle 52. A weight sensor W2 measures the weight of molten metal in molds 52′ on a fill line. Controller 170 may receive input from one or more of the weight sensor(s), and/or from weight sensor(s) positioned at different locations.
All the pump information can optionally be shared to a user's computer 500 or hand-held electronic device 510, so the user can view it at his/her office, at home, or any remote location. The pump operational and input information can also be stored over time, for troubleshooting the pump, the vessel in which the pump operates, and/or the operational system and method used at the processing facility. In addition, software can make it possible for a computer 520 at the pump manufacturer to remotely access the controller 170 in order to troubleshoot or modify the operation of pump 22.
The controller 170 may vary the speed of, and/or turn off and on, molten metal pump 22, or send a message to an operator, in accordance with any of the inputs. For example, if the input was the amount of molten metal in a ladle (as measured by any device, such as a scale or laser), when the amount of molten metal M within the ladle is low, the controller 170 could cause the speed of molten metal pump 22 to increase to pump molten metal M at a greater flow rate to fill the ladle. As the level of the molten metal within the ladle increased, the controller could cause the speed of molten metal pump 22 to decrease and to pump molten metal M at a lesser flow rate, thereby decreasing the flow of molten metal into the ladle. The controller 170 could be used to stop the operation of molten metal pump 22 should the amount of the molten metal within a structure, such as a ladle, reach a given value or if a problem were detected. The control system could also start pump 22 based on a given input.
The controller may provide proportional control, such that the speed of molten metal pump 22 is proportional, or varied, according to one or more of: (1) the amount (or level) of molten metal within one or more vessels; (2) the temperature of molten metal within one or more vessels; (3) the amount of solid aluminum being added to one or more vessels; (4) the weight of molten metal in one or more vessels; (5) the vibration of the pump of one or more pump components, (6) the pump speed; and (7) the pump load. The controller could be customized to provide a smooth, even flow of molten metal to one or more structures such as one or more ladles or ingot molds with minimal turbulence and little chance of overflow.
A speed control 186 can override the automatic controller 170 (if being utilized) and allows an operator to increase or decrease the speed of the molten metal pump 22. A cooling air button 190 allows an operator to direct cooling air to the pump motor.
Some non-limiting examples of this disclosure are as follow:
A molten metal pump system comprising:
a controller for controlling the speed of the pump;
thermocouple positioned in one of the base, support post, rotor, or rotor shaft, wherein the thermocouple is configured to measure the temperature of molten metal in which the pump is positioned and communicate the temperature to the controller;
a laser mounted on the superstructure, the laser configured to measure the depth of molten metal in the vessel and to communicate the depth to the controller;
wherein the controller varies the speed of the pump based on the temperature of the molten metal and the depth of the molten metal in the vessel.
The molten metal pump system of example 1 that comprises a circulation pump.
The molten metal pump system of example 1 that comprises a gas-release pump.
The molten metal pump system of example 1 that comprises a gas-release pump that releases gas directly into the pump chamber.
The molten metal pump system of example 1 that comprises a transfer pump.
The molten metal pump system of example 1 that comprises a transfer pump that has a riser tube comprising a first end connected to the pump base and a second end connected to a launder.
The molten metal pump system of example 1 that further comprises a vibration sensor on one or more of the rotor shaft, the superstructure, and the rotor, wherein the vibration sensor is configured to detect vibration and communicate the vibration to the controller.
The molten metal pump system of example 7, wherein the controller is programmed with a maximum vibration level and the controller is configured to turn off the molten metal pump system if the maximum vibration level is exceeded.
The molten metal pump system of any of examples 1-8, wherein the controller is remote to the pump.
The molten metal pump system of any of examples 1-8, wherein the controller is on a superstructure of the pump.
The molten metal pump system of any of examples 1-10, wherein the thermocouple is in an enclosed box that is configured to be positioned beneath the molten metal when the molten metal pump system is positioned in a molten metal bath, so the thermocouple does not contact the molten metal.
The molten metal pump system of any of examples 1-11, wherein there is an insulating material between the superstructure and the laser.
The molten metal pump system of any of examples 1-12, wherein the thermocouple is positioned in the vessel and is remote from the pump.
The molten metal pump system of any of examples 1-13, wherein the communication from the thermocouple to the controller is wireless.
The molten metal pump system of any of examples 1-14, wherein the communication from the laser to the controller is wireless.
The molten metal pump system of example 7, wherein the communication from the vibration sensor to the controller is wireless.
The molten metal pump system of example 1 that further comprises a display that shows one or more of: a measured temperature of the molten metal, a measured depth of the molten metal, a vibration level of the molten metal pump, a load on the pump, and a speed of the molten metal pump.
The molten metal pump system of any of examples 1-17, wherein the controller comprises a memory that stores an operational history of the molten metal pump.
The molten metal pump system of any of examples 1-18, wherein the controller can be accessed from a remote location.
The molten metal pump system of example 19, wherein the controller can be re-programmed from the remote location.
The molten metal pump system of example 7 or 16, wherein the vibration sensor is an accelerometer.
The molten metal pump system of any of examples 1-21, wherein there is an insulating material configured to be between the superstructure and a molten metal bath when the molten metal pump is in a molten metal bath.
The molten metal pump system of any of examples 1-22, wherein the controller: varies the speed of the pump, turns off the pump, and/or sends a message to a monitor or operator, based on (a) the temperature of the molten metal, (b) the depth of the molten metal, and/or (c) the vibration of the pump.
The molten metal pump system of any of examples 1-23, wherein the controller is further configured to receive one or more of the pump speed and pump load and wherein the controller: varies the speed of the pump, turns off the pump, and/or sends a message to a monitor or operator, based on (a) the temperature of the molten metal, (b) the depth of the molten metal measured, (c) the speed of the pump, and/or (d) the pump load.
The molten metal pump system of any of examples 1-24 that further comprises a second thermocouple in the vessel and remote to the pump, the second thermocouple being in communication with the controller.
The molten metal pump system of any of examples 1-25 that further comprises a second depth device mounted and configured so as to measure the depth of molten metal in a second vessel, the second depth device being in communication with the controller.
The molten metal pump system of any of examples 1-26 that further comprises a scale that measures the weight of molten metal in a structure and communicates the weight to the controller.
The molten metal pump system of any of examples 1-27 that further comprises a second vibration sensor on or in a pump structure that does not include the vibration sensor.
The molten metal pump system of example 26, wherein the second vessel is a ladle, a launder, a mold, or a reverberatory furnace.
The molten metal pump system of example 27, wherein the structure is a ladle or a mold.
The molten metal pump system of example 28, wherein the vibration sensor is on the pump shaft and the second vibration sensor is in the rotor.
Having thus described different embodiments of the invention, other variations and embodiments that do not depart from the spirit thereof will become apparent to those skilled in the art. The scope of the present invention is thus not limited to any particular embodiment, but is instead set forth in the appended claims and the legal equivalents thereof. Unless expressly stated in the written description or claims, the steps of any method recited in the claims may be performed in any order capable of yielding the desired product or result.
This Applications claims priority to and incorporates by reference: (1) U.S. Provisional Patent Application Ser. No. 62/849,787 filed May 17, 2019 and entitled MOLTEN METAL PUMPS, COMPONENTS, SYSTEMS AND METHODS, and (2) U.S. Provisional Patent Application Ser. No. 62/852,846 filed May 24, 2019 and entitled SMART MOLTEN METAL PUMP.
Number | Name | Date | Kind |
---|---|---|---|
35604 | Guild | Jun 1862 | A |
116797 | Barnhart | Jul 1871 | A |
209219 | Bookwaiter | Oct 1878 | A |
251104 | Finch | Dec 1881 | A |
307845 | Curtis | Nov 1884 | A |
364804 | Cole | Jun 1887 | A |
390319 | Thomson | Oct 1888 | A |
495760 | Seitz | Apr 1893 | A |
506572 | Wagener | Oct 1893 | A |
585188 | Davis | Jun 1897 | A |
757932 | Jones | Apr 1904 | A |
882477 | Neumann | Mar 1908 | A |
882478 | Neumann | Mar 1908 | A |
890319 | Wells | Jun 1908 | A |
898499 | O'Donnell | Sep 1908 | A |
909774 | Flora | Jan 1909 | A |
919194 | Livingston | Apr 1909 | A |
1037659 | Rembert | Sep 1912 | A |
1100475 | Franckaerts | Jun 1914 | A |
1170512 | Chapman | Feb 1916 | A |
1196758 | Blair | Sep 1916 | A |
1304068 | Krogh | May 1919 | A |
1331997 | Neal | Feb 1920 | A |
1185314 | London | Mar 1920 | A |
1377101 | Sparling | May 1921 | A |
1380798 | Hansen et al. | Jun 1921 | A |
1439365 | Hazell | Dec 1922 | A |
1454967 | Gill | May 1923 | A |
1470607 | Hazell | Oct 1923 | A |
1513875 | Wilke | Nov 1924 | A |
1518501 | Gill | Dec 1924 | A |
1522765 | Wilke | Jan 1925 | A |
1526851 | Hall | Feb 1925 | A |
1669668 | Marshall | May 1928 | A |
1673594 | Schmidt | Jun 1928 | A |
1697202 | Nagle | Jan 1929 | A |
1717969 | Goodner | Jun 1929 | A |
1718396 | Wheeler | Jun 1929 | A |
1896201 | Sterner-Rainer | Feb 1933 | A |
1988875 | Saborio | Jan 1935 | A |
2013455 | Baxter | Sep 1935 | A |
2035282 | Schmeller, Sr. | Mar 1936 | A |
2038221 | Kagi | Apr 1936 | A |
2075633 | Anderegg | Mar 1937 | A |
2090162 | Tighe | Aug 1937 | A |
2091677 | Fredericks | Aug 1937 | A |
2138814 | Bressler | Dec 1938 | A |
2173377 | Schultz, Jr. et al. | Sep 1939 | A |
2264740 | Brown | Dec 1941 | A |
2280979 | Rocke | Apr 1942 | A |
2290961 | Heuer | Jul 1942 | A |
2300688 | Nagle | Nov 1942 | A |
2304849 | Ruthman | Dec 1942 | A |
2368962 | Blom | Feb 1945 | A |
2383424 | Stepanoff | Aug 1945 | A |
2423655 | Mars et al. | Jul 1947 | A |
2488447 | Tangen et al. | Nov 1949 | A |
2493467 | Sunnen | Jan 1950 | A |
2515097 | Schryber | Jul 1950 | A |
2515478 | Tooley et al. | Jul 1950 | A |
2528208 | Bonsack et al. | Oct 1950 | A |
2528210 | Stewart | Oct 1950 | A |
2543633 | Lamphere | Feb 1951 | A |
2566892 | Jacobs | Apr 1951 | A |
2625720 | Ross | Jan 1953 | A |
2626086 | Forrest | Jan 1953 | A |
2676279 | Wilson | Apr 1954 | A |
2677609 | Moore et al. | Apr 1954 | A |
2698583 | House et al. | Jan 1955 | A |
2714354 | Farrand | Aug 1955 | A |
2762095 | Pemetzrieder | Sep 1956 | A |
2768587 | Corneil | Oct 1956 | A |
2775348 | Williams | Dec 1956 | A |
2779574 | Schneider | Jan 1957 | A |
2787873 | Hadley | Apr 1957 | A |
2808782 | Thompson et al. | Oct 1957 | A |
2809107 | Russell | Oct 1957 | A |
2821472 | Peterson et al. | Jan 1958 | A |
2824520 | Bartels | Feb 1958 | A |
2832292 | Edwards | Apr 1958 | A |
2839006 | Mayo | Jun 1958 | A |
2853019 | Thornton | Sep 1958 | A |
2865295 | Nikolaus | Dec 1958 | A |
2865618 | Abell | Dec 1958 | A |
2868132 | Rittershofer | Jan 1959 | A |
2901006 | Andrews | Aug 1959 | A |
2901677 | Chessman et al. | Aug 1959 | A |
2906632 | Nickerson | Sep 1959 | A |
2918876 | Howe | Dec 1959 | A |
2948524 | Sweeney et al. | Aug 1960 | A |
2958293 | Pray, Jr. | Nov 1960 | A |
2966345 | Burgoon et al. | Dec 1960 | A |
2966381 | Menzel | Dec 1960 | A |
2978885 | Davison | Apr 1961 | A |
2984524 | Franzen | May 1961 | A |
2987885 | Hodge | Jun 1961 | A |
3010402 | King | Nov 1961 | A |
3015190 | Arbeit | Jan 1962 | A |
3039864 | Hess | Jun 1962 | A |
3044408 | Mellott | Jul 1962 | A |
3048384 | Sweeney et al. | Aug 1962 | A |
3070393 | Silverberg et al. | Dec 1962 | A |
3092030 | Wunder | Jun 1963 | A |
3099870 | Seeler | Aug 1963 | A |
3128327 | Upton | Apr 1964 | A |
3130678 | Chenault | Apr 1964 | A |
3130679 | Sence | Apr 1964 | A |
3151565 | Albertson et al. | Oct 1964 | A |
3171357 | Egger | Mar 1965 | A |
3172850 | Englesberg et al. | Mar 1965 | A |
3203182 | Pohl | Aug 1965 | A |
3227547 | Szekely | Jan 1966 | A |
3244109 | Barske | Apr 1966 | A |
3251676 | Johnson | May 1966 | A |
3255702 | Gehrm | Jun 1966 | A |
3258283 | Winberg et al. | Jun 1966 | A |
3272619 | Sweeney et al. | Sep 1966 | A |
3289473 | Londa | Dec 1966 | A |
3291473 | Sweeney et al. | Dec 1966 | A |
3368805 | Davey et al. | Feb 1968 | A |
3374943 | Cervenka | Mar 1968 | A |
3400923 | Howie et al. | Sep 1968 | A |
3417929 | Secrest et al. | Dec 1968 | A |
3432336 | Langrod et al. | Mar 1969 | A |
3459133 | Scheffler | Aug 1969 | A |
3459346 | Tinnes | Aug 1969 | A |
3477383 | Rawson et al. | Nov 1969 | A |
3487805 | Satterthwaite | Jan 1970 | A |
3512762 | Umbricht | May 1970 | A |
3512788 | Kilbane | May 1970 | A |
3532445 | Scheffler et al. | Oct 1970 | A |
3561885 | Lake | Feb 1971 | A |
3575525 | Fox et al. | Apr 1971 | A |
3581767 | Jackson | Jun 1971 | A |
3612715 | Yedidiah | Oct 1971 | A |
3618917 | Fredrikson et al. | Nov 1971 | A |
3620716 | Hess | Nov 1971 | A |
3650730 | Derham et al. | Mar 1972 | A |
3689048 | Foulard et al. | Sep 1972 | A |
3715112 | Carbonnel | Feb 1973 | A |
3732032 | Daneel | May 1973 | A |
3737304 | Blayden et al. | Jun 1973 | A |
3737305 | Blayden et al. | Jun 1973 | A |
3743263 | Szekely | Jul 1973 | A |
3743500 | Foulard et al. | Jul 1973 | A |
3753690 | Emley et al. | Aug 1973 | A |
3759628 | Kempf | Sep 1973 | A |
3759635 | Carter et al. | Sep 1973 | A |
3767382 | Bruno et al. | Oct 1973 | A |
3776660 | Anderson et al. | Dec 1973 | A |
3785632 | Kraemer et al. | Jan 1974 | A |
3787143 | Carbonnel et al. | Jan 1974 | A |
3799522 | Brant et al. | Mar 1974 | A |
3799523 | Seki | Mar 1974 | A |
3807708 | Jones | Apr 1974 | A |
3814400 | Seki | Jun 1974 | A |
3824028 | Zenkner et al. | Jul 1974 | A |
3824042 | Barnes et al. | Jul 1974 | A |
3836280 | Koch | Sep 1974 | A |
3839019 | Bruno et al. | Oct 1974 | A |
3844972 | Tully, Jr. et al. | Oct 1974 | A |
3871872 | Downing et al. | Mar 1975 | A |
3873073 | Baum et al. | Mar 1975 | A |
3873305 | Claxton et al. | Mar 1975 | A |
3881039 | Baldieri et al. | Apr 1975 | A |
3886992 | Maas et al. | Jun 1975 | A |
3915594 | Nesseth | Oct 1975 | A |
3915694 | Ando | Oct 1975 | A |
3935003 | Steinke et al. | Jan 1976 | A |
3941588 | Dremann | Mar 1976 | A |
3941589 | Norman et al. | Mar 1976 | A |
3942473 | Chodash | Mar 1976 | A |
3954134 | Maas et al. | May 1976 | A |
3958979 | Valdo | May 1976 | A |
3958981 | Forberg et al. | May 1976 | A |
3961778 | Carbonnel et al. | Jun 1976 | A |
3966456 | Ellenbaum et al. | Jun 1976 | A |
3967286 | Andersson et al. | Jun 1976 | A |
3972709 | Chin et al. | Aug 1976 | A |
3973871 | Hance | Aug 1976 | A |
3984234 | Claxton et al. | Oct 1976 | A |
3985000 | Hartz | Oct 1976 | A |
3997336 | van Linden et al. | Dec 1976 | A |
4003560 | Carbonnel | Jan 1977 | A |
4008884 | Fitzpatrick et al. | Feb 1977 | A |
4018598 | Markus | Apr 1977 | A |
4043146 | Stegherr et al. | Aug 1977 | A |
4052199 | Mangalick | Oct 1977 | A |
4055390 | Young | Oct 1977 | A |
4063849 | Modianos | Dec 1977 | A |
4068965 | Lichti | Jan 1978 | A |
4073606 | Eller | Feb 1978 | A |
4091970 | Komiyama et al. | May 1978 | A |
4119141 | Thut et al. | Oct 1978 | A |
4125146 | Muller | Nov 1978 | A |
4126360 | Miller et al. | Nov 1978 | A |
4128415 | van Linden et al. | Dec 1978 | A |
4147474 | Heimdal et al. | Apr 1979 | A |
4169584 | Mangalick | Oct 1979 | A |
4191486 | Pelton | Mar 1980 | A |
4213742 | Henshaw | Jul 1980 | A |
4242039 | Villard et al. | Dec 1980 | A |
4244423 | Thut et al. | Jan 1981 | A |
4286985 | van Linden et al. | Sep 1981 | A |
4305214 | Hurst | Dec 1981 | A |
4322245 | Claxton | Mar 1982 | A |
4338062 | Neal | Jul 1982 | A |
4347041 | Cooper | Aug 1982 | A |
4351514 | Koch | Sep 1982 | A |
4355789 | Dolzhenkov et al. | Oct 1982 | A |
4356940 | Ansorge | Nov 1982 | A |
4360314 | Pennell | Nov 1982 | A |
4370096 | Church | Jan 1983 | A |
4372541 | Bocourt et al. | Feb 1983 | A |
4375937 | Cooper | Mar 1983 | A |
4389159 | Sarvanne | Jun 1983 | A |
4392888 | Eckert et al. | Jul 1983 | A |
4410299 | Shimoyama | Oct 1983 | A |
4419049 | Gerboth et al. | Dec 1983 | A |
4456424 | Araoka | Jun 1984 | A |
4470846 | Dube | Sep 1984 | A |
4474315 | Gilbert et al. | Oct 1984 | A |
4496393 | Lustenberger | Jan 1985 | A |
4504392 | Groteke | Mar 1985 | A |
4509979 | Bauer | Apr 1985 | A |
4537624 | Tenhover et al. | Aug 1985 | A |
4537625 | Tenhover et al. | Aug 1985 | A |
4545887 | Amesen | Oct 1985 | A |
4556419 | Otsuka et al. | Dec 1985 | A |
4557766 | Tenhover et al. | Dec 1985 | A |
4586845 | Morris | May 1986 | A |
4592700 | Toguchi et al. | Jun 1986 | A |
4594052 | Niskanen | Jun 1986 | A |
4596510 | Ameth et al. | Jun 1986 | A |
4598899 | Cooper | Jul 1986 | A |
4600222 | Appling | Jul 1986 | A |
4607825 | Briolle et al. | Aug 1986 | A |
4609442 | Tenhover et al. | Sep 1986 | A |
4611790 | Otsuka et al. | Sep 1986 | A |
4617232 | Chandler et al. | Oct 1986 | A |
4634105 | Withers et al. | Jan 1987 | A |
4640666 | Sodergard | Feb 1987 | A |
4655610 | Al-Jaroudi | Apr 1987 | A |
4673434 | Withers et al. | Jun 1987 | A |
4682585 | Hiltebrandt | Jul 1987 | A |
4684281 | Patterson | Aug 1987 | A |
4685822 | Pelton | Aug 1987 | A |
4696703 | Henderson et al. | Sep 1987 | A |
4701226 | Henderson et al. | Oct 1987 | A |
4702768 | Areauz et al. | Oct 1987 | A |
4714371 | Cuse | Dec 1987 | A |
4717540 | McRae et al. | Jan 1988 | A |
4739974 | Mordue | Apr 1988 | A |
4743428 | McRae et al. | May 1988 | A |
4747583 | Gordon et al. | May 1988 | A |
4767230 | Leas, Jr. | Aug 1988 | A |
4770701 | Henderson et al. | Sep 1988 | A |
4786230 | Thut | Nov 1988 | A |
4802656 | Hudault et al. | Feb 1989 | A |
4804168 | Otsuka et al. | Feb 1989 | A |
4810314 | Henderson et al. | Mar 1989 | A |
4822473 | Arnesen | Apr 1989 | A |
4834573 | Asano et al. | May 1989 | A |
4842227 | Harrington et al. | Jun 1989 | A |
4844425 | Piras et al. | Jul 1989 | A |
4851296 | Tenhover et al. | Jul 1989 | A |
4859413 | Harris et al. | Aug 1989 | A |
4860819 | Moscoe et al. | Aug 1989 | A |
4867638 | Handtmann et al. | Sep 1989 | A |
4884786 | Gillespie | Dec 1989 | A |
4898367 | Cooper | Feb 1990 | A |
4908060 | Duenkelmann | Mar 1990 | A |
4911726 | Warkentin | Mar 1990 | A |
4923770 | Grasselli et al. | May 1990 | A |
4930986 | Cooper | Jun 1990 | A |
4931091 | Waite et al. | Jun 1990 | A |
4940214 | Gillespie | Jul 1990 | A |
4940384 | Amra et al. | Jul 1990 | A |
4954167 | Cooper | Sep 1990 | A |
4967827 | Campbell | Nov 1990 | A |
4973433 | Gilbert et al. | Nov 1990 | A |
4986736 | Kajiwara et al. | Jan 1991 | A |
5015518 | Sasaki et al. | May 1991 | A |
5025198 | Mordue et al. | Jun 1991 | A |
5028211 | Mordue et al. | Jul 1991 | A |
5029821 | Bar-on et al. | Jul 1991 | A |
5058654 | Simmons | Oct 1991 | A |
5078572 | Amra et al. | Jan 1992 | A |
5080715 | Provencher et al. | Jan 1992 | A |
5083753 | Soofi | Jan 1992 | A |
5088893 | Gilbert et al. | Feb 1992 | A |
5092821 | Gilbert et al. | Mar 1992 | A |
5098134 | Monckton | Mar 1992 | A |
5099554 | Cooper | Mar 1992 | A |
5114312 | Stanislao | May 1992 | A |
5126047 | Martin et al. | Jun 1992 | A |
5131632 | Olson | Jul 1992 | A |
5135202 | Yamashita et al. | Aug 1992 | A |
5143357 | Gilbert et al. | Sep 1992 | A |
5145322 | Senior, Jr. et al. | Sep 1992 | A |
5152631 | Bauer | Oct 1992 | A |
5154652 | Ecklesdafer | Oct 1992 | A |
5158440 | Cooper et al. | Oct 1992 | A |
5162858 | Shoji et al. | Nov 1992 | A |
5165858 | Gilbert et al. | Nov 1992 | A |
5177304 | Nagel | Jan 1993 | A |
5191154 | Nagel | Mar 1993 | A |
5192193 | Cooper et al. | Mar 1993 | A |
5202100 | Nagel et al. | Apr 1993 | A |
5203681 | Cooper | Apr 1993 | A |
5209641 | Hoglund et al. | May 1993 | A |
5215448 | Cooper | Jun 1993 | A |
5268020 | Claxton | Dec 1993 | A |
5286163 | Amra et al. | Feb 1994 | A |
5298233 | Nagel | Mar 1994 | A |
5301620 | Nagel et al. | Apr 1994 | A |
5303903 | Butler et al. | Apr 1994 | A |
5308045 | Cooper | May 1994 | A |
5310412 | Gilbert et al. | May 1994 | A |
5318360 | Langer et al. | Jun 1994 | A |
5322547 | Nagel et al. | Jun 1994 | A |
5324341 | Nagel et al. | Jun 1994 | A |
5330328 | Cooper | Jul 1994 | A |
5354940 | Nagel | Oct 1994 | A |
5358549 | Nagel et al. | Oct 1994 | A |
5358697 | Nagel | Oct 1994 | A |
5364078 | Pelton | Nov 1994 | A |
5369063 | Gee et al. | Nov 1994 | A |
5388633 | Mercer, II et al. | Feb 1995 | A |
5395405 | Nagel et al. | Mar 1995 | A |
5399074 | Nose et al. | Mar 1995 | A |
5407294 | Giannini | Apr 1995 | A |
5411240 | Rapp et al. | May 1995 | A |
5425410 | Reynolds | Jun 1995 | A |
5431551 | Aquino et al. | Jul 1995 | A |
5435982 | Wilkinson | Jul 1995 | A |
5436210 | Wilkinson et al. | Jul 1995 | A |
5443572 | Wilkinson et al. | Aug 1995 | A |
5454423 | Tsuchida et al. | Oct 1995 | A |
5468280 | Areaux | Nov 1995 | A |
5470201 | Gilbert et al. | Nov 1995 | A |
5484265 | Horvath et al. | Jan 1996 | A |
5489734 | Nagel et al. | Feb 1996 | A |
5491279 | Robert et al. | Feb 1996 | A |
5494382 | Kloppers | Feb 1996 | A |
5495746 | Sigworth | Mar 1996 | A |
5505143 | Nagel | Apr 1996 | A |
5505435 | Laszlo | Apr 1996 | A |
5509791 | Turner | Apr 1996 | A |
5511766 | Vassilicos | Apr 1996 | A |
5520422 | Friedrich | May 1996 | A |
5537940 | Nagel et al. | Jul 1996 | A |
5543558 | Nagel et al. | Aug 1996 | A |
5555822 | Loewen et al. | Sep 1996 | A |
5558501 | Wang et al. | Sep 1996 | A |
5558505 | Mordue et al. | Sep 1996 | A |
5571486 | Robert et al. | Nov 1996 | A |
5585532 | Nagel | Dec 1996 | A |
5586863 | Gilbert et al. | Dec 1996 | A |
5591243 | Colussi et al. | Jan 1997 | A |
5597289 | Thut | Jan 1997 | A |
5613245 | Robert | Mar 1997 | A |
5616167 | Eckert | Apr 1997 | A |
5622481 | Thut | Apr 1997 | A |
5629464 | Bach et al. | May 1997 | A |
5634770 | Gilbert et al. | Jun 1997 | A |
5640706 | Nagel et al. | Jun 1997 | A |
5640707 | Nagel et al. | Jun 1997 | A |
5640709 | Nagel et al. | Jun 1997 | A |
5655849 | McEwen et al. | Aug 1997 | A |
5660614 | Waite et al. | Aug 1997 | A |
5662725 | Cooper | Sep 1997 | A |
5676520 | Thut | Oct 1997 | A |
5678244 | Shaw et al. | Oct 1997 | A |
5678807 | Cooper | Oct 1997 | A |
5679132 | Rauenzahn et al. | Oct 1997 | A |
5685701 | Chandler et al. | Nov 1997 | A |
5690888 | Robert | Nov 1997 | A |
5695732 | Sparks et al. | Dec 1997 | A |
5716195 | Thut | Feb 1998 | A |
5717149 | Nagel et al. | Feb 1998 | A |
5718416 | Flisakowski et al. | Feb 1998 | A |
5735668 | Klein | Apr 1998 | A |
5735935 | Areaux | Apr 1998 | A |
5741422 | Eichenmiller et al. | Apr 1998 | A |
5744093 | Davis | Apr 1998 | A |
5744117 | Wilkinson et al. | Apr 1998 | A |
5745861 | Bell et al. | Apr 1998 | A |
5755847 | Quayle | May 1998 | A |
5758712 | Pederson | Jun 1998 | A |
5772324 | Falk | Jun 1998 | A |
5776420 | Nagel | Jul 1998 | A |
5785494 | Vild et al. | Jul 1998 | A |
5842832 | Thut | Dec 1998 | A |
5846481 | Tilak | Dec 1998 | A |
5858059 | Abramovich et al. | Jan 1999 | A |
5863314 | Morando | Jan 1999 | A |
5866095 | McGeever et al. | Feb 1999 | A |
5875385 | Stephenson et al. | Feb 1999 | A |
5935528 | Stephenson et al. | Aug 1999 | A |
5944496 | Cooper | Aug 1999 | A |
5947705 | Mordue et al. | Sep 1999 | A |
5948352 | Jagt et al. | Sep 1999 | A |
5951243 | Cooper | Sep 1999 | A |
5961285 | Meneice et al. | Oct 1999 | A |
5963580 | Eckert | Oct 1999 | A |
5992230 | Scarpa et al. | Nov 1999 | A |
5993726 | Huang | Nov 1999 | A |
5993728 | Vild | Nov 1999 | A |
6019576 | Thut | Feb 2000 | A |
6027685 | Cooper | Feb 2000 | A |
6036745 | Gilbert et al. | Mar 2000 | A |
6074455 | van Linden et al. | Jun 2000 | A |
6082965 | Morando | Jul 2000 | A |
6093000 | Cooper | Jul 2000 | A |
6096109 | Nagel et al. | Aug 2000 | A |
6113154 | Thut | Sep 2000 | A |
6123523 | Cooper | Sep 2000 | A |
6152691 | Thut | Nov 2000 | A |
6168753 | Morando | Jan 2001 | B1 |
6187096 | Thut | Feb 2001 | B1 |
6199836 | Rexford et al. | Mar 2001 | B1 |
6217823 | Vild et al. | Apr 2001 | B1 |
6231639 | Eichenmiller | May 2001 | B1 |
6250881 | Mordue et al. | Jun 2001 | B1 |
6254340 | Vild et al. | Jul 2001 | B1 |
6270717 | Tremblay et al. | Aug 2001 | B1 |
6280157 | Cooper | Aug 2001 | B1 |
6293759 | Thut | Sep 2001 | B1 |
6303074 | Cooper | Oct 2001 | B1 |
6345964 | Cooper | Feb 2002 | B1 |
6354796 | Morando | Mar 2002 | B1 |
6358467 | Mordue | Mar 2002 | B1 |
6364930 | Kos | Apr 2002 | B1 |
6371723 | Grant et al. | Apr 2002 | B1 |
6398525 | Cooper | Jun 2002 | B1 |
6439860 | Greer | Aug 2002 | B1 |
6451247 | Mordue et al. | Sep 2002 | B1 |
6457940 | Lehman | Oct 2002 | B1 |
6457950 | Cooper et al. | Oct 2002 | B1 |
6464458 | Vild et al. | Oct 2002 | B2 |
6495948 | Garrett, III | Dec 2002 | B1 |
6497559 | Grant | Dec 2002 | B1 |
6500228 | Klingensmith et al. | Dec 2002 | B1 |
6503292 | Klingensmith et al. | Jan 2003 | B2 |
6524066 | Thut | Feb 2003 | B2 |
6533535 | Thut | Mar 2003 | B2 |
6551060 | Mordue et al. | Apr 2003 | B2 |
6562286 | Lehman | May 2003 | B1 |
6656415 | Kos | Dec 2003 | B2 |
6679936 | Quackenbush | Jan 2004 | B2 |
6689310 | Cooper | Feb 2004 | B1 |
6709234 | Gilbert et al. | Mar 2004 | B2 |
6723276 | Cooper | Apr 2004 | B1 |
6805834 | Thut | Oct 2004 | B2 |
6843640 | Mordue et al. | Jan 2005 | B2 |
6848497 | Sale et al. | Feb 2005 | B2 |
6869271 | Gilbert et al. | Mar 2005 | B2 |
6869564 | Gilbert et al. | Mar 2005 | B2 |
6881030 | Thut | Apr 2005 | B2 |
6887424 | Ohno et al. | May 2005 | B2 |
6887425 | Mordue et al. | May 2005 | B2 |
6902696 | Klingensmith et al. | Jun 2005 | B2 |
7037462 | Klingensmith et al. | May 2006 | B2 |
7074361 | Carolla et al. | Jul 2006 | B2 |
7083758 | Tremblay | Aug 2006 | B2 |
7131482 | Vincent et al. | Nov 2006 | B2 |
7157043 | Neff | Jan 2007 | B2 |
7204954 | Mizuno | Apr 2007 | B2 |
7273582 | Mordue | Sep 2007 | B2 |
7279128 | Kennedy et al. | Oct 2007 | B2 |
7326028 | Morando | Feb 2008 | B2 |
7402276 | Cooper | Jul 2008 | B2 |
7470392 | Cooper | Dec 2008 | B2 |
7476357 | Thut | Jan 2009 | B2 |
7481966 | Mizuno | Jan 2009 | B2 |
7497988 | Thut | Mar 2009 | B2 |
7507365 | Thut | Mar 2009 | B2 |
7507367 | Cooper | Mar 2009 | B2 |
7543605 | Morando | Jun 2009 | B1 |
7731891 | Cooper | Jun 2010 | B2 |
7771171 | Mohr | Aug 2010 | B2 |
7841379 | Evans | Nov 2010 | B1 |
7896617 | Morando | Mar 2011 | B1 |
7906068 | Cooper | Mar 2011 | B2 |
8075837 | Cooper | Dec 2011 | B2 |
8110141 | Cooper | Feb 2012 | B2 |
8137023 | Greer | Mar 2012 | B2 |
8142145 | Thut | Mar 2012 | B2 |
8178037 | Cooper | May 2012 | B2 |
8328540 | Wang | Dec 2012 | B2 |
8333921 | Thut | Dec 2012 | B2 |
8361379 | Cooper | Jan 2013 | B2 |
8366993 | Cooper | Feb 2013 | B2 |
8409495 | Cooper | Apr 2013 | B2 |
8440135 | Cooper | May 2013 | B2 |
8444911 | Cooper | May 2013 | B2 |
8449814 | Cooper | May 2013 | B2 |
8475594 | Bright et al. | Jul 2013 | B2 |
8475708 | Cooper | Jul 2013 | B2 |
8480950 | Jetten et al. | Jul 2013 | B2 |
8501084 | Cooper | Aug 2013 | B2 |
8524146 | Cooper | Sep 2013 | B2 |
8529828 | Cooper | Sep 2013 | B2 |
8535603 | Cooper | Sep 2013 | B2 |
8580218 | Turenne et al. | Nov 2013 | B2 |
8613884 | Cooper | Dec 2013 | B2 |
8714914 | Cooper | May 2014 | B2 |
8753563 | Cooper | Jun 2014 | B2 |
8840359 | Vick et al. | Sep 2014 | B2 |
8899932 | Tetkoskie et al. | Dec 2014 | B2 |
8915830 | March et al. | Dec 2014 | B2 |
8920680 | Mao | Dec 2014 | B2 |
9011761 | Cooper | Apr 2015 | B2 |
9017597 | Cooper | Apr 2015 | B2 |
9034244 | Cooper | May 2015 | B2 |
9057376 | Thut | Jun 2015 | B2 |
9074601 | Thut | Jul 2015 | B1 |
9080577 | Cooper | Jul 2015 | B2 |
9108224 | Schererz et al. | Aug 2015 | B2 |
9108244 | Cooper | Aug 2015 | B2 |
9156087 | Cooper | Oct 2015 | B2 |
9193532 | March et al. | Nov 2015 | B2 |
9205490 | Cooper | Dec 2015 | B2 |
9234520 | Morando | Jan 2016 | B2 |
9273376 | Lutes et al. | Mar 2016 | B2 |
9328615 | Cooper | May 2016 | B2 |
9377028 | Cooper | Jun 2016 | B2 |
9382599 | Cooper | Jul 2016 | B2 |
9383140 | Cooper | Jul 2016 | B2 |
9409232 | Cooper | Aug 2016 | B2 |
9410744 | Cooper | Aug 2016 | B2 |
9422942 | Cooper | Aug 2016 | B2 |
9435343 | Cooper | Sep 2016 | B2 |
9464636 | Cooper | Oct 2016 | B2 |
9470239 | Cooper | Oct 2016 | B2 |
9476644 | Howitt et al. | Oct 2016 | B2 |
9481035 | Cooper | Nov 2016 | B2 |
9481918 | Vild et al. | Nov 2016 | B2 |
9482469 | Cooper | Nov 2016 | B2 |
9494366 | Thut | Nov 2016 | B1 |
9506129 | Cooper | Nov 2016 | B2 |
9506346 | Bright et al. | Nov 2016 | B2 |
9566645 | Cooper | Feb 2017 | B2 |
9581388 | Cooper | Feb 2017 | B2 |
9587883 | Cooper | Mar 2017 | B2 |
9657578 | Cooper | May 2017 | B2 |
9855600 | Cooper | Jan 2018 | B2 |
9862026 | Cooper | Jan 2018 | B2 |
9903383 | Cooper | Feb 2018 | B2 |
9909808 | Cooper | Mar 2018 | B2 |
9925587 | Cooper | Mar 2018 | B2 |
9951777 | Morando et al. | Apr 2018 | B2 |
9970442 | Tipton | May 2018 | B2 |
9982945 | Cooper | May 2018 | B2 |
10052688 | Cooper | Aug 2018 | B2 |
10072897 | Cooper | Sep 2018 | B2 |
10126058 | Cooper | Nov 2018 | B2 |
10126059 | Cooper | Nov 2018 | B2 |
10138892 | Cooper | Nov 2018 | B2 |
10195664 | Cooper et al. | Feb 2019 | B2 |
10267314 | Cooper | Apr 2019 | B2 |
10274256 | Cooper | Apr 2019 | B2 |
10302361 | Cooper | May 2019 | B2 |
10307821 | Cooper | Jun 2019 | B2 |
10309725 | Cooper | Jun 2019 | B2 |
10322451 | Cooper | Jun 2019 | B2 |
10345045 | Cooper | Jul 2019 | B2 |
10352620 | Cooper | Jul 2019 | B2 |
10428821 | Cooper | Oct 2019 | B2 |
10465688 | Cooper | Nov 2019 | B2 |
10562097 | Cooper | Feb 2020 | B2 |
10570745 | Cooper | Feb 2020 | B2 |
10641270 | Cooper | May 2020 | B2 |
20010000465 | Thut | Apr 2001 | A1 |
20020089099 | Denning | Jul 2002 | A1 |
20020146313 | Thut | Oct 2002 | A1 |
20020185790 | Klingensmith | Dec 2002 | A1 |
20020185794 | Vincent | Dec 2002 | A1 |
20030047850 | Areaux | Mar 2003 | A1 |
20030075844 | Mordue et al. | Apr 2003 | A1 |
20030082052 | Gilbert et al. | May 2003 | A1 |
20030151176 | Ohno | Aug 2003 | A1 |
20030201583 | Klingensmith | Oct 2003 | A1 |
20040050525 | Kennedy et al. | Mar 2004 | A1 |
20040076533 | Cooper | Apr 2004 | A1 |
20040115079 | Cooper | Jun 2004 | A1 |
20040262825 | Cooper | Dec 2004 | A1 |
20050013713 | Cooper | Jan 2005 | A1 |
20050013714 | Cooper | Jan 2005 | A1 |
20050013715 | Cooper | Jan 2005 | A1 |
20050053499 | Cooper | Mar 2005 | A1 |
20050077730 | Thut | Apr 2005 | A1 |
20050116398 | Tremblay | Jun 2005 | A1 |
20060180963 | Thut | Aug 2006 | A1 |
20070253807 | Cooper | Nov 2007 | A1 |
20080163999 | Hymas et al. | Jul 2008 | A1 |
20080202644 | Grassi | Aug 2008 | A1 |
20080211147 | Cooper | Sep 2008 | A1 |
20080213111 | Cooper | Sep 2008 | A1 |
20080230966 | Cooper | Sep 2008 | A1 |
20080253905 | Morando et al. | Oct 2008 | A1 |
20080304970 | Cooper | Dec 2008 | A1 |
20080314548 | Cooper | Dec 2008 | A1 |
20090054167 | Cooper | Feb 2009 | A1 |
20090269191 | Cooper | Oct 2009 | A1 |
20100104415 | Morando | Apr 2010 | A1 |
20100200354 | Yagi et al. | Aug 2010 | A1 |
20110133374 | Cooper | Jun 2011 | A1 |
20110140318 | Reeves et al. | Jun 2011 | A1 |
20110140319 | Cooper | Jun 2011 | A1 |
20110142603 | Cooper | Jun 2011 | A1 |
20110142606 | Cooper | Jun 2011 | A1 |
20110148012 | Cooper | Jun 2011 | A1 |
20110163486 | Cooper | Jul 2011 | A1 |
20110210232 | Cooper | Sep 2011 | A1 |
20110220771 | Cooper | Sep 2011 | A1 |
20110303706 | Cooper | Dec 2011 | A1 |
20120003099 | Tetkoskie | Jan 2012 | A1 |
20120163959 | Morando | Jun 2012 | A1 |
20130105102 | Cooper | May 2013 | A1 |
20130142625 | Cooper | Jun 2013 | A1 |
20130214014 | Cooper | Aug 2013 | A1 |
20130224038 | Tetkoskie et al. | Aug 2013 | A1 |
20130292426 | Cooper | Nov 2013 | A1 |
20130292427 | Cooper | Nov 2013 | A1 |
20130299524 | Cooper | Nov 2013 | A1 |
20130299525 | Cooper | Nov 2013 | A1 |
20130306687 | Cooper | Nov 2013 | A1 |
20130343904 | Cooper | Dec 2013 | A1 |
20140008849 | Cooper | Jan 2014 | A1 |
20140041252 | Vild et al. | Feb 2014 | A1 |
20140044520 | Tipton | Feb 2014 | A1 |
20140083253 | Lutes et al. | Mar 2014 | A1 |
20140210144 | Torres et al. | Jul 2014 | A1 |
20140232048 | Howitt et al. | Aug 2014 | A1 |
20140252697 | Rauch | Sep 2014 | A1 |
20140252701 | Cooper | Sep 2014 | A1 |
20140261800 | Cooper | Sep 2014 | A1 |
20140263482 | Cooper | Sep 2014 | A1 |
20140265068 | Cooper | Sep 2014 | A1 |
20140271219 | Cooper | Sep 2014 | A1 |
20140363309 | Henderson et al. | Dec 2014 | A1 |
20150069679 | Henderson et al. | Mar 2015 | A1 |
20150192364 | Cooper | Jul 2015 | A1 |
20150217369 | Cooper | Aug 2015 | A1 |
20150219111 | Cooper | Aug 2015 | A1 |
20150219112 | Cooper | Aug 2015 | A1 |
20150219113 | Cooper | Aug 2015 | A1 |
20150219114 | Cooper | Aug 2015 | A1 |
20150224574 | Cooper | Aug 2015 | A1 |
20150252807 | Cooper | Sep 2015 | A1 |
20150285557 | Cooper | Oct 2015 | A1 |
20150285558 | Cooper | Oct 2015 | A1 |
20150323256 | Cooper | Nov 2015 | A1 |
20150328682 | Cooper | Nov 2015 | A1 |
20150328683 | Cooper | Nov 2015 | A1 |
20160031007 | Cooper | Feb 2016 | A1 |
20160040265 | Cooper | Feb 2016 | A1 |
20160047602 | Cooper | Feb 2016 | A1 |
20160053762 | Cooper | Feb 2016 | A1 |
20160053814 | Cooper | Feb 2016 | A1 |
20160082507 | Cooper | Mar 2016 | A1 |
20160089718 | Cooper | Mar 2016 | A1 |
20160091251 | Cooper | Mar 2016 | A1 |
20160116216 | Schlicht et al. | Apr 2016 | A1 |
20160221855 | Retorick et al. | Aug 2016 | A1 |
20160250686 | Cooper | Sep 2016 | A1 |
20160265535 | Cooper | Sep 2016 | A1 |
20160305711 | Cooper | Oct 2016 | A1 |
20160320129 | Cooper | Nov 2016 | A1 |
20160320130 | Cooper | Nov 2016 | A1 |
20160320131 | Cooper | Nov 2016 | A1 |
20160346836 | Henderson et al. | Dec 2016 | A1 |
20160348973 | Cooper | Dec 2016 | A1 |
20160348974 | Cooper | Dec 2016 | A1 |
20160348975 | Cooper | Dec 2016 | A1 |
20170037852 | Bright et al. | Feb 2017 | A1 |
20170038146 | Cooper | Feb 2017 | A1 |
20170045298 | Cooper | Feb 2017 | A1 |
20170056973 | Tremblay et al. | Mar 2017 | A1 |
20170082368 | Cooper | Mar 2017 | A1 |
20170106435 | Vincent | Apr 2017 | A1 |
20170106441 | Vincent | Apr 2017 | A1 |
20170130298 | Teranishi et al. | May 2017 | A1 |
20170167793 | Cooper et al. | Jun 2017 | A1 |
20170198721 | Cooper | Jul 2017 | A1 |
20170219289 | Williams et al. | Aug 2017 | A1 |
20170241713 | Henderson et al. | Aug 2017 | A1 |
20170246681 | Tipton et al. | Aug 2017 | A1 |
20170276430 | Cooper | Sep 2017 | A1 |
20180058465 | Cooper | Mar 2018 | A1 |
20180111189 | Cooper | Apr 2018 | A1 |
20180178281 | Cooper | Jun 2018 | A1 |
20180195513 | Cooper | Jul 2018 | A1 |
20180311726 | Cooper | Nov 2018 | A1 |
20190032675 | Cooper | Jan 2019 | A1 |
20190270134 | Cooper | Sep 2019 | A1 |
20190293089 | Cooper | Sep 2019 | A1 |
20190351481 | Tetkoskie | Nov 2019 | A1 |
20190360491 | Cooper | Nov 2019 | A1 |
20190360492 | Cooper | Nov 2019 | A1 |
20190368494 | Cooper | Dec 2019 | A1 |
20200130050 | Cooper | Apr 2020 | A1 |
20200130051 | Cooper | Apr 2020 | A1 |
20200130052 | Cooper | Apr 2020 | A1 |
20200130053 | Cooper | Apr 2020 | A1 |
20200130054 | Cooper | Apr 2020 | A1 |
20200182247 | Cooper | Jun 2020 | A1 |
20200182248 | Cooper | Jun 2020 | A1 |
20200360988 | Fontana | Nov 2020 | A1 |
20200360989 | Cooper | Nov 2020 | A1 |
20200362865 | Cooper | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
683469 | Mar 1964 | CA |
2115929 | Aug 1992 | CA |
2244251 | Jun 1998 | CA |
2305865 | Feb 2000 | CA |
2176475 | Jul 2005 | CA |
2924572 | Apr 2015 | CA |
392268 | Sep 1965 | CH |
1800446 | Dec 1969 | DE |
168250 | Jan 1986 | EP |
665378 | Aug 1995 | EP |
1019635 | Jun 2006 | EP |
543607 | Mar 1942 | GB |
942648 | Nov 1963 | GB |
1185314 | Mar 1970 | GB |
2217784 | Mar 1989 | GB |
58048796 | Mar 1983 | JP |
63104773 | May 1988 | JP |
11-270799 | Oct 1999 | JP |
5112837 | Jan 2013 | JP |
227385 | Apr 2005 | MX |
90756 | Jan 1959 | NO |
416401 | Feb 1974 | SU |
773312 | Oct 1980 | SU |
199808990 | Mar 1998 | WO |
199825031 | Jun 1998 | WO |
200009889 | Feb 2000 | WO |
2002012147 | Feb 2002 | WO |
2004029307 | Apr 2004 | WO |
2010147932 | Dec 2010 | WO |
2014055082 | Apr 2014 | WO |
2014150503 | Sep 2014 | WO |
2014185971 | Nov 2014 | WO |
Entry |
---|
“Response to Final Office Action and Request for Continued Examination for U.S. Appl. No. 09/275,627,” including Declarations of Haynes and Johnson, dated Apr. 16, 2001. |
Document No. 504217: Excerpts from “Pyrotek Inc.'s Motion for Summary Judgment of Invalidity and Unenforceability of U.S. Pat. No. 7,402,276,” Oct. 2, 2009. |
Document No. 505026: Excerpts from “MMEI's Response to Pyrotek's Motion for Summary Judgment of Invalidity or Enforceability of U.S. Pat. No. 7,402,276,” Oct. 9, 2009. |
Document No. 507689: Excerpts from “MMEI's Pre-Hearing Brief and Supplemental Motion for Summary Judgment of Infringement of Claims 3, 4, 15, 17-20, 26, 28 and 29 of the '074 Patent and Motion for Reconsideration of the Validity of Claims 7-9 of the '276 Patent,” Nov. 4, 2009. |
Document No. 517158: Excerpts from “Reasoned Award,” Feb. 19, 2010. |
Document No. 525055: Excerpts from “Molten Metal Equipment Innovations, Inc.'s Reply Brief in Support of Application to Confirm Arbitration Award and Opposition to Motion to Vacate,” May 12, 2010. |
USPTO; Notice of Reissue Examination Certificate dated Aug. 27, 2001 in U.S. Appl. No. 90/005,910. |
Number | Date | Country | |
---|---|---|---|
20200360988 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62849787 | May 2019 | US | |
62852846 | May 2019 | US |