The present invention relates to liquid (e.g., biological) sample testing techniques, and more particularly, to a submersible sensor device configured as a small pellet for testing biological and other liquid samples.
Bioassays typically involve dipping a test strip into a liquid biological sample and then analyzing the test strip using a device such as a benchtop analyzer. However, in the time between sample collection and analysis, samples can become contaminated, degraded, or otherwise compromised. For instance, there might be a considerable amount of time between when a sample is collected from a patient and when the sample is analyzed. During that time the sample might be transported and/or stored before it reaches the testing site. All the while, the sample must be properly handled in order to maintain its integrity and usefulness for testing. Proper handling can include preventing contamination, leaking, maintaining the sample at a proper temperature to prevent degradation, etc. Thus, there are many opportunities for a sample to become compromised before it is tested.
Therefore, techniques that enable comprehensive testing of a sample upon collection would be desirable.
The present invention provides a submersible sensor device configured as a small pellet for testing biological and other liquid samples. In one aspect of the invention, a sensing device is provided. The sensing device includes: a housing; and one or more sensors contained within the housing, wherein the housing hermetically seals the sensors such that the sensing device is fully submersible in a liquid analyte.
In another aspect of the invention, another sensing device is provided. The sensing device includes: a housing; and one or more sensors hermetically sealed within the housing such that the sensing device is fully submersible in an analyte, wherein the housing includes a flat top surface and a flat bottom surface opposite the flat top surface, and wherein the flat top surface and the flat bottom surface are both circular such that the sensing device is shaped as a pellet having a diameter d of less than or equal to about 10 cm, and a thickness t of from about 1.25 mm to about 25 mm and ranges therebetween.
In yet another aspect of the invention, a method for analysis of a liquid sample is provided. The method includes: submerging a sensing device in the liquid sample, the sensing device including a housing, and one or more sensors contained within the housing, wherein the housing hermetically seals the sensors such that the sensing device is fully submersible in the liquid sample; collecting data from the liquid sample using the sensors; transmitting the data from the sensing device to at least one of a data management system and electronic records.
In yet another aspect of the invention, a system for analysis of a liquid sample is provided. The system includes: at least one sensing device having a housing, and one or more sensors contained within the housing, wherein the housing hermetically seals the sensors such that the sensing device is fully submersible in the liquid sample; and a data management system communicatively connected to the at least one sensing device.
A more complete understanding of the present invention, as well as further features and advantages of the present invention, will be obtained by reference to the following detailed description and drawings.
Provided herein are improved techniques for point-of-collection sample testing using a submersible sensing device. The sensing device includes multiple sensors for sample analysis with integrated communication, power and identification (ID) components.
According to an exemplary embodiment, the sensing device is pellet-shaped and has small dimensions so that is can be easily submerged in a liquid sample that has been collected, e.g., from a patient. For testing, the device is simply dropped into a container such as a cup containing the sample. The device can operate with either major surface (top or bottom) resting against the bottom of the sample cup. Preferably, the pellet is also thin so that only a minimum volume of sample is needed to submerse the pellet for testing.
By way of example only, according to one exemplary embodiment, the pellet-shaped device has a diameter d of less than or equal to about 10 centimeters (cm), preferably less than or equal to about 2.5 cm, and more preferably less than or equal to about 2 cm, e.g., from about 0.5 cm to about 1 cm and ranges therebetween. The thickness t of the device is preferably less than or equal to about 3 cm, more preferably less than or equal to about 0.5 cm, e.g., from about 1.25 millimeters (mm) to about 25 mm and ranges therebetween. The size of the device is important when testing is being performed on samples contained in standard-sized collection vessels or cups. For instance, sample testing for biologics such as for urinalysis often involve an analyte contained in a sample cup that has dimensions approximating 60 mm (diameter)×70 mm (height). Thus, in order for the pellet-shaped device to be placed in the sample cup with either its top or bottom surface resting fully on the bottom of the cup, the device itself must have a diameter that is smaller than the diameter of the sample cup. Further, since the device can work fine in either orientation with its top or bottom surface resting on the bottom of the sample cup, the smaller dimensions of the device (as compared to the sample cup) insure that when a user simply drops the device into the sample/sample cup the device will submerge in the sample and come to rest (with either its top or bottom surface) on the bottom of the sample cup.
As provided above, the pellet-shaped sensing device is equipped with a multitude of different sensors. The combination of sensors employed in a given one of the present sensing devices can vary depending on the target analyte. For instance, one set of sensors might be useful for collecting data from a biological sample, such as during urinalysis, whereas another different set of sensors might be better suited to testing a water sample or liquid chemical sample. The pellet-shaped sensing device can be configured accordingly. By way of example only, suitable sensors for use in the present sensing device include, but are not limited to, electrical sensors, electrochemical sensors, optical sensors, pressure sensors, temperature sensors, specific gravity sensors and/or acoustic sensors.
As provided above, the present pellet-shaped sensing device can have an integrated power component. For instance, the sensing device can be configured as a stand-alone device with an integrated battery source. This stand-alone configuration is especially beneficial for use in the field where an external power source might not be readily available. Alternatively, the sensing device can be part of an assembly that includes a system hub used to power the device, for example, via inductive charging. Use of such an assembly is well suited for environments with a constant power source, such as a hospital or doctor's office, laboratory, clinic, etc. Optionally, the integrated power component can be rechargeable via the system hub using direct connection to an external power source and/or via inductive charging. However, inductive charging can be used to power the device when the device itself does not have a self-contained integrated power component. Other power sources contemplated for use herein include, but are not limited to, a photovoltaic-based power supply such as a photovoltaic cell for generating power when under illumination, and a rechargeable battery for storing the energy generated by the photovoltaic cell.
An overview of the present techniques is now provided by way of reference to methodology 100 of
Advantageously, testing can be performed at the point of collection of the sample thus preserving the integrity of the sample and data gleaned therefrom. For instance, a physician collecting a biological sample from a patient, a researcher collecting a water sample, etc. can collect the analyte sample (e.g., in a sample cup) and then immediately drop the pellet-shaped sensing device into the sample. By comparison, most conventional testing approaches involve benchtop equipment that is not suited for the field and thus oftentimes involve an extended period of time between when the sample is collected and when it is analyzed, during which time the sample is extensively handled such as during transport, shipping, etc.
In step 104 the pellet-shaped sensing device, now submerged in the analyte, is used to gather/collect data from the analyte. As provided above, the device can include a variety of different sensors (e.g., electrical sensors, electrochemical sensors, optical sensors, pressure sensors, temperature sensors, specific gravity sensors and/or acoustic sensors) configured to collect data from the analyte. The number and/or types of sensors present in the device can depend on the particular application and analyte being tested. For instance, certain biomarker sensors might be useful in evaluating a biological sample, however they would not apply in testing a water sample. Thus, according to an exemplary embodiment, different pellet-shaped sensing devices are available for different testing applications, varying from one another based on the particular sensors they include. In addition to gathering data from the analyte, information about the source of the sample may be recorded and associated with the other results. For example the patient identification (ID) may be added using a wireless link from a phone or other input device communicating with the pellet.
In step 106, the sensing device transmits the data it has collected. According to an exemplary embodiment, the data collected by the sensing device is transmitted to the cloud through a local hub and then to a data management system and/or electronic records such as electronic medical records or EMRs. See, for example, system 1100, described below. Preferably, data transmission from the pellet-shaped sensing device is performed wirelessly to enable the sensing device to be introduced into the analyte as a stand-alone unit. However, embodiments are also anticipated herein where data is obtained from the pellet-shaped sensing device via a wired connection and/or collected and stored by the sensing device and subsequently transmitted to the system for archiving, analysis, etc.
The data transmitted from the sensing device can then be analyzed (step 108) and/or stored (archived) to create an electronic record (step 110). According to an exemplary embodiment, the data is processed via a data management system (see system 1100). As will be described in detail below, based on the data analysis a diagnostic report can be generated and transmitted to the appropriate user or users. For instance, for medical diagnostics analysis of the data collected from a patient sample (such as from urinalysis) can be transmitted to the doctor and/or hospital, clinic, etc, treating the patient. Similarly, analysis of data from a water sample can be transmitted to the laboratory, researcher, etc. conducting the testing.
A more detailed description of the features of the present pellet-shaped sensing device is now provided by way of reference to the exemplary configuration of the device shown illustrated in
As shown in
Microfluidics can be used to collect a unitized amount of sample from the analyte to the sensing surface. For instance, the sensing device can include an absorbent pad 204 on at least one surface thereof covering the sensors (see for example
In the present example, the pellet-shaped optical sensor includes at least one optical sensor 208 on a surface thereof. Optical sensors are useful, for example, in applications involving color detection such as immunoassays and/or applications where determining the color of the analyte is needed immunoassays, for example, are biochemical tests that can be read using observable color changes based on the reagents. Additives, impurities, etc. present in a water sample might affect its color which can be detected using an optical sensor 208. An exemplary optical sensor that may be used in accordance with the present techniques is shown in
The device shown in
The present exemplary configuration also includes at least one pressure sensor or strain gauge 212 on a surface of the device. A pressure sensor or strain gauge can be used to obtain density measurements of the analyte in order to determine certain parameters such as specific gravity. Suitable pressure sensors are commercially available, for example, from First Sensor, Berlin, Germany. An exemplary strain gauge and techniques for determining specific gravity are described in conjunction with the description of
An acoustic sensor 214 can also be integrated into the design. As will be described below, an acoustic sensor can be used in assessing the height of the liquid analyte above the strain gauge (e.g., based on time of flight of an acoustic wave). Suitable acoustic sensors include, but are not limited to, the surface acoustic wave (SAW) sensors available, for example, from the EV Group, Austria.
An ion-sensitive field effect transistor (FET) sensor 216 on a surface of the sensing device is also part of the design in this example. An ion-sensitive FET can be used to determine the pH of the analyte. For instance, an ion-sensitive FET can measure the concentration of H+ or OH− ions in a solution based on an interface potential formed on the gate insulator. See, for example, Lee et al., “Ion-Sensitive Field-Effect Transistor for Biological Sensing,” Sensors September 2009, 9, 7111-7131, the contents of which are incorporated by reference as if fully set forth herein.
Other sensors may also be included to monitor the sample quality such as temperature, contaminants, etc. Sample temperature is monitored using a temperature sensor 218. As will be described in detail below, temperature measurements are also useful in specific gravity calculations. The notion regarding contaminants is that one wants to remove any possible interference in the data from contaminants such as bacteria and/or chemicals found for example in medications, and to initiate an (e.g., audible) alarm if contaminants are detected.
The method of contaminant detection depends on the type of analytic. It can involve optical sensors measuring a change in fluorescence or, less commonly, in absorbance or luminescence of the biosensor surface upon analyte recognition. It can also be electrical, such as impendence or electro chemical sensors to measure the change in impedance or potential or current upon the binding of the analyte to surface or redox reaction. An exemplary process for bacteria detection is described, for example, in Ahmed et al., “Biosensors for Hole-Cell Bacterial Detection,” Clinical Microbiology Reviews, July 2014, 27(3): 631-646, the contents of which are incorporated by reference as if fully set forth herein.
For medications such as antibiotics, conventional methods of detection such as chromatography, capillary electrophoresis (CE), diode array (DA), flame ionization (FI), and enzyme-linked immunosorbent assay (ELISA) all involve complicated processes. However, nanoparticle based optical and electrochemical sensors may instead be employed. See, for example, Lan et al., “Recent advances in nanomaterial-based biosensors for antibiotics detection,” Biosensors and Bioelectronics, vol. 91, May 2017, pgs. 504-514, the contents of which are incorporated by reference as if fully set forth herein.
As shown in
Preferably, the sensing device can detect when it is added to (or removed from) a liquid sample so that it knows when to start (or complete) an analysis. For instance, an accelerometer 228 can detect the motions associated with the pellet being dropped into a liquid sample and subsequently being retrieved from the sample. A variety of suitable accelerometer and other motion sensors are commercially available, for example, from PCB®, Depew, N.Y. As shown in
One type of optical sensor contemplated for use in the present sensing device is an immunoassay optical detector 300. See, for example,
Referring for instance to
As shown in
Generally, an immunoassay strip is formed from a porous material and, via capillary action, an analyte sample is transported laterally across the strip. The capillary action is used to limit fluid volume and avoid excessive dilution of the reagents. As the sample moves across the strip it contacts one or more areas containing certain reagents that react with the analyte (or absent the corresponding analyte do not react) forming a complex. Accumulation of the complexes changes a color of the strip. The strip can include multiple lanes or test pads. See
In order to illuminate the immunoassay strip, at least one light source 312 is provided. At least one light detector 314 is used to detect the light reflected off of the immunoassay test strip 302. Optionally, lenses 310 can be employed between the light source(s) 312/light detector(s) 314 and the prism 306 to focus the light. In this particular example, the light source(s) are LEDs, and the light detectors are photodetectors, such as photodiodes (PD). CCD/CMOS imager can also be used as light detectors. Thus, according to an exemplary embodiment, LEDs are used as a light source and photodiodes (PD) are used as light detectors in optical sensor 300, e.g., with the LEDs generating light to illuminate the immunoassay test strip and the photodiodes detecting the light reflected off of the immunoassay test strip. In the exemplary configuration shown in
The amount of the liquid analyte on each of the test pads should be controlled and limited to ensure the accuracy and avoid cross contamination between the test pads. There are several ways to do this. One example is to build separators between each test pad. See
Another type of optical sensor contemplated for use in the present sensing device is a microscope component 700. See
According to an exemplary embodiment, the microfluidic channel 704 is coated with a dye, stain, and/or other type of marker specific for one or more reagents. As the analyte enters the microscope component 700 through the inlet 702 and passes through the microfluidic channel 704 the reagents, if present in the analyte, will react with the markers. This reaction (or lack thereof) is then captured in an image via the imaging device 706. For instance, reaction of a stain or dye with a particular reagent will cause a particular color or other indicia to be present in the image. According to an exemplary embodiment, a membrane 712 is installed at an end of the microfluidic channel 704 proximal to the imaging device 706 to collect particle sediment 714 in the sample while allowing liquid to pass. Microscope component 700 (via the imaging device 706) can take images of the sediment for further analysis.
According to an exemplary embodiment, the imaging device 706 is a charge-coupled device/complementary metal oxide semiconductor CCD/CMOS imager. Suitable CCD/CMOS imaging devices include, but are not limited to the Omnivision OV6922 2.5 micrometer (μm) pixel size camera on a chip available from OmniVision Technologies, Inc., Santa Clara, Calif. Any suitable light source may be employed in the microscope component 700. According to an exemplary embodiment, the light source is an LED light source. See
The exemplary imaging device described immediately above is a high-resolution optic that enables component 700 to detect the presence of microscopic particles in the sediment 714. For instance, in the context of a patient sample submitted, e.g., for urinalysis, microscope component 700 can be used to detect and quantify white blood cells, red blood cell casts, epithelial cells, hyaline casts, crystals, etc. by looking at color, shape, and relevant features for the different cell types.
As provided above, the present sensing device can include a strain gauge. A strain gauge is employed to obtain useful measurements such as specific gravity from an analyte. An exemplary strain gauge 800 is shown illustrated in
Also with regard to the sensing device being operable in either orientation, a vent line 810 is provided leading from the bottom of the cavity 804 out to an opposite side of the gauge housing 806 (from the cavity 804). That way, should the sensing device land upside down in the analyte then air can be easily dispelled from the cavity 804 through the vent line 810. Suitable strain sensors include, but are not limited to, microelectromechanical (MEMs) sensors available, for example, from the Amphenol Corporation, Wallingford, Conn.
According to an exemplary embodiment, the float 802 has a known density of less than 1 and is of a known volume. Since the density and volume of the float 802 are known, specific gravity of the analyte can be calculated from the buoyancy force on the strain sensor 800. With a known temperature value of the analyte (via a temperature sensor—see above), corrections can be made for thermal expansion of the fluid. It is notable that the sign of force is reversed if the sensing device is upside down in the analyte.
An exemplary process for calculating the specific gravity of an analyte is now described by way of reference to
P(t)=H(t)Asρ(t), (1)
wherein H (t) is the height of the liquid analyte above the strain gauge in the sample cup (see for example
Absent medical conditions, urinalysis for adults normally has a specific gravity of from about 1.000 to about 1.030. However, there is an increased specific gravity associated with certain medical conditions such as dehydration, excessive sweating, decreased blood flow to kidneys, etc. Conversely, there is a decreased specific gravity associated with other medical conditions such as renal failure, interstitial nephritis, etc. Thus, based on the determination made using Equation 1 above, it can be determined whether the specific gravity of a particular analyte (namely the ratio of the density of the liquid analyte ρ(t) calculated from the sensor readings as per Equation 1, above, to density readings of adults without a medical condition as a reference) indicates the existence of a medical condition (i.e., the analyte has a specific gravity that is outside of the norm) and, if so, what type of condition it might or might not be (e.g., a high specific gravity can exclude those conditions that cause a low specific gravity and vice versa).
As shown in
As provided above, once the device is submerged in the analyte, it collects data via its multiple sensors, and transmits that data (e.g., wirelessly) to data management system 1102. The data collected from the sensing device by data management system 1102 via cloud 1101 can then be analyzed and/or stored as an electronic record in database 1104. By way of example only, data collected from a patient sample for urinalysis might be analyzed collectively from all of the sensors to determine whether the patient has biomarkers or other indicators for known conditions. The measurement from multiple sensors can also be used to calculate the correction of interference. For instance, pH effect on glucose can be corrected with known pH. For instance, urinalysis biomarkers can include pH, specific gravity, leucocytes, nitrate, protein, glucose, ketones, urobilinogen, bilirubin, and blood, and may also include other biomarkers for sepsis/inflammation, bacterial speciation, tumor markers, and fibril aggregation. Also, for example, machine-learning particle recognition algorithms can be applied to urinalysis samples and new data used to further train and improve visual analytics of the image data captured by the optical sensors. Interested parties 1106, e.g., doctors, researchers, etc. can access the data and/or data analysis.
Turning now to
Processor device 1220 can be configured to implement the methods, steps, and functions disclosed herein. The memory 1230 could be distributed or local and the processor device 1220 could be distributed or singular. The memory 1230 could be implemented as an electrical, magnetic or optical memory, or any combination of these or other types of storage devices. Moreover, the term “memory” should be construed broadly enough to encompass any information able to be read from, or written to, an address in the addressable space accessed by processor device 1220. With this definition, information on a network, accessible through network interface 1225, is still within memory 1230 because the processor device 1220 can retrieve the information from the network. It should be noted that each distributed processor that makes up processor device 1220 generally contains its own addressable memory space. It should also be noted that some or all of computer system 1210 can be incorporated into an application-specific or general-use integrated circuit.
Optional display 1240 is any type of display suitable for interacting with a human user of apparatus 1200. Generally, display 1240 is a computer monitor or other similar display.
Although illustrative embodiments of the present invention have been described herein, it is to be understood that the invention is not limited to those precise embodiments, and that various other changes and modifications may be made by one skilled in the art without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3443903 | Haack et al. | May 1969 | A |
4116066 | Mehl et al. | Sep 1978 | A |
5310526 | Yalvac | May 1994 | A |
5312009 | Ratajczak et al. | May 1994 | A |
5334348 | Saito et al. | Aug 1994 | A |
6055487 | Margery et al. | Apr 2000 | A |
6277646 | Guirguis et al. | Aug 2001 | B1 |
6485438 | Minue | Nov 2002 | B1 |
7377690 | Diede | May 2008 | B1 |
7758815 | Hartselle | Jul 2010 | B2 |
9250229 | Holmes | Feb 2016 | B2 |
9357961 | Arefieg | Jun 2016 | B2 |
9417210 | Arlen et al. | Aug 2016 | B2 |
9597010 | Thompson et al. | Mar 2017 | B2 |
20020009390 | Lappe | Jan 2002 | A1 |
20050232638 | Fucile | Oct 2005 | A1 |
20060008382 | Salamitou | Jan 2006 | A1 |
20070220798 | Davidson | Sep 2007 | A1 |
20100155319 | Felix | Jun 2010 | A1 |
20110056276 | Scott | Mar 2011 | A1 |
20110223673 | Profitt | Sep 2011 | A1 |
20130030366 | Robertson et al. | Jan 2013 | A1 |
20130284595 | Lin | Oct 2013 | A1 |
20150248833 | Arne | Sep 2015 | A1 |
20150253321 | Chou et al. | Sep 2015 | A1 |
20170267547 | Miller | Sep 2017 | A1 |
20200348662 | Cella | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
202776284 | Mar 2013 | CN |
WO2009094761 | Aug 2009 | WO |
WO2013170011 | Nov 2013 | WO |
WO2016154262 | Sep 2016 | WO |
Entry |
---|
Adhikari et al., “Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds,” Sensors Sep. 2015, 15, 22490-22508. |
Lee et al., “Ion-Sensitive Field-Effect Transistor for Biological Sensing,” Sensors Sep. 2009, 9, 7111-7131. |
Ahmed et al., “Biosensors for Hole-Cell Bacterial Detection,” Clinical Microbiology Reviews, Jul. 2014, 27(3): 631-646. |
Lan et al., “Recent advances in nanomaterial-based biosensors for antibiotics detection,” Biosensors and Bioelectronics, vol. 91, May 2017, pp. 504-514. |
English Translation of CN202776284U, Mar. 13, 2013 by Gao Feng. |
Number | Date | Country | |
---|---|---|---|
20190090791 A1 | Mar 2019 | US |