Clinical success in cancer immunotherapy in recent years has brought great enthusiasm to our war against cancer. Immune checkpoint receptor pathway blockade monoclonal antibodies such as anti-PD-1, anti-PD-L1, and anti-CTLA-4 can reverse T effector cell (Teff) dysfunction and exhaustion, resulting in dramatic tumour shrinkage and sometimes complete remission in some patients, even with late stage metastatic diseases. However, the response rate varies greatly between tumour types: up to 40% in melanoma, 25% in non-small cell lung cancer, but <10% in most other tumour types. To date, US Food and Drug Administration (FDA) had approved seven immune checkpoint blockade monoclonal antibodies (ICB-Ab): one CTLA-4 inhibitor (ipilimumab), three PD-1 inhibitors (nivolumab, pembrolizumab, and cemiplimab), and three PD-L1 inhibitors (atezolizumab, durvalumab, and avelumab), used either alone, or in combination with other chemotherapies, against a range of tumour types.
Tumour microenvironment (TME), comprised of immune and stromal cells, vasculature, extracellular matrix, cytokines, chemokines, and growth factors, can all influence tumour response to immune checkpoint blockage (ICB) therapies. Emerging data indicates that defects in Teff cell homing to the tumour sites is a critical factor in resistance to ICB therapy. Other mechanisms of ICB resistance include the presence of immunosuppressive regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and M2 macrophages at the tumour sites. Elevated level of CCL5, CCL17, CCL22, CXCL8 and CXCL12 facilitates the recruitment of Tregs and MDSCs to the TME, resulting in a diminished ICB response. In contrast, CXCL9 and CXCL10 promote homing of cytotoxic T-cells (CTLs) to the tumour sites, boosting anti-tumour immune response; transforming growth factor beta (TGF-β) does the opposite and also upregulates Tregs. VEGF upregulates inhibitory receptors on CTLs, contributing to their exhaustion. Upregulation of other immune checkpoint receptors such as mucin domain-3 protein (TIM-3), lymphocyte-activation gene 3 (LAG-3), B and T lymphocyte attenuator (BTLA), T-cell immunoreceptor, tyrosine-based inhibition motif domain (TIGIT), and V-domain immunoglobulin-containing suppressor of T-cell activation (VISTA) has been implicated in ICB resistance. Co-expression of these checkpoint receptors can lead to T cell exhaustion. Oncogenic or tumour suppressor pathways, such as mitogen-activated protein kinase (MAPK) and PI3K-γ in the cancer cells can also influence TME by altering the immune cell compositions and cytokine profile, contributing to ICB resistance. Inhibitors against these pathways have been found to improve ICB response.
In an attempt to overcome ICB resistance, many combination therapeutic strategies have been tried preclinically and clinically. These include the addition of the following drugs to a ICB-Ab: one other ICB-Ab (antibodies against CTLA-4, PD-1, PD-L1, LAG-3 and TIM-3), chemotherapeutic agents (paclitaxel, gemcitabine and carboplatin), radiation therapy, targeted therapy (inhibitors against PI3K, VEGF, BRAF/MEK, IDO, A2AR, FGFR, EGFR, PARP and mTOR), macrophage inhibitors (inhibitors against CSF1R and ARG1), cytokine/chemokine inhibitors (inhibitors against CXCR4, CXCR2 and TGF-β), epigenetic modulators (histone deacetylase inhibitors and hypomethylating agents), immunomodulatory agents (antibodies against OX40, 41BB, GITR, CD40 and ICOS), adoptive cell transfer therapy (car T, TIL and TCR), and modulation of gut microbiome.
Advancement and optimization of nano-immunotherapy lie in the development of innovative approaches to enhance the specificity and controllability of immunotherapeutic interventions, targeting desired cell types at the TME. Advanced bionanomaterials or approaches in a more controlled manner could enhance immunotherapeutic potency by increasing the accumulation and prolonging the retention of immunomodulatory and immune cell homing agents at the TME while sparing the normal tissues and organs, thus reducing off-target adverse effects such as systemic cytokine storm. In situ assembly of nanomaterial has been demonstrated to improve the performance of bioactive molecules. One plausible explanation is that T cell targeting ligands and/or immunomodulatory agents incorporated into in situ fibrillar-transformable nanoplatform, will generate nanofibrillar networks at the TME, enhancing Teff cells homing to the tumour sites and improving immunotherapeutic efficacy, with or without additional ICB therapy.
Human epidermal growth factor receptor 2 (HER2) is overexpressed in over 20% breast cancers, and to a lesser degree in gastric cancers, colorectal cancer, ovarian cancers and bladder cancers. Unlike those cancers caused by mutated or fusion oncogenes (e.g. EGFR in lung cancers and Bcr-Abl in chronic myelocytic leukemia) which respond well to monotherapy, cancers with HER2 overexpression often require drug combinations. It is because this latter group of tumours are driven by gene amplification and massive overexpression of HER2. HER2 is a receptor tyrosine kinase that is normally activated via induced dimerization with itself or with its family members EGFR, HER3 or HER4. In HER2 positive tumours, HER2s are massively overexpressed and constitutively dimerized, leading to unrelenting activation of down-stream proliferation and survival pathways and malignant phenotype.
Because of the high expression level of HER2, trastuzumab and pertuzumab, the two anti-HER2 monoclonal antibodies are ineffective as monotherapy against these tumours. They need to be given in combinations with other HER2-targeted therapy, chemotherapy or hormonal therapy. Herein, some embodiments describe a novel HER2-mediated, peptide-based, and non-toxic transformative nano-agent that is highly efficacious as a monotherapy against HER2+ breast cancer xenograft models. This receptor-mediated transformable nanotherapy (RMTN) is comprised of peptide with unique domains that allow self-assembly to form micelles under aqueous condition and transformation into nanofibrils at the tumour site, where HER2 is encountered. The resulting nanofibrillar network effectively suppresses HER2 dimerization and downstream signaling, and facilitates tumour cell death.
Herein, smart supramolecular materials for cancer immunotherapy were constructed.
In one embodiment, the present invention provides a compound of formula (I): A-B-C (I), wherein A is a hydrophobic moiety; B is a peptide, wherein the peptide forms a beta-sheet; and C is a hydrophilic targeting ligand, wherein the hydrophilic targeting ligand is a LLP2A prodrug, LLP2A, LXY30, LXW64, DUPA, folate, a LHRH peptide, a HER2 ligand, an EGFR ligand, or a toll-like receptor agonist CpG oligonucleotides.
In another embodiment, the present invention provides a compound of formula (I): A-B-C (I), wherein A is a hydrophobic moiety; B is a peptide, wherein the peptide forms a beta-sheet; and C is a hydrophilic targeting ligand, wherein the hydrophilic targeting ligand is a LLP2A prodrug, LLP2A, LXY30, LXW64, DUPA, a LHRH peptide, a HER2 ligand, an EGFR ligand, or a toll-like receptor agonist CpG oligonucleotides and wherein when the hydrophobic moiety is bis-pyrene, then C is a LLP2A prodrug, LLP2A, LXY30, LXW64, DUPA, a LHRH peptide, an EGFR ligand, or a toll-like receptor agonist CpG oligonucleotides.
In another embodiment, the present invention provides a nanocarrier having an interior and an exterior, the nanocarrier comprising a plurality of compounds of the present invention, wherein each compound self-assembles in an aqueous solvent to form the nanocarrier such that a hydrophobic pocket is formed in the interior of the nanocarrier, and a hydrophilic group self-assembles on the exterior of the nanocarrier.
In another embodiment, the present invention provides a nanocarrier having an interior and an exterior, the nanocarrier comprising a plurality of a first conjugate and a second conjugate wherein the first conjugate comprises formula (I): A-B-C (I); and the second conjugate comprises formula (II): A′-B′-C′ (II) wherein: A and A′ are each independently a hydrophobic moiety; B and B′ are each independently a peptide, wherein each peptide independently forms a beta-sheet; and C and C′ are each independently a hydrophilic targeting ligands, wherein each hydrophilic targeting ligand is independently a LLP2A prodrug, LLP2A, LXY30, LXW64, DUPA, folate, a LHRH peptide, a HER2 ligand, an EGFR ligand, or a radiometal chelator; and wherein A and A′ are different hydrophobic moieties and/or C and C′ are different hydrophilic targeting ligands.
In another embodiment, the present invention provides a method of forming nanofibrils, comprising contacting a nanocarrier of the present invention with a cell surface or acellular component at a tumor microenvironment, wherein the nanocarrier undergoes in situ transformation to form fibrillary structures, thereby forming the nanofibrils.
In another embodiment, the present invention provides a method of treating a disease, comprising administering to a subject in need thereof, a therapeutically effective amount of a nanocarrier of the present invention, wherein the nanocarrier forms nanofibrils in situ after binding to a cell surface or acellular component at the tumor microenvironment, thereby treating the disease.
in another embodiment, the present invention provides a method of imaging, comprising administering to a subject to be imaged, an effective amount of a nanocarrier of the present invention.
The present invention provides compounds comprising a hydrophobic moiety, a beta-sheet peptide, and a hydrophilic targeting ligand, which can form nanocarriers. The nanocarriers can comprise a plurality of one conjugate or two different conjugates. The nanocarriers can transform in situ to form nanofibrils for treatment of diseases and imaging.
Unless specifically indicated otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art to which this invention belongs. In addition, any method or material similar or equivalent to a method or material described herein can be used in the practice of the present invention. For purposes of the present invention, the following terms are defined.
“A,” “an,” or “the” as used herein not only include aspects with one member, but also include aspects with more than one member. For instance, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a cell” includes a plurality of such cells and reference to “the agent” includes reference to one or more agents known to those skilled in the art, and so forth.
“Hydrophobic moiety” refers to the part of the compound which is substantially insoluble in water. For example, when a plurality of compounds are present which comprise a hydrophobic and hydrophilic moiety, the hydrophobic moiety will orient themselves in such a way as to avoid and minimize interaction with water molecules. Hydrophobicity of a moiety can be determined by one of ordinary skill in the art by using the octanol-water reference system to measure the logarithm of the partition coefficient (log P value). Log P values greater than 0 indicate the compound is hydrophobic, with greater values indicating greater hydrophobicity.
“Peptide” refers to a compound comprising two or more amino acids covalently linked by peptide bonds. As used herein, the term includes amino acid chains of any length, including full-length proteins.
“Beta-sheet”, also known as beta-pleated sheet, refers to the secondary structure in proteins and comprises beta strands stabilized by hydrogen bonds. Beta-strands can stack parallel or antiparallel to each other to form beta-sheets.
“Beta-sheet peptide domain” refers to a domain within a protein structure comprising beta-sheets.
“Beta-amyloid peptide” refers to peptides that form amyloid plaques in the brain. The formation of amyloid plaques in the brain is found in subjects with Alzheimer's disease.
“Hydrophilic targeting ligand” refers to a portion of the compound that can target cell surface receptors, cell surface proteins, or extracellular components and are hydrophilic. Hydrophilicity can be determined by measuring the log P value of a compound, wherein values less than 0 indicate hydrophilicity. Lower values indicate higher hydrophilicity. Targeting ligands can be used to target transmembrane receptors such as, but not limited to integrins and epidermal growth factor receptors, to delivery compounds, drugs, or components of interest to the cell or extracellular environment. Hydrophilic targeting ligands can include, but are not limited to peptides.
“Prodrug” refers to a compound that is biologically inactive, which becomes biologically active after being metabolized in situ. The prodrug can be metabolized by spontaneous reactions or enzymes within a mammal, resulting in an active compound. Functional groups useful in prodrugs include, but are not limited to esters, amides, carbamates, oximes, imines, ethers, phosphates, or beta-amino-ketones.
“LLP2A”, “LXY30”, and “LXW64” refer to compounds that can bind to an integrin protein. The structures of the three individual compounds are known by one of skill in the art.
“DUPA” refers to a glutamate urea compound and can be used to deliver cytotoxic drugs to prostate cancer cells. DUPA, 2-[3-(1,3-dicarboxypropyl)ureido]pentanedioic acid, has the following structure:
“LHRH peptide” refers to luteinizing hormone releasing hormone peptide, and is commercially available. LHRH peptide can be used to target ovarian and prostate cancer cells.
“HER2 ligand” refers to a ligand that can bind to the HER2 protein. Examples include, but are not limited to anti-HER2 monoclonal antibodies, such as, but not limited to trastuzumab and pertuzumab and the EGFR ligands listed below.
“EGFR ligand” refers to a ligand that can bind to the EGFR protein. Examples include, but are not limited to EGF, TGF-alpha, HB-EGF, amhiregulin, betacellulin, epigen, epiregulin, neuregulin 1, neuregulin 2, neuregulin 3, and neuregulin 4.
“Toll-like receptor agonist” refers to a compound that binds to the toll-like receptor on cells, which plays a key role in the immune system. Binding to the receptor can activate the receptor to produce a biological response. An example of a toll-like receptor agonist includes, but is not limited to CpG oligonucleotides.
“CpG oligonucleotides”, also known as CpG ODN, refer to cytosine-guanosine dinucleotide motifs. The two nucleotides can be linked by a phosphodiester linker, or a modified phosphorothioate linker.
“Dye” or “fluorescent dye” refers to a chemical molecule which emits lights, commonly in the 300-700 nm range, after excitation of the chemical molecule. Upon absorption of transferred light energy (e.g., photon), a dye molecule goes into an excited state. As the molecule exits the excited state, it emits the light energy in the form of lower energy photon (e.g., emits fluorescence) and returns the dye molecule to its ground state. A dye can be a natural chemical compound or a synthetic chemical compound. Dyes include, but are not limited to cyanines, porphyrins, and bis-pyrenes.
“Porphyrin” refers to any compound, with the following porphin core:
wherein the porphin core can be substituted or unsubstituted.
“Bis-pyrene” refers to a compound which comprises two pyrene subunits covalently linked to each other. The two pyrene subunits can be linked directly or through a linker. The linker can be any linker known to one of skill in the art, such as but not limited to, alkylenes, alkenylenes, alkynylenes, aryls, heteroaryls, aryl ketones, ketones, amines, amides, and ureas, wherein the linker can be substituted.
“Radiometal chelator” refers to a polydentate ligand binding to a single central metal atom or ion. The metal atom or ion can be a radioactive isotope of the metal. Radiometal chelators include, but are not limited to Gd(III) chelators, DOTA chelator and NOTA chelator. Gd(III) chelators include, but are not limited to gadopentetic acid, gadoteric acid, gadodiamide, gadobenic acid, gadoteridol, gadoversetamide, and gadobutrol.
“Cyanine” or “cyanine dye” refers to a synthetic dye family belonging to a polymethine group. Cyanines can be used as fluorescent dyes for biomedical imaging. Cyanines can be streptocyanines (also known as open chain cyanines), hemicyanines, and closed chain cyanines. Closed chain cyanines have nitrogens which are each independently part of a heteroaromatic moiety.
“Drug” refers to an agent capable of treating and/or ameliorating a condition or disease. A drug may be a hydrophobic drug, which is any drug that repels water. Hydrophobic drugs useful in the present invention include, but are not limited to, deoxycholic acid, taxanes, doxorubicin, etoposide, irinotecan, SN-38, cyclosporin A, podophyllotoxin, Carmustine, Amphotericin, Ixabepilone, Patupilone (epothelone class), rapamycin and platinum drugs. Other drugs includes non-steroidal anti-inflammatory drugs, and vinca alkaloids such as vinblastine and vincristine. The drugs of the present invention also include prodrug forms. One of skill in the art will appreciate that other drugs are useful in the present invention.
“Chemotherapeutic agent” refers to chemical drugs that can be used in the treatment of diseases such as, but not limited to, cancers, tumors and neoplasms. In some embodiments, a chemotherapeutic agent can be in the form of a prodrug which can be activated to a cytotoxic form. Chemotherapeutic agents commonly known by one of ordinary skill in the art can be used in the present invention. Chemotherapeutic agents include, but are not limited to resiquimod, gardiquimod, and imiquimod.
“Immunomodulatory agent” refers to a type of drug which can modify immune responses by stimulating or suppressing the immune system. Immunomodulatory agents include, but are not limited to resiquimod, gardiquimod, and imiquimod.
“Anti-HER2 rhumAb 4D5” refers to a type of HER2 antibody, and is also known as trastuzumab. Trastuzumab is commonly used to treat breast and stomach cancer and is commercially available. Trastuzumab comprises at least 50% peptide sequence identity of SEQ ID NO: 4. The peptide sequence of trastuzumab is described in “Rationally designed anti-HER2/neu peptide mimetic disables P185HER2/neu tyrosine kinases in vitro and in vivo” (Park et al. Nat Biotechnol. 2000 February; 18(2):194-8.)
“CDR-H3 loop” refers to a region inside a HER2 antibody involved with antigen binding.
“Nanocarrier” or “nanoparticle” refers to a micelle resulting from aggregation of the compounds of the invention. The nanocarrier of the present invention can have a hydrophobic core and a hydrophilic exterior.
“Nanofibrils” refer to tubular, rod-like fibrils which have a diameter ranging from tens to hundreds of nanometers. Nanofibrils can have high length-to-diameter ratios. Nanofibrils of the present invention can be formed by an in situ transformation of the nanoparticles after binding at the targeted site.
“Fibrillary structures” refer to linear, rod-like fibrils with diameters on the order of nanometers to micrometers and have a high length-to-diameter ratio. Fibrillary structures may include biopolymers. Fibrillary structures include, but are not limited to, nanofibrils and microfibrils.
“Cell surface” refers to the plasma membrane, which separates the extracellular space from the interior of the cell. The cell surface comprises the lipid bilayer, proteins, and carbohydrates.
“Acellular component” refers to the extracellular environment of a cell and includes, but is not limited to the extracellular matrix, extracellular vesicles, and cytokines surround a cell. The extracellular matrix comprises collagens, fibronectin, and other matrix proteins. Ligands and compounds can interact with an acellular component of cancerous cells to affect the growth of cancer cells.
“Tumor microenvironment” refers to tumor cells and the acellular environment surrounding it, including, but not limited to the extracellular matrix, signaling molecules, immune cells, stromal cells, vasculature, blood vessels, cytokines, chemokines, growth factors, and fibroblasts. Tumors can interact with the surround cells in the microenvironment through the lymphatic and circulatory systems to affect the growth and evolution of cancer cells.
“Treat”, “treating” and “treatment” refers to any indicia of success in the treatment or amelioration of an injury, pathology, condition, or symptom (e.g., pain), including any objective or subjective parameter such as abatement; remission; diminishing of symptoms or making the symptom, injury, pathology or condition more tolerable to the patient; decreasing the frequency or duration of the symptom or condition; or, in some situations, preventing the onset of the symptom. The treatment or amelioration of symptoms can be based on any objective or subjective parameter; including, e.g., the result of a physical examination.
“Administering” refers to oral administration, administration as a suppository, topical contact, parenteral, intravenous, intraperitoneal, intramuscular, intralesional, intranasal or subcutaneous administration, intrathecal administration, or the implantation of a slow-release device e.g., a mini-osmotic pump, to the subject.
“Subject” refers to animals such as mammals, including, but not limited to, primates (e.g., humans), cows, sheep, goats, horses, dogs, cats, rabbits, rats, mice and the like. In certain embodiments, the subject is a human.
“Therapeutically effective amount” or “therapeutically sufficient amount” or “effective or sufficient amount” refers to a dose that produces therapeutic effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, e.g., Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992); Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); Pickar, Dosage Calculations (1999); and Remington: The Science and Practice of Pharmacy, 20th Edition, 2003, Gennaro, Ed., Lippincott, Williams & Wilkins). In sensitized cells, the therapeutically effective dose can often be lower than the conventional therapeutically effective dose for non-sensitized cells.
“Cancer” refers to diseases with abnormal cell growth and divides without control. Cancer cells can spread locally or through the bloodstream and lymphatic system to other parts of the body. The term is also intended to include any disease of an organ or tissue characterized by poorly controlled or uncontrolled multiplication of normal or abnormal cells in that tissue and its effect on the body as a whole.
“Imaging” refers to using a device outside of the subject to determine the location of an imaging agent, such as a compound of the present invention. Examples of imaging tools include, but are not limited to, fluorescence microscopy, positron emission tomography (PET), magnetic resonance imaging (MRI), ultrasound, single photon emission computed tomography (SPECT) and x-ray computed tomography (CT). The positron emission tomography detects radiation from the emission of positrons by an imaging agent.
In some embodiments, the present invention provides a compound of formula (I): A-B-C (I), wherein A is a hydrophobic moiety; B is a peptide, wherein the peptide forms a beta-sheet; and C is a hydrophilic targeting ligand. The hydrophilic targeting ligand can include a HER2 ligand, and any other suitable target ligand.
In some embodiments, the present invention provides a compound of formula (I): A-B-C (I), wherein A is a hydrophobic moiety; B is a peptide, wherein the peptide forms a beta-sheet; and C is a hydrophilic targeting ligand, wherein the hydrophilic targeting ligand is a LLP2A prodrug, LLP2A, LXY30, LXW64, DUPA, folate, a LHRH peptide, a HER2 ligand, an EGFR ligand, or a toll-like receptor agonist CpG oligonucleotides.
In some embodiments, the present invention provides a compound of formula (I) wherein A is bis-pyrene; B is a peptide, wherein the peptide forms a beta-sheet; and C is a HER2 ligand.
In some embodiments, the present invention provides a compound of formula (I): A-B-C (I), wherein A is a hydrophobic moiety; B is a peptide, wherein the peptide forms a beta-sheet; and C is a hydrophilic targeting ligand, wherein when the hydrophobic moiety is bis-pyrene, then C is other than a HER2 ligand.
In some embodiments, the present invention provides a compound of formula (I): A-B-C (I), wherein A is a hydrophobic moiety; B is a peptide, wherein the peptide forms a beta-sheet; and C is a hydrophilic targeting ligand, wherein the hydrophilic targeting ligand is a LLP2A prodrug, LLP2A, LXY30, LXW64, DUPA, folate, a LHRH peptide, a HER2 ligand, an EGFR ligand, or a toll-like receptor agonist CpG oligonucleotides and wherein when the hydrophobic moiety is bis-pyrene, then C is a LLP2A prodrug, LLP2A, LXY30, LXW64, DUPA, folate, a LHRH peptide, an EGFR ligand, or a toll-like receptor agonist CpG oligonucleotides.
In some embodiments, the present invention provides a compound of formula (I): A-B-C (I), wherein A is a hydrophobic moiety; B is a peptide, wherein the peptide forms a beta-sheet; and C is a hydrophilic targeting ligand, wherein the hydrophilic targeting ligand is a LLP2A prodrug, LLP2A, LXY30, LXW64, DUPA, a LHRH peptide, a HER2 ligand, an EGFR ligand, or a toll-like receptor agonist CpG oligonucleotides and wherein when the hydrophobic moiety is bis-pyrene, then C is a LLP2A prodrug, LLP2A, LXY30, LXW64, DUPA, a LHRH peptide, an EGFR ligand, or a toll-like receptor agonist CpG oligonucleotides.
In some embodiments, the present invention provides a compound of formula (I): A-B-C (I), wherein A is a hydrophobic moiety; B is a peptide, wherein the peptide forms a beta-sheet; and C is a hydrophilic targeting ligand, wherein the hydrophilic targeting ligand is a LLP2A prodrug, LLP2A, LXY30, LXW64, DUPA, folate, a LHRH peptide, a HER2 ligand, an EGFR ligand, or a toll-like receptor agonist CpG oligonucleotides and wherein when the hydrophobic moiety is bis-pyrene, then C is a LLP2A prodrug, LLP2A, LXY30, LXW64, DUPA, folate, a LHRH peptide, an EGFR ligand, or a toll-like receptor agonist CpG oligonucleotides.
Hydrophobic moieties useful in the present invention includes any suitable hydrophobic moiety known by one of skill in the art. Hydrophobicity and hydrophilicity are commonly measured by the log P values of the compounds using the octane-water reference system. Values lower than 0 indicate hydrophilicity whereas values higher than 0 indicate hydrophobicity. Hydrophobic moieties useful in the present invention includes moieties with log P values of at least 1. In some embodiments, hydrophobic moieties useful in the present invention have a log P value of at least 1.5. In some embodiments, hydrophobic moieties useful in the present invention have a log P value of 1.5-15. Hydrophobic moieties include, but are not limited to cholesterol, vitamin D, vitamin D derivatives, vitamin E, vitamin E derivatives, dyes, drugs, and radiometal chelators. In some embodiments, the hydrophobic moiety is cholesterol, vitamin D, vitamin D derivatives, vitamin E, vitamin E derivatives, a dye, or a drug. In some embodiments, the hydrophobic moiety is cholesterol, vitamin D, vitamin E, a dye, or a drug. In some embodiments, the hydrophobic moiety is cholesterol, vitamin D, or vitamin E. In some embodiments, the hydrophobic moiety is a dye or drug.
Dyes useful in the present invention include any dye described in, but not limited to, Johnson, I., Histochemical Journal, 20:123-140 (1998), and The Molecular Probes® Handbook, 11th Edition, ed. Johnson and Spence, Life Technologies, Carlsbad, Calif., 2010. The dyes can be fluorescent dyes, triarylmethane dyes, cyanine dyes, benzylidene imidazolinone dyes, indigo dyes, bis-pyrenes and porphyrins. In some embodiments, the hydrophobic moiety is a dye. In some embodiments, the hydrophobic moiety is a fluorescent dye, porphyrin, or bis-pyrene. In some embodiments, the hydrophobic moiety is a cyanine dye, porphyrin, or bis-pyrene.
Drugs useful in the present invention include chemotherapeutic agents and immunomodulatory agents. For example, the drugs can be, but are not limited to, deoxycholic acid, or the salt form deoxycholate, pembrolizumab, nivolumab, cemiplimab, a taxane (e.g., paclitaxel, docetaxel, cabazitaxel, Baccatin III, 10-deacetylbaccatin, Hongdoushan A, Hongdoushan B, or Hongdoushan C), doxorubicin, etoposide, irinotecan, SN-38, cyclosporin A, podophyllotoxin, Carmustine, Amphotericin, Ixabepilone, Patupilone (epothelone class), rapamycin and platinum drugs. Other drugs include non-steroidal anti-inflammatory drugs, and vinca alkaloids such as vinblastine and vincristine. In some embodiments, the drug is paclitaxel, resiquimod, gardiquimod, or deoxycholate.
In some embodiments, the hydrophobic moiety is a chemotherapeutic agent, a fluorescent dye, an immunomodulatory agent, a toll-like receptor agonist, a small molecule agonist of stimulator of interferon gene (STING), porphyrin, deoxycholate, cholesterol, vitamin D, or vitamin E. In some embodiments, the hydrophobic moiety is a chemotherapeutic agent, a fluorescent dye, an immunomodulatory agent, a small molecule agonist of stimulator of interferon gene (STING), porphyrin, cholesterol, vitamin D, or vitamin E. In some embodiments, the hydrophobic moiety is a chemotherapeutic agent, a fluorescent dye, an immunomodulatory agent, a small molecule agonist of stimulator of interferon gene (STING), porphyrin or deoxycholate. In some embodiments, the hydrophobic moiety is a chemotherapeutic agent, a fluorescent dye, an immunomodulatory agent, porphyrin or deoxycholate. In some embodiments, the hydrophobic moiety is paclitaxel, bis-pyrene, cyanine dye, resiquimod, gardiquimod, amidobenzimidazole, porphyrin, or deoxycholate. In some embodiments, the hydrophobic moiety is paclitaxel, bis-pyrene, cyanine dye, resiquimod, gardiquimod, porphyrin, or deoxycholate. In some embodiments, the hydrophobic moiety is resiquimod or porphyrin.
Porphyrins useful in the present invention include any porphyrin known by one of skill in the art. In some embodiments, the porphyrin is a substituted or unsubstituted porphin, protoporphyrin IX, octaethylporphyrin, tetraphenyl porphyrin, pyropheophorbide-a, pheophorbide, chlorin e6, purpurin or purpurinimide. In some embodiments, the porphyrin is pyropheophorbide-a, pheophorbide, chlorin e6, purpurin or purpurinimide. In some embodiments, the porphyrin is pheophorbide-a. In some embodiments, the porphyrin has the following structure:
In some embodiments, the hydrophobic moiety is bis-pyrene. Bis-pyrenes useful in the present invention include any bis-pyrene known by one of skill in the art. In some embodiments, the bis-pyrene comprises the following moieties:
In some embodiments, the bis-pyrene comprises the following:
In some embodiments, the bis-pyrene has the following structure:
The peptides useful in the present invention can be any suitable peptide, and have any suitable peptide sequence length known by one of skill in the art. In some embodiments, the peptide is a peptide sequence 5-50 amino acids in length. In some embodiments, the peptide is a peptide sequence 5-40 amino acids in length. In some embodiments, the peptide is a peptide sequence 5-30 amino acids in length. In some embodiments, the peptide is a peptide sequence 5-25 amino acids in length. In some embodiments, the peptide is a peptide sequence 5-20 amino acids in length. In some embodiments, the peptide is a peptide sequence 5-15 amino acids in length. In some embodiments, the peptide is a peptide sequence about 5-10 amino acids in length.
Adjacent beta-strand peptides form hydrogen bonds between each strand resulting in beta sheet peptides. The beta-sheet peptide sequences useful in the present invention can be any suitable peptide sequence known by one of skill in the art. For example, commonly known beta-sheet peptides are described in “Branched KLVFF tetramers strongly potentiate inhibition of beta-amyloid aggregation” (Chafekar et al., Chembiochem. 2007 Oct. 15; 8(15):1857-64). In some embodiments, the peptide comprises a peptide sequence from a beta-sheet peptide domain of green fluorescent protein, interleukins, immunoglobulins, or beta-amyloid peptide. In some embodiments, the peptide comprises a peptide sequence from a beta-sheet peptide domain of a beta-amyloid peptide. In some embodiments, the beta-amyloid peptide is beta-amyloid 40 or beta-amyloid 42. In some embodiments, the beta-amyloid peptide is beta-amyloid 40.
In some embodiments, the peptide comprises at least 40% sequence identity to SEQ ID NO:1. In some embodiments, the peptide comprises at least 50% sequence identity to SEQ ID NO:1. In some embodiments, the peptide comprises at least 60% sequence identity to SEQ ID NO:1. In some embodiments, the peptide comprises at least 80% sequence identity to SEQ ID NO:1. In some embodiments, the peptide comprises SEQ ID NO:1.
In some embodiments, the peptide comprises at least 40% sequence identity to SEQ ID NO:2. In some embodiments, the peptide comprises at least 50% sequence identity to SEQ ID NO:2. In some embodiments, the peptide comprises at least 60% sequence identity to SEQ ID NO:2. In some embodiments, the peptide comprises at least 80% sequence identity to SEQ ID NO:2. In some embodiments, the peptide comprises SEQ ID NO:2.
In some embodiments, the peptide comprises at least 40% sequence identity to SEQ ID NO:3. In some embodiments, the peptide comprises at least 50% sequence identity to SEQ ID NO:3. In some embodiments, the peptide comprises at least 60% sequence identity to SEQ ID NO:3. In some embodiments, the peptide comprises at least 80% sequence identity to SEQ ID NO:3. In some embodiments, the peptide comprises SEQ ID NO:3.
Hydrophilic targeting ligands useful in the present invention can target receptors on the cell surface, or the acellular component of the tumor microenvironment. Hydrophilicity and hydrophobicity are commonly measured by the log P values of the compounds using the octane-water reference system. Values lower than 0 indicate hydrophilicity whereas values higher than 0 indicate hydrophobicity. In some embodiments, the hydrophilic targeting ligand includes peptides which target cell surface receptors or acellular components in the tumor microenvironment, which includes, but is not limited to immune cells such as macrophages, T cells, and B cells. In some embodiments, the hydrophilic targeting ligand targets cell surface receptors such as, but not limited to, integrins and epidermal growth factor receptors. In some embodiments, the hydrophilic targeting ligand targets integrins, epidermal growth factors, and toll-like receptors.
In some embodiments, the hydrophilic targeting ligand is a HER2 ligand, a prodrug for a HER2 ligand, a receptor tyrosine-protein kinase-targeting ligand, an integrin-targeting ligand, epidermal growth factor receptor-targeting ligand, ovarian cancer cell-targeting ligand, or prostate cancer cell-targeting ligand. In some embodiments, the hydrophilic targeting ligand is a HER2 ligand, a prodrug for a HER2 ligand, an integrin-targeting ligand, epidermal growth factor receptor-targeting ligand, ovarian cancer cell targeting ligand, or prostate cancer cell targeting ligand.
In some embodiments, the hydrophilic targeting ligand is a HER2 ligand. In some embodiments, the HER2 ligand is an anti-HER2 antibody peptide. In some embodiments, the hydrophilic targeting ligand is the HER2 ligand, wherein the HER2 ligand is an anti-HER2 antibody peptide mimic derived from the primary sequence of the CDR-H3 loop of the anti-HER2 rhumAb 4D5. In some embodiments, the HER2 ligand is as described in “Rationally designed anti-HER2/neu peptide mimetic disables P185HER2/neu tyrosine kinases in vitro and in vivo” (Park et al. Nat Biotechnol. 2000 February; 18(2):194-8.)
In some embodiments, the HER2 ligand has at least 40% sequence identity to SEQ ID NO:4. In some embodiments, the HER2 ligand has at least 50% sequence identity to SEQ ID NO:4. In some embodiments, the HER2 ligand has at least 60% sequence identity to SEQ ID NO:4. In some embodiments, the HER2 ligand has at least 80% sequence identity to SEQ ID NO:4. In some embodiments, the HER2 ligand is SEQ ID NO:4.
In some embodiments, the hydrophilic targeting ligand is an integrin-targeting ligand, epidermal growth factor receptor-targeting ligand, ovarian cancer cell targeting ligand, or prostate cancer cell targeting ligand. In some embodiments, the hydrophilic targeting ligand is a prodrug for an integrin-targeting ligand, epidermal growth factor receptor-targeting ligand, ovarian cancer cell targeting ligand, or prostate cancer cell targeting ligand.
In some embodiments, the hydrophilic targeting ligand is a LLP2A prodrug, LLP2A, LXY30, DUPA, folate, a LHRH peptide, or an EGFR ligand. Any one of the carboxylic acid groups in the DUPA structure can be used to link to the beta-sheet peptide. LHRH analog peptide comprises the following peptide sequence: H-Glp-His-Trp-Ser-Thr-Lys-Leu-Arg-Pro-Gly-NH2 or H-Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH2. The Lys side chain NH2 group of the LHRH peptides can be used to link to the beta-peptide sheet. In some embodiments, the NH2 group is used to covalently link to the beta-peptide sheet.
EGFR ligands useful in the present invention includes any EGFR ligand known by one of skill in the art. In some embodiments, the EGFR ligand can be EGF, TGF-alpha, HB-EGF, amphiregulin, betacellulin, epigen, epiregulin, neuregulin 1, neuregulin 2, neuregulin 3, and neuregulin 4.
In some embodiments, the hydrophilic targeting ligand is a LLP2A prodrug, LLP2A, or LXY30. The LLP2A prodrug can include any cleavable functional group to be metabolized in situ known by one of skill in the art. In some embodiments, the LLP2A prodrug comprises an ester, amide, carbamate, oxime, imine, ether, phosphate, or beta-amino-ketone functional group. In some embodiments, the LLP2A prodrug comprises an ester, amide, carbamate, ether, or phosphate functional group. In some embodiments, the LLP2A prodrug comprises an ester, amide, carbamate or phosphate functional group. In some embodiments, the LLP2A prodrug comprises an ester group.
In some embodiments, the hydrophilic targeting ligand is a LLP2A prodrug, with the following structure:
In some embodiments, the hydrophilic targeting ligand is LLP2A, with the following structure:
In some embodiments, the hydrophilic targeting ligand is LXY30, with the following structure:
In some embodiments, the compound of the present invention has the following structure:
In some embodiments, the compound of the present invention has the following structure:
In some embodiments, the compound of the present invention has the following structure:
In some embodiments, the compound of the present invention has the following structure:
In some embodiments, the compound of the present invention has the following structure:
In some embodiments, the compound of the present invention has the following structure:
In some embodiments, the present invention provides a nanocarrier having an interior and an exterior, the nanocarrier comprising a plurality of compounds of the present invention, wherein each compound self-assembles in an aqueous solvent to form the nanocarrier such that a hydrophobic pocket is formed in the interior of the nanocarrier, and a hydrophilic group self-assembles on the exterior of the nanocarrier.
The diameter of the nanocarrier of the present invention can be any suitable size known by one of skill in the art. In some embodiments, the nanocarrier can have a diameter of 5 to 100 nm. In some embodiments, the nanocarrier can have a diameter of 10 to 100 nm. In some embodiments, the nanocarrier can have a diameter of 15 to 80 nm. In some embodiments, the nanocarrier can have a diameter of 25 to 60 nm. In some embodiments, the nanocarrier can have a diameter of about 20 nm, 30 nm, 40 nm, 50 nm, 60 nm, or about 70 nm. In some embodiments, the nanocarrier can have a diameter of about 20 nm or about 30 nm. In some embodiments, the nanocarrier can have a diameter of about 20 nm. In some embodiments, the nanocarrier can have a diameter of about 30 nm.
The exterior of the nanocarrier can be used for cell targeting. The nanocarrier of the present invention can target cell surface receptors and proteins such as, but not limited to integrins, human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptors, and G protein-coupled receptors. In some embodiments, the nanocarrier can target integrins and HER2.
The nanocarrier can transform in situ after binding to the receptors or proteins on the cell surface to form a nanofibrillar structure. In some embodiments, the nanocarrier can transform in situ after binding to HER2 on the cell surface.
In some embodiments, the nanocarrier further comprises a hydrophobic drug or an imaging agent sequestered in the hydrophobic pocket of the nanocarrier.
The hydrophobic drugs useful in the present invention can be any hydrophobic drug known by one of skill in the art. Hydrophobic drugs useful in the present invention include, but are not limited to, deoxycholic acid, deoxycholate, resiquimod, gardiquimod, imiquimod, a taxane (e.g., paclitaxel, docetaxel, cabazitaxel, Baccatin III, 10-deacetylbaccatin, Hongdoushan A, Hongdoushan B, or Hongdoushan C), doxorubicin, etoposide, irinotecan, SN-38, cyclosporin A, podophyllotoxin, Carmustine, Amphotericin, Ixabepilone, Patupilone (epothelone class), rapamycin and platinum drugs. Other drugs includes non-steroidal anti-inflammatory drugs, and vinca alkaloids such as vinblastine and vincristine.
The imaging agents useful in the present invention can be any imaging agent known by one of skill in the art. Imaging agents include, but are not limited to, paramagnetic agents, optical probes, and radionuclides. Paramagnetic agents are imaging agents that are magnetic under an externally applied field. Examples of paramagnetic agents include, but are not limited to, iron particles including nanoparticles. Optical probes are fluorescent compounds that can be detected by excitation at one wavelength of radiation and detection at a second, different, wavelength of radiation. Optical probes useful in the present invention include, but are not limited to, Cy5.5, Alexa 680, Cy5, DiD (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine perchlorate) and DiR (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide). Other optical probes include quantum dots. Radionuclides are elements that undergo radioactive decay. Radionuclides useful in the present invention include, but are not limited to, 3H, 11C, 13N, 18F, 19F, 60Co, 64Cu, 67Cu, 68Ga, 82Rb, 90Sr, 90Y, 99Tc, 99mTc, 111In, 123I, 124I, 125I, 129I, 131I, 137Cs, 177Lu, 186Re, 188Re, 211At, Rn, Ra, Th, U, Pu and 241Am.
The nanocarrier can include a plurality of conjugates. For example, the nanocarrier can include a plurality of two, three, four, five, six, or more, different conjugates. In some embodiments, the nanocarrier comprises a plurality of two different conjugates. In some embodiments, the nanocarrier comprises a plurality of three different conjugates. In some embodiments, the nanocarrier comprises a plurality of four different conjugates.
In some embodiments, the present invention provides a nanocarrier having an interior and an exterior, the nanocarrier comprising a plurality of a first conjugate and a second conjugate wherein the first conjugate comprises formula (I): A-B-C (I); and the second conjugate comprises formula (II): A′-B′-C′ (II) wherein: A and A′ are each independently a hydrophobic moiety; B and B′ are each independently a peptide, wherein each peptide independently forms a beta-sheet; and C and C′ are each independently a hydrophilic targeting ligands, wherein each hydrophilic targeting ligand is independently a LLP2A prodrug, LLP2A, LXY30, LXW64, DUPA, folate, a LHRH peptide, a HER2 ligand, an EGFR ligand, or a radiometal chelator; and wherein A and A′ are different hydrophobic moieties and/or C and C′ are different hydrophilic targeting ligands.
In some embodiments, the nanocarrier comprises a plurality of a first conjugate and a second conjugate as described above, and further comprises a third conjugate comprising formula (III): A″-B″-C″ (III) wherein A″ is a hydrophobic moiety, B″ is a peptide, wherein the peptide forms a beta sheet, and C″ is a hydrophilic targeting ligand, and wherein A, A′, and A″ are different hydrophobic moieties and/or C, C′, and C″ are different hydrophilic targeting ligands. In some embodiments, the nanocarrier further comprises a fourth, a fifth, or a sixth conjugate where each additional conjugate is independently of formula III.
The nanocarrier of the present invention can comprise a plurality of two different conjugates. The nanocarriers comprising a plurality of two different conjugates can have diameters as described above. The nanocarriers comprising a plurality of two different conjugates can have similar targeting and transformative properties as described above.
Suitable hydrophobic moieties for the nanocarriers of the present invention are described above. In some embodiments, each hydrophobic moiety is independently a dye, a drug, or a radiometal chelator. In some embodiments, each hydrophobic moiety is independently a bis-pyrene, porphyrin, resiquimod, or gardiquimod.
In some embodiments, each hydrophobic moiety is independently a porphyrin or resiquimod. In some embodiments, the porphyrin is pyropheophorbide-a, pheophorbide, chlorin e6, purpurin or purpurinimide. In some embodiments, the porphyrin is pheophorbide-a. In some embodiments, the porphyrin has the following structure:
In some embodiments, the resiquimod has the following structure:
Radiometal chelators useful in the present invention include any radiometal chelator known by one of skill in the art. In some embodiments, the radiometal chelator is a Gd(III) chelator, diethylenetriaminepentaacetic anhydride (DTPA), 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetracetic acid (DOTA), or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). In some embodiments, the radiometal chelator is a Gd(III) chelator, DOTA chelator, or a NOTA chelator.
Suitable peptide sequence lengths for the nanocarriers of the present invention are described above. In some embodiments, each peptide is independently a peptide sequence 5-30 amino acids in length. In some embodiments, each peptide is independently a peptide sequence 5-25 amino acids in length. In some embodiments, each peptide is independently a peptide sequence 5-20 amino acids in length.
Suitable peptide sequence for the nanocarriers of the present invention are described above. In some embodiments, each peptide independently comprises a peptide sequence from a beta-sheet peptide domain of a beta-amyloid peptide. In some embodiments, the beta-amyloid peptide is beta-amyloid 40 or beta-amyloid 42. In some embodiments, the beta-amyloid peptide is beta-amyloid 40.
In some embodiments, each peptide independently comprises at least 40% sequence identity to SEQ ID NO:1. In some embodiments, each peptide independently comprises at least 50% sequence identity to SEQ ID NO:1. In some embodiments, each peptide independently comprises at least 60% sequence identity to SEQ ID NO:1. In some embodiments, each peptide independently comprises at least 80% sequence identity to SEQ ID NO:1. In some embodiments, each peptide independently comprises SEQ ID NO:1.
In some embodiments, each peptide independently comprises at least 40% sequence identity to SEQ ID NO:2. In some embodiments, each peptide independently comprises at least 50% sequence identity to SEQ ID NO:2. In some embodiments, each peptide independently comprises at least 60% sequence identity to SEQ ID NO:2. In some embodiments, each peptide independently comprises at least 80% sequence identity to SEQ ID NO:2. In some embodiments,
Suitable hydrophilic targeting ligands for the nanocarriers of the present invention are described above. In some embodiments, each hydrophilic targeting ligand is independently a LLP2A prodrug, LLP2A, LXY30, folate, a LHRH peptide, a HER2 ligand, an EGFR ligand, a Gd(III) chelator, a DOTA chelator, or a NOTA chelator. In some embodiments, each hydrophilic targeting ligand is independently a LLP2A prodrug, LLP2A, LXY30, a LHRH peptide, a HER2 ligand, an EGFR ligand, a DOTA chelator, or a NOTA chelator. In some embodiments, each hydrophilic targeting ligand is independently a LLP2A prodrug, LLP2A or LXY30.
In some embodiments, each hydrophilic targeting ligand is independently a LLP2A prodrug, with the following structure:
In some embodiments, each hydrophilic targeting ligand is independently LLP2A, with the following structure:
In some embodiments, each hydrophilic targeting ligand is independently LXY30, with the following structure:
In some embodiments, the first conjugate has the structure:
In some embodiments, the second conjugate has the structure:
In some embodiments, the second conjugate is converted in situ to the following structure:
The ratio of the first conjugate to the second conjugate of the nanocarriers of the present invention can be any suitable ratio known by one of skill in the art. In some embodiments, the ratio of the first conjugate to the second conjugate is about 25:1 to 1:25. In some embodiments, the ratio of the first conjugate to the second conjugate is about 25:1 to 1:10. In some embodiments, the ratio of the first conjugate to the second conjugate is about 10:1 to about 1:10. In some embodiments, the ratio of the first conjugate to the second conjugate is about 10:1, 8:1, 5:1, 3:1, or 1:1. In some embodiments, the ratio of the first conjugate to the second conjugate is about 1:1.
In some embodiments, the present invention provides a method of forming nanofibrils, comprising contacting a nanocarrier of the present invention with a cell surface or acellular component at a tumor microenvironment, wherein the nanocarrier undergoes in situ transformation to form fibrillary structures, thereby forming the nanofibrils.
When the nanocarrier of the present invention binds with the cell surface or acellular component at a tumor microenvironment, it can undergo an in situ transformation to form nanofibrils, which can disrupt the cells and/or the tumor microenvironment. Transformation of the nanocarrier occurs when the hydrophilic targeting ligands of the nanocarriers bind to the cell surface or acellular component of interest, triggering formation of fibrillary structures which form the nanofibrils.
The tumor microenvironment comprises tumor cells and the surrounding environment, including, but is not limited to, the extracellular matrix, infiltrating host cells, secreted factors, signaling molecules, immune cells, stromal cells, dendritic cells, T cells, myeloid derived suppressor cells, vasculature, blood cells, cytokines, chemokines, growth factors, fibroblast and macrophages, any of which the nanocarrier of the present invention can interact with to form nanofibrils.
Nanocarriers of the present invention can form highly ordered beta-sheet fibrillary structures of the nanofibrils. Without being bound by any particular theory, one possible explanation for forming the beta-sheet fibrillary structures is that the beta-sheet forming peptides in the conjugates influence formation of the beta-sheet fibrillary structures of the nanofibrils.
Nanofibrils of the present invention can have any suitable diameter known by one of skill in the art. In some embodiments, the diameter of the nanofibril is 5 to 50 nm. In some embodiments, the diameter of the nanofibril of the nanofibril is 5 to 30 nm. In some embodiments, the diameter of the nanofibril is 5 to 15 nm. In some embodiments, the diameter of the nanofibril is 5 to 10 nm. In some embodiments, the diameter of the nanofibril is about 5 nm, 6 nm, 7 nm, 8 nm, 9 nm, 10 nm, 11 nm, or about 12 nm.
Transformation of the nanocarrier to the nanofibril can be determined by imaging techniques known by one of skill in the art and by measuring the particle size of the nanocarrier. For example, transformation of the nanocarrier to nanofibril can be determined using TEM imaging wherein the round nanocarrier shapes are transformed into nanofibril structures following binding of the nanocarrier to the cell surface or acellular component at a tumor microenvironment. In another example, nanocarrier size can be determined using dynamic light scattering (DLS). In DLS studies, when the nanocarrier is transformed into nanofibrils, the peak around the diameter of a nanocarrier, for example 10-100 nm, will decrease over time, as the peak around 500 nm-1000 nm increase over time, indicating formation of the nanofibrils.
In some embodiments, the present invention provides a method of treating a disease, comprising administering to a subject in need thereof, a therapeutically effective amount of a nanocarrier of the present invention, wherein the nanocarrier forms nanofibrils in situ after binding to a cell surface or acellular component at the tumor microenvironment, thereby treating the disease.
Binding to the cell surface or acellular component can be determined by one of ordinary skill in the art using fluorescence microscopy. Binding to the cell surface or acellular component can be determined when the nanocarrier comprises conjugates with a fluorescent dye as the hydrophobic moiety and the cell is labeled with any fluorescent dye known by one of skill in the art. One of skill in the art can select a suitable dye to use based on which fluorescent dye is used as the hydrophobic moiety. For example, when the nanocarrier comprises conjugates wherein the hydrophobic moiety comprises bis-pyrenes, which is a green fluorescent dye, then the cell can be labeled with a non-green fluorescent dye, such as, but not limited to, a red fluorescent dye or a blue fluorescent dye. In another example, if the hydrophobic moiety comprises a red fluorescent dye, such as, but not limited to, porphyrin, then one of skill in the art can chose a non-red fluorescent dye, such as a green fluorescent dye or blue fluorescent dye.
The tumor microenvironment comprises tumor cells and the surrounding environment, including, but not limited to, the extracellular matrix, infiltrating host cells, secreted factors, signaling molecules, immune cells, stromal cells, dendritic cells, T cells, myeloid derived suppressor cells, vasculature, blood cells, cytokines, chemokines, growth factors, fibroblast and macrophages. Tumor growth and progression can be influenced by interactions of the cancer cells with the microenvironment, which can result in eradication of cancer cells, metastasize of cancer cells, or establishing dormant micrometastases cancer cells. The tumor microenvironment can be targeted for therapeutic responses.
Binding to the acellular component at the tumor microenvironment includes, but is not limited to, binding to the proteins within the extracellular matrix and other ligands, compounds, or dendritic cells which are directly attached to the tumor cell or surrounding cells.
The nanocarriers of the present invention can be administered to a subject for treatment, of diseases including cancer such as, but not limited to: carcinomas, gliomas, mesotheliomas, melanomas, lymphomas, leukemias, adenocarcinomas, breast cancer, ovarian cancer, cervical cancer, glioblastoma, leukemia, lymphoma, prostate cancer, and Burkitt's lymphoma, head and neck cancer, colon cancer, colorectal cancer, non-small cell lung cancer, small cell lung cancer, cancer of the esophagus, stomach cancer, pancreatic cancer, hepatobiliary cancer, cancer of the gallbladder, cancer of the small intestine, rectal cancer, kidney cancer, bladder cancer, prostate cancer, penile cancer, urethral cancer, testicular cancer, cervical cancer, vaginal cancer, uterine cancer, ovarian cancer, thyroid cancer, parathyroid cancer, adrenal cancer, pancreatic endocrine cancer, carcinoid cancer, bone cancer, skin cancer, retinoblastomas, multiple myelomas, Hodgkin's lymphoma, and non-Hodgkin's lymphoma (see, CANCER: PRINCIPLES AND PRACTICE (DeVita, V. T. et al. eds 2008) for additional cancers).
Other diseases that can be treated by the nanocarriers of the present invention include: (1) inflammatory or allergic diseases such as systemic anaphylaxis or hypersensitivity responses, drug allergies, insect sting allergies; inflammatory bowel diseases, such as Crohn's disease, ulcerative colitis, ileitis and enteritis; vaginitis; psoriasis and inflammatory dermatoses such as dermatitis, eczema, atopic dermatitis, allergic contact dermatitis, urticaria; vasculitis; spondyloarthropathies; scleroderma; respiratory allergic diseases such as asthma, allergic rhinitis, hypersensitivity lung diseases, and the like, (2) autoimmune diseases, such as arthritis (rheumatoid and psoriatic), osteoarthritis, multiple sclerosis, systemic lupus erythematosus, diabetes mellitus, glomerulonephritis, and the like, (3) graft rejection (including allograft rejection and graft-v-host disease), and (4) other diseases in which undesired inflammatory responses are to be inhibited (e.g., atherosclerosis, myositis, neurological conditions such as stroke and closed-head injuries, neurodegenerative diseases, Alzheimer's disease, encephalitis, meningitis, osteoporosis, gout, hepatitis, nephritis, sepsis, sarcoidosis, conjunctivitis, otitis, chronic obstructive pulmonary disease, sinusitis and Behcet's syndrome).
In some embodiments, the disease is cancer. In some embodiments, the disease is selected from the group consisting of bladder cancer, brain cancer, breast cancer, cervical cancer, cholangiocarcinoma, colorectal cancer, esophageal cancer, gall bladder cancer, gastric cancer, glioblastoma, intestinal cancer, head and neck cancer, leukemia, liver cancer, lung cancer, melanoma, myeloma, ovarian cancer, pancreatic cancer and uterine cancer. In some embodiments, the disease is selected from the group consisting of bladder cancer, breast cancer, colorectal cancer, esophageal cancer, glioblastoma, head and neck cancer, leukemia, lung cancer, myeloma, ovarian cancer, and pancreatic cancer.
In some embodiments, the nanocarrier of the present invention can be used for combination therapy. In some embodiments, the combination therapy includes a nanocarrier of the present invention and at least one checkpoint inhibitor. Representative checkpoint inhibitors include, but are not limited to, anti-CTLA-4 therapy, an anti-PD-1 therapy, or an anti-PD-L1 therapy, for example. Examples include ipilimumab, nivolumab, pembrolizumab, pidilizumab, atezolizumab, Ipilimumab, and/or tremelimumab, and may include combination therapies, such as nivolumab+ipilimumab.
In some embodiments, the present invention provides a method of imaging, comprising administering to a subject to be imaged, an effective amount of a nanocarrier of the present invention.
Suitable imaging agents for the nanocarriers of the present invention are described above. For example imaging agents include, but are not limited to, paramagnetic agents, optical probes, and radionuclides. Opitcal probes include, but are not limited to fluorescent dyes such as cyanine dyes, bis-pyrenes, and porphyrin.
This example describes design and synthesis of a smart supramolecular peptide, BP-FFVLK-YCDGFYACYMDV, capable of (1) assembling into nanoparticles (NPs) under aqueous condition and in blood circulation, and (2) in situ transformation into nanofibrillar (NFs) structure upon binding to the cell surface HER2 at the tumour sites. This transformable peptide monomer (TPM), a supramolecular material, was comprised of three discrete functional domains: (1) the bis-pyrene (BP) moiety with aggregation induced emission (AIE) property for fluorescence reporting, and as a hydrophobic core to induce the formation of micellar NPs, (2) the KLVFF β-sheet forming peptide domain originated from β-amyloid (Aβ) peptide, and (3) the YCDGFYACYMDV disulfide cyclic peptide HER2-binding domain, an anti-HER2/neu antibody peptidic mimic derived from the primary sequence of the CDR-H3 loop of the anti-HER2 rhumAb 4D5. Under aqueous condition, the supramolecular peptide would self-assemble into spherical NPs, in which BP and KLVFF domains constituted the hydrophobic core and YCDGFYACYMDV peptide constituted the negatively charged hydrophilic corona. NPs, injected intravenously (i.v.) into mice bearing HER2+ tumours, were found to be preferentially accumulated at the tumour site. Upon interaction with HER2 displayed on the tumour cell surface, the NPs would undergo in situ transformation into fibrillar structural network, with long retention time. Such HER2 binding extracellular fibrillar network was found to greatly suppress the dimerization of HER2 and prevent downstream cell signaling and expression of proliferation and survival genes in the nucleus. These structural transformation-based supramolecular peptides represent a novel class of receptor-mediated targeted therapeutics against cancers.
The preparation of transformable peptide monomers (TPMS) 1′-4′. The hydrophobic bis-pyrene unit (BP-COOH) was synthetized as previously reported (Qiao, S.-L. et al. Thermo-Controlled in Situ Phase Transition of Polymer-Peptides on Cell Surfaces for High-Performance Proliferative Inhibition. ACS Appl. Mater. Interfaces 8, 17016-17022 (2016)). The TPMs 1′-4′ were synthesized by standard solid phase peptide synthesis techniques. The BP-COOH as a hydrophobic part was linked to TPMs 1′-4′ chain. For TPMs 3′ and 4′, PEG1000 as a hydrophilic unit was linked to the peptide to replace HER2 ligand of molecules 1 and 2. The molecular structures of BP dye and peptides were confirmed by matrix-assisted laser desorption ionization time-off light mass spectrometry (ESI and MALDI-TOF mass spectra, Bruker Daltonics).
Self-assembly preparation and characterization of NPs. The TPMs 1′-4′ were dissolved in DMSO to form a solution, respectively. Peptide solution (5 μL) was further diluted with DMSO (995, 795, 595, 395, 195, 95, 15, 0 μL) and mixed with deionized water (0, 200, 400, 600, 800, 900, 980, 995 μL), respectively. The UV-vis absorption and fluorescence spectra (Thermo Scientific, Waltham, Mass.) of different water content mixture solution were measured to validate the formation of NPs. The fresh NPs (99% water content, 20 μM) were used for the measurement as an initial state. The morphology transformation of NPs to NFs was administrated by adding HER2 extracellular receptor protein (expressed in HEK 293 cells, Sigma-Aldrich) and cultured for several hours at 37° C. At different time point (0.5, 6 and 24 h), the solution was used for size/zeta potential (Microtrac, America), CD (JASCO Inc, Easton, Md., USA), and TEM measurement (Philips CM-120 TEM, America). The TEM sample was dyed by uranyl acetate.
Stability of NPs1 in human plasma. The stability of NPs1 was studied in 10% (v/v) plasma from healthy human volunteers. The mixture was incubated at physiological body temperature (37° C.) followed by size measurements at predetermined time intervals up to 168 h.
MCF-7/C6 cells induction process. The induction method of MCF-7/C6 cells was obtained from Professor Jian Jian Li's lab (Departments of Radiation Oncology, University of California Davis). The MCF-7/C6 radioresistant cell line was survived from 25 fractionated ionizing radiations with a total dose of 50 Gy γ rays (2 Gy per fraction, five times per week).
CLSM and SEM validation of NPs structural transformation on cell surfaces. The cells were cultured in glass bottom dishes for 12 h. NPs1-4 (50 μM) was incubated with cells in DMEM at 37° C. for 0.5, 6 and 24 h, respectively. For confocal laser scanning microscope (CLSM, Zeiss LSM710, Jena, Germany) imaging, the specimens were solidified with glutaraldehyde (4%) for 10 min, washed with PBS for 3 times and examined with a 40× or 63× immersion objective lens using a 405 nm laser. To further validate the binding of NPs1 to HER2, rabbit anti-HER2 (29D8) monoclonal antibody (MAb) (Sigma Aldrich, USA) was used to detect the extracellular domain of HER2 on the surface of MCF-7/C6 cells. For SEM (Philips XL30 TMP, FEI Company, Hillsboro), the cells were solidified with glutaraldehyde (4%) overnight and then coated with gold for 2 min.
In vitro cytotoxic assay. MCF-7/C6, MCF-7, SKBR-3 and BT474 cells were used to evaluate the cytotoxicity of NPs1-4. Cells per well were seeded in the 96-well plates (n=3) cultured with DMEM supplemented with 10% FBS and 1% penicillin at 37° C. in a humidified environment containing 5% CO2. DMSO solution of 1-4 were diluted by DMEM (1.5, 7.5, 15, 75, 150, 300 μM) and then added into each well to incubate with cells. After 48 h of incubation, MTS reagent was added into each well. The relative cell viabilities were measured by Micro-plate reader (SpectraMax M2). Percentage of cell viability represented drug effect, and 100% means all cells survived. Cell viability was calculated using the following equation: Cell viability (%)=(OD490 nm of treatment/OD490 nm of blank control)×100%.
Western blot analysis. MCF-7/C6 cells were treated by different conditions and then collected by centrifugation at 14,000 rpm for 10 min and lysed with a 1% (v/v) Triton X-100 containing lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl) with protease inhibitor. Total cellular proteins were estimated using a BCA kit (Applygen). Each sample (50 μg of protein) was subjected to SDS-PAGE and transferred to nitrocellulose membranes. After blocking for 2 h at room temperature with 5% (wt/v) nonfat dry milk in blotto solution (20 mM Tris-HCl, pH 7.5, 150 mM NaCl and 0.1% Tween 20), the membranes were incubated with primary antibody overnight at 4° C. Then the membranes were washed (3×5 min) with TBST solution and incubated with second antibodies for 2 h at room temperature. Signals were visualized by chemiluminescence on a Typhoon Trio Variable Mode Imager. Band density was calculated using NIH Image J software.
For HER2 dimer western blot analysis, MCF-7/C6 cells were treated with indicated protocols and then lysed in buffer containing 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 1% Triton X-100 and protease inhibitors cocktail (Sigma-Aldrich). The lysis supernatant was collected after centrifugation at 12,000 rpm for 15 minutes. 0.2% glutaraldehyde was added to the lysis supernatant for 10 minutes at 37° C. The lysis was collected for western blot analysis.
Animal model. All animal experiments were in accordance with protocols No. 19724, which was approved by the Animal Use and Care Administrative Advisory Committee at the University of California, Davis. Female BALB/c nude mice were 6-8 weeks of age (weight 22±2 g), which were purchased from Harlan (Livermore, Calif., USA). MCF-7/C6 cells (5×106 cells per mouse) were inoculated subcutaneously into the flank of each female BALB/c nude mice, respectively. After around 10 days, NPs1-4 (8 mg/Kg) were injected via the tail vein and ex vivo images of tumour, heart, liver, spleen, lung, kidney, intestine, muscle, skin were collected at 10, 24, 48, 72, 168 h post injection. The images were collected by in vivo fluorescence imaging system (Carestream In-Vivo Imaging System FXPRO, USA). Tumour and Main organs (heart, liver, spleen, lung, kidney and brain) were collected and solidified with glutaraldehyde (4%) at 72 h post injection of NPs for TEM imaging.
In vivo therapeutic effect. BALB/c nude mice with MCF-7/C6 cells (5×106 cells per mouse) tumours inoculated subcutaneously into the flank were used in our experiments. The mice were randomly divided into five groups at 10 days post-tumour inoculation. Each of them treated with PBS, NPs1, NPs2, NPs3 and NPs4 every 48 h via i.v. administration. During the process of the treatment (40 days), the tumour volumes and body weight were measured twice per week. In parallel, the therapeutic effect of NPs1 was verified in the mice bearing SKBR-3 and BT474 tumours with similar experimental method mentioned above. For Haematoxylin and eosin (H&E) staining test and Ki-67 test, MCF-7/C6 tumour-bearing mice were sacrificed after three times treatment and tumour tissues were collected.
Statistical analysis. Data are presented as the mean±standard deviation (SD). The comparison between groups was analyzed with the student's t-test (two-tailed). One-way analysis of variance (ANOVA) was used for multiple-group analysis. The level of significance was defined at *p<0.05, **p<0.01, and ***p<0.001. All statistical tests were two-sided.
Self-assembly and fibrillar-transformation of supramolecular material. The transformable peptide monomer 1 (TPM1′), BP-FFVLK-YCDGFYACYMDV, was prepared with standard solid-phase peptide synthesis techniques followed by N-terminal capping with bis-pyrene, and its identity was confirmed by MALDI-TOF-MS (
To investigate the interaction of NPs1 with HER2 in vitro, soluble extracellular domain of HER2 protein as the transformation inducer was chosen. As shown by the TEM images in
The morphological characterizations of fibrillar-transformation of NPs. To further characterize the interactions between the transforming peptides and cell surface receptors on living cells, HER2+ breast cancer cell lines (SKBR-3 and BT474 cells) were incubated with NPs1, and then used confocal laser scanning microscopy (CLSM) to track the fluorescent green signal emitted by BP (
Radiotherapy is commonly used for the management of breast cancer patients. It has previously been reported that long-term fraction ionizing radiation (FIR) can induce HER2 expression, both clinically and in experimental models. In fact, the HER2+ MCF-7/C6 tumour cell line used was derived from HER2 negative human breast cancer MCF-7 cell line that had undergone 30 days of FIR induction, followed by colony formation and clonal isolation. MCF-7/C6 cells exhibit the characteristic of radiation resistance, high expression level of HER2, more aggressive phenotype, and enhanced levels of cancer stem cell properties. The relative expression level of HER2 protein, determined by Western blot, was found to be 5 times higher in MCF-7/C6 cells than in MCF-7 cells (
To further validate the binding of NPs1 to HER2, rabbit anti-HER2 (29D8) monoclonal antibody (MAb) was used to detect the extracellular domain of HER2 on the surface of MCF-7/C6 cells. Anti-HER2 MAb was labeled fluorescent red by the secondary Ab. The NPs1 and the transformed nanofibrillar network (NFs1) were labeled fluorescent green by the intrinsic optical property of BP. As shown in
The extracellular and intracellular mechanisms of fibrillar-transformation. It is conceivable that HER2-mediated transformation of nanoparticle (NPs1) to nanofibrillar network (NFs1) could impair HER2 dimerization leading to suppression of downstream signal transduction. To demonstrate this plausible mechanism, MCF-7/C6 cells were incubated with NPs1, NPs2, or PBS for 8 h (
The cytotoxic effect of NPs1 and the three negative control NPs on MCF-7/C6 cells after 48 h incubation was determined by a MTS assay. As shown in
In vivo evaluation of fibrillar-transformation. NPs1 was found to be non-toxic; blood counts, platelets, total protein, creatinine and liver function tests obtained from normal Balb/c mice treated with 8 consecutive q.o.d. doses of NPs1 were within normal limit. For biodistribution studies, mice bearing MCF-7/C6 tumour were given i.v. NPs1; 10, 24, 48, 72 and 168 h later, main organs were collected for ex vivo fluorescent imaging study (
Anti-tumour activity of fibrillar transformable NPs. Therapeutic efficacy studies of NPs1, NPs2, NPs3 and NPs4 were performed in MCF-7/C6 HER2+ breast cancer bearing mice (
To better understand the in vivo anti-tumour mechanism of NPs1, mice were sacrificed and residual tumours collected for biochemical and morphological assessment after 3 consecutive q.o.d injections of NPs1 (
It has been shown above that NPs1 could inhibit HER2 dimerization and phosphorylation of Erk, Mek and Raf-1 in HER2+ cell line in cell culture. Here similar Western blot studies are performed on tumours excised from mice that had undergone 3 consecutives q.o.d. treatments of NPs1. As shown in
One known side-effect of Herceptin is cardiotoxicity. It cannot be given to patient together with cardiotoxic drug such as doxorubicin. Thus far, there was no observed cardiotoxic effects in our xenograft studies with NPs1. No uptake of NPs1 in the myocardium was detected. This is not surprising as the coronary vessels are expected to be intact and the 20 nm NPs1 will not be able to reach the myocardium. The fact that NPs1 was highly efficacious against three different HER2+ tumours warrants further preclinical and clinical development of NPs1 against HER2+ breast, ovarian, gastric, and bladder cancers. There is good clinical evidence that some originally HER2 negative breast cancers can be induced to express HER2 after long-term fraction ionizing radiation (FIR). This further expands the patient population who may benefit from this novel receptor-mediated transformable nanotherapy (RMTN).
It has been demonstrated that 8 consecutive q.o.d doses of NPs1 alone as a monotherapy was efficacious in curing a large percentage of mice bearing relatively small (≤100 mm3) HER2+ breast cancer xenografts.
Immune checkpoint blockade (ICB) therapy has revolutionized clinical oncology. One of the main contributing factors for ICB resistance is defects in Teff cell homing to the tumour sites. This example describes a 28 nm non-toxic peptidic micellar nanoparticle, displaying LXY30, an α3β1 integrin targeting ligand. Upon interaction with α3β1 integrin over-expressed in many epithelial cancers, these nanoparticles would undergo in situ transformation at the tumour microenvironment (TME) into nanofibrillar structural network. The nanofibrillar network not only promotes cytotoxic CD8+ T cell homing to and macrophage re-education at the tumour sites, but also allowed sustain release of TLR 7/8 immunoagonist (resiquimod), via esterase at the TME, resulting in elimination of syngeneic 4T1 breast cancer and Lewis lung cancer models in mice, when given together with anti-PD-1 antibody. These structural transformation-based supramolecular peptides represent an innovative class of receptor-mediated targeted immunotherapeutics against cancer via enhancing T cell tumour homing and reprogramming of TME.
This example describes a ligand-receptor-mediated, peptide-based, and non-toxic dual-ligands fibrillar transformable nanoplatform, capable of mounting systemic anti-immune response against cancers. This nanoplatform, initially in nanoparticle form, is self-assembled from two smart transformable peptide monomers TPM1 and TPM2. TPM1, LXY30-KLVFFK(Pa), was comprised of three discrete functional domains: (1) the high-affinity and high-specificity LXY30 cyclic peptide (cdG-Phe(3,5-diF)-G-Hyp-NcR) ligand that targets α3β1 integrin heterodimeric transmembrane receptor expressed by many solid tumours, (2) the KLVFF β-sheet forming peptide domain originated from β-amyloid (Aβ) peptide, and (3) the pheophorbide a (Pa) moiety with fluorescence property, serving as a hydrophobic core to induce the formation of micellar nanoparticles. TPM2, proLLP2A-KLVFFK(R848), was also comprised of three discrete functional domains: (1) proLLP2A, the “pro-ligand” version of LLP2A, which is a high-affinity and high-specificity peptidomimetic ligand against activated α4β1 integrin of lymphocytes, (2) the same KLVFF β-sheet forming peptide domain, and (3) R848 (resiquimod), a hydrophobic toll-like receptors (TLRs) 7/8 agonist, grafted to TPM2 main chain via an ester-bond. In proLLP2A, the carboxyl group of LLP2A is esterized by 3-methoxy-1-propanol such that it will not interact with normal lymphocytes and mesenchymal stem cells during blood circulation. At the TME with abundant esterase, proLLP2A will be converted to LLP2A to facilitate homing of immune cells to the tumour sites. Similarly, esterase-responsive release of R848 would occur at the TME to activate antigen-presenting cells (APCs), promote immune cells to produce anti-tumour response factors, and reverse the phenotype of macrophage from M2 to M1.
Under aqueous condition and in blood circulation, TPM1 and TPM2 would self-assemble into one spherical transformable nanoparticle (T-NP) at a ratio of 1:1, in which KLVFFK(Pa) and KLVFFK(R848) domains constituted the hydrophobic core, and LXY30 and proLLP2A ligand peptides constituted the hydrophilic corona. Upon interaction with α3β1 integrin receptor protein displayed on the tumour cell membrane, the T-NPs would undergo in situ transformation into nanofibrillar (T-NFs) structural network on the surface of tumour cells and within the TME where the tumour associated exosomes were abundant, thus maintaining a prolonged retention of the nanofibrillar network at the tumour sites (at least 7 days). In this case, the more hydrophilic proLLP2A peptide ligand would be displayed on the outer surface of the fibrils, while the hydrophobic Pa and R848 would be sequestered at the core of the fibrils. With the elevated esterase in the TME and on the tumour cells, proLLP2A would quickly be converted to LLP2A (T cell ligand) against activated α4β1 integrin. LLP2A displayed on the fibrils would facilitate the homing and retention of activated immune cells such as Teff cells (e.g. CD8+ T) cells at the TME and adjacent to the tumour cells. It would also enhance the interaction between T cell receptor (TCR) of Teff and major histocompatibility complex (MHC) of tumour cells. The addition of anti-PD-1 ICB therapy would further enhance the anti-tumour immune response by activating the cytotoxic T cell and reversing the dysfunction and exhaustion of Teff. In addition, the sustained release of R848 from the nanofibrillar network as a result of the elevated esterase at the tumour site would reverse the immunosuppressive TME. These structural transformation-based supramolecular peptides represent an innovative class of receptor-mediated targeted immunotherapeutics against cancer via enhancing T cell homing to the tumours and improving the TME from an immunosuppressive state to a durable immunoactive state (
Self-assembly and fibrillar transformation of the nanoplatform. Two transformable peptide monomers (TPM1: LXY30-KLVFFK(Pa); TPM2: proLLP2A-KLVFFK(R848)) were synthesized and characterized (
To verify the receptor-mediated fibrillar transformable process of T-NPs in vitro, soluble α3β1 integrin protein (receptor for LXY30) was added to T-NPs solution. After 24 h of incubation at room temperature, a fibrillar network (T-NFs, width diameter about 8 nm) with a broad size distribution was clearly detected (
In vitro evaluation of fibrillar-transformation of nanoparticles and T effector cell homing to tumour sites. To further characterize the interaction between transformable nanoparticles and α3β1 integrin receptors on the surface of living cells, α3β1 integrin expressing 4T1 murine breast cancer cell was chosen. Flow cytometry analysis confirmed that LXY30, the high affinity α3β1 integrin ligand, did bind to 4T1 tumour cells (
To simulate the processes of initial fibrillar transformation of T-NPs on the 4T1 cells surface followed by T cell homing, first incubated 4T1 cells with T-NPs for 6 h, unbound T-NPs were then washed off, followed by addition of fresh medium containing esterase but without T-NPs. After 1 h of incubation, Jurkat cells were added and incubated with 4T1 cells for 2 or 4 h. After that, unbound Jurkat cells were gently removed prior to CLSM imaging (
The conversion of TAMs from an immunosuppressive M2-polarized phenotype to an anti-tumorigenic M1-polarized phenotype is one of the major immunotherapeutic strategies for reversing the immunosuppressive tumour microenvironment. Macrophage polarization states demonstrate hallmark morphology, e.g., elongated projections for M2-like cells as opposed to a round and flattened morphology for M1-like counterparts. IL-4 has been used to induce bone marrow derived macrophages (BMDM) to M2-polarized macrophages, as reflected by the increase in expression level of the metabolic checkpoint enzyme arginase-1 (Arg1) and mannose receptor-1 (Mrc1). R848 has been reported to be a powerful driver of the M1-phenotypes in vitro, resulting in elevated level of interleukin 12 (TL-12) and nitric oxide synthase (Nos2) produced by these cells. The possibility of using T-NFs to re-educate macrophages from M2 phenotype to M1 phenotype was investigated. In the nanoplatform, R848 was covalently linked to TMP2 via an ester bond. Therefore, not unexpected, incubation of 4T1 cells with T-NFs, preformed from T-NPs with soluble α3β1 integrin protein, did not have significant effect on M2-polarized macrophages induced by IL-4 (
In vivo evaluation of fibrillar-transformation of nanoparticles and tumour homing of T effector cells. T-NPs was found to be non-toxic: blood counts, platelets, creatinine and liver function tests obtained from normal Balb/c mice treated with eight consecutive q.o.d. intravenous (i.v.) doses of T-NPs were within normal limits (
To evaluate if the nanofibrillar networks displaying LLP2A and R848 at the TME could promote in vivo T cells homing to the tumour sites, tumours from T-NPs-treated mice were excised on day 15 after a single i.v. injection of T-NPs, and the immune cell populations within the tumours were analyzed by flow cytometry, immunohistochemistry (IHC) and qPCR. Experiment using UT-NPs as an untransformable/endocytic negative control group was also performed at the same time. It was found that tail-vein injection of T-NPs had resulted in a sustained immunoactive TME. First, T-NPs was found to significantly stimulate the production of chemokine CXCL10 at the tumour site (
Therapeutic efficacy study was performed in syngeneic orthotopic 4T1 breast cancer-bearing mice. Mice were randomly divided into six groups, each received a different treatment regimen: (1) Saline; (2) (EK)3-KLVFFK(Pa)/(EK)3-KLVFFK(R848); (3) proLLP2A-KLVFFK(R848) (single monomer); (4) LXY30-KAAGGK(Pa)/proLLP2A-KAAGGK(R848) (untransformable UT-NPs); (5) LXY30-KLVFFK(Pa)/proLLP2A-KLVFFK(Pa) (fibrillar-transformation but absence of R848); (6) LXY30-KLVFFK(Pa)/proLLP2A-KLVFFK(R848). Regimen 6 is the complete T-NPs, containing all 4 critical components: LXY30, proLLP2A, R848, and KLVFF, whereas regimen 2, 3, 4 or 5 all lack some components of T-NPs. When tumour volume reached about 50 mm3, all treatment regimens were tail vein injected consecutively eight times q.o.d. and the mice were continuously observed for 21 days (
To elucidate the mechanism of immunotherapeutic effects induced by transformable nanoparticles, the tumour tissues were collected and used flow cytometry to quantify tumour-infiltrating CD3+ (CD45+CD3+) and CD8+ (CD45+CD3+CD8+) T cells (
Although promising, T-NPs alone, however, was not able to completely eliminate the tumour. This may be caused by insufficient activation and homing of T effector cells in the tumour microenvironment. It is well known that tumour cells hijack PD-1 receptors of T cells by overexpression of PD-L1, which can activate PD-1, leading to inhibition of T cell proliferation, activation, cytokine production, altered metabolism and cytotoxic T lymphocytes killer functions, and eventual death of activated T cells. Clinically, antibodies targeting PD-1 or PD-L1 have been demonstrated to be able to reinvigorate the “exhausted” T cells in the tumour microenvironment. However, except for melanoma and non-small cell lung cancer, the clinical response rate of ICB anti-PD-1 or anti-PD-L1 therapy is limited and most patients are still refractory. One critical reason is that there are not enough Teff cells in the tumour microenvironment. Our receptor-mediated fibrillar transformable nanoplatform (promoting T cells homing and improving tumour microenvironment) may be able to correct such deficiency, and therefore will greatly synergize PD-1 and PD-L1 checkpoint blockade immunotherapy. Syngeneic orthotopic 4T1 breast cancer-bearing mice were randomized into four groups for anti-PD-1 antibody (anti-PD-1) therapy with or without additional nanoplatform: (1) anti-PD-1 alone; (2) regimen 4 (UT-NPs) plus anti-PD-1; (3) regimen 5 plus anti-PD-1; (4) regimen 6 (T-NPs) plus anti-PD-1. When tumour volume reached about 100 mm3, NPs were given i.v. injected on day 1, and anti-PD-1 given i.p. on day 2. The same cycle was repeated on day 3, 5, 7, and 9 for a total of 5 cycles, and mice were observed continuously for 21 days (
Unlike traditional chemotherapy or targeted therapy in clinical oncology, immunotherapy can potentially induce an adaptive response with capacity for memory. Memory is crucial to achieving durable tumour responses and preventing recurrence, which often leads to mortality. To assess whether the synergistic therapy of T-NPs with immune checkpoint anti-PD-1 therapy (T-NPs plus anti-PD-1 Ab) could induce a memory response, the cured mice from previous experiment was re-challenged (
In addition to 4T1 syngeneic orthotopic breast cancer model, similar therapeutic study in Lewis lung syngeneic subcutaneous murine tumour model was performed with excellent results (
In spite of the clinical success of checkpoint blockade immunotherapy, only a fraction of cancer patients benefits from this therapy. Defects in Teff cells homing to the tumour sites is probably one the main reasons why many patients remain refractory to such treatment. Development of approaches to convert an immunologically “cold” tumour to a “hot” tumour is undergoing intense investigation around the world. The receptor-mediated transformable nanoparticles (T-NPs) described herein can provide a relatively simple solution to this challenge. By incorporating pro-ligand LLP2A and R848 to the nanoparticle, it has been demonstrated in syngeneic 4T1 breast cancer and Lewis lung cancer model that this non-toxic treatment can (1) facilitate the homing of T-cells to the tumour sites, (2) promote retention of T-cells at close proximity to the tumour cells, and (3) provide sustained release of R848 at the tumour microenvironment, resulting in the re-education of TAMs to M1 phenotype. Since the nanoplatform is modular, there are options of combinatorially incorporating various different ligands, pro-ligands, or immunomodulators to the nanoplatform. One unique feature of the immune-nanoplatform is that the nanofibrillar network formed at the tumour microenvironment is durable, which may explain its remarkable in vivo anti-tumour immune response and memory effects but without any sign of systemic immunotoxicity, even when given in conjunction with anti-PD-1 antibody. The pro-ligand concept of using LLP2A to capture T-cells at the tumour site is innovative, and may be applied for capturing other beneficial immune cells, including natural killer cells. Other potent immunomodulators against other pathways such as the stimulator of IFN genes (STING) pathway may also be tried. The nanoplatform is highly modular and may appear to be complicate. However, in reality, it is highly robust. Each transformable peptide monomer is chemically well-defined, and the final immune-nanoparticle can be assembled by simple mixing in DMSO followed by dilution with water. Scale-up production for clinical development should not be a problem.
Statistical analysis. Data are presented as the mean±standard deviation (SD). The comparison between groups was analyzed with the student's t-test (two-tailed). The level of significance was defined at *p<0.05, **p<0.01 and ***p<0.001. All statistical tests were two-sided.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, one of skill in the art will appreciate that certain changes and modifications may be practiced within the scope of the appended claims. In addition, each reference provided herein is incorporated by reference in its entirety to the same extent as if each reference was individually incorporated by reference. Where a conflict exists between the instant application and a reference provided herein, the instant application shall dominate.
Sequence Listings:
SEQ ID NO:1: KLVFF
SEQ ID NO:2: klvff
SEQ ID NO:3: FFVLK
SEQ ID NO:4: YCDGFYACYMDV
This application is a U.S. National Phase Application of PCT International Application No. PCT/US2020/046495, filed Aug. 14, 2020, which claims priority to U.S. Provisional Application Nos. 62/886,698 and 62/886,718, both filed on Aug. 14, 2019, each of which is incorporated herein in its entirety for all purposes.
This invention was made with Government support under Grant Nos. R01EB012569 and U01CA198880, awarded by the National Institutes of Health. The Government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US20/46495 | 8/14/2020 | WO |
Number | Date | Country | |
---|---|---|---|
62886698 | Aug 2019 | US | |
62886718 | Aug 2019 | US |