Smart placement rules

Information

  • Patent Grant
  • 9754074
  • Patent Number
    9,754,074
  • Date Filed
    Friday, June 6, 2014
    10 years ago
  • Date Issued
    Tuesday, September 5, 2017
    7 years ago
Abstract
A smart placement module determines components of received medical data, such as medical reports and image montages, to forward to one or more secondary location, such as an EMR system, based on smart placement rules that are established by a user that receives the medical data, such as a referring doctor. Thus, the smart placement module decreases or removes the need for the receiving user to manually select and transfer certain medical data for storage at the EMR system. Accordingly, the receiving user, and other authorized EMR system users, may have prompt access to the medical data via their respective connections to the EMR system. In one embodiment, the smart placement module transmits a patient identification file that is usable by the receiving EMR system to allow the EMR system to associate received medical data with other data regarding a respective patient.
Description
BACKGROUND OF THE INVENTION

Field of the Invention


The invention relates to the management and placement of medical data, and more particularly to the smart placement of received medical data within an Electronic Medical Records (EMR) system, for example.


Description of the Related Art


Medical data is increasingly being stored in the form of digital documents that can be electronically transmitted and shared between multiple computing devices. EMR systems store various types of medical data, such as images from x-rays and MRIs, montages of images, voice clips, notes, reports, and other text, audio, and/or video from a wide variety of sources. EMR systems receive medical data from physicians or other medical practitioners, for example, that have generated and/or received the medical data from one or more imaging facilities. This medical data often needs to be viewed, manipulated, interpreted, and/or shared between multiple medical members in the same facility or members in one or more distant facility. Accordingly, there is a need for improved systems and methods for the smart placement of medical records so that collaboration among medical faculty can take place.


SUMMARY OF THE INVENTION

In one embodiment, a method of managing medical data received from at least one medical imaging facility, the medical data comprising medical images and medical reports, comprises receiving data from a user indicating a first storage location of an EMR system for storing medical images and a second storage location of the EMR system for storing medical reports received from the imaging facilities, receiving medical images and medical reports from at least one of the medical imaging facilities via one or more networks, associating each of the received medical images and medical reports with respective patients, and transferring the medical images and the medical reports to the EMR system with information indicating the first and second storage locations for the respective medical images and medical reports.


In one embodiment, a method of manipulating medical data associated with a patient comprises receiving first information from a user of a first computer specifying medical data to be retrieved by the first computer, receiving instructions comprising an indication of a secondary storage location, receiving medical data associated with a patient in response to matching the first information to certain attributes associated with the medical data, and transferring at least some of the medical data to the secondary storage location, wherein the secondary storage location is configured to associate the transferred medical data with other medical data associated with the patient so that the transferred medical data is accessible by users of the secondary storage system.


In one embodiment, a medical data management system comprises a storage device for storing received medical data associated with a patient and for storing smart placement rules indicating one or more components of medical data to be transferred to an indicated secondary storage location, and a smart placement module for identifying one or more components of the received medical data that are indicated in the smart placement rules and forwarding a copy of the identified one or more components to the secondary storage location.


In one embodiment, a method of forwarding medical data to a patient records system, the method comprises receiving rules from a user of a computing system, the rules comprising criteria indicating which components of the medical data should be transmitted from a medical image storage device to the computing system and/or when the components should be transmitted to the computing system, receiving a storage location from the user of the computing system indicating where the medical data is to be stored in a patient records system, attaching information to medical data received from the medical image storage device, the information indicating one or more storage locations in the patient record system so that respective storage locations are associated with different components of the received medical data, and transmitting the received medical data and the attached information to the patient records system.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a block diagram of a computing system comprising a computing device in communication with a network and various networked devices.



FIG. 1B is a block diagram illustrating one embodiment of a computing system comprising a computing device in communication with the imaging device via the network.



FIG. 2 is a flowchart illustrating one embodiment of a method of automatically forwarding received medical data to one or more predetermined locations based on smart placement rules.



FIG. 3 is one embodiment of a graphical user interface that may be used to establish smart placement rules.





DETAILED DESCRIPTION OF THE CERTAIN EMBODIMENTS

Embodiments of the invention will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner, simply because it is being utilized in conjunction with a detailed description of certain specific embodiments of the invention. Furthermore, embodiments of the invention may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the inventions herein described.


As used herein, the terms “medical data,” “medical-related data,” and “medical records” are defined to include data in any format that is related to a patient. As non-limiting examples, the terms may include, but are not limited to, medical images, such as radiograph, computed tomography (CT), magnetic resonance imaging (MRI), Ultrasound (US), mammogram, positron emission tomography scan (PET), and nuclear scan (NM) images; montages of medical images; medical reports; voice clips, notes; and medical reports. Medical data may be stored in various formats, such as PDF, JPEG, GIF, PNG, DOC, XLS, PPT, MP3, WAV, HTML, XML, and various other formats.


A “component” of medical data is a category or type of medical data. For example, components of medical data may include an image component comprising medical images and a report component comprising a written report corresponding to the medical images. Components of medical data may include, for example, images, montages, voice clips, notes, and reports.



FIG. 1A is a block diagram of a computing system 100A comprising a computing device 105A in communication with a network 160 and various networked devices. The computing system 100A may be used to implement certain systems and methods described herein. Depending on the embodiment, the functionality described below with reference to certain components and modules of the computing system 100A may be combined into fewer components and modules or further separated into additional components or modules.


The exemplary computing device 105 comprises a memory 130, such as random access memory (“RAM”) for temporary storage of information and a read only memory (“ROM”) for permanent storage of information, and a mass storage device 120, such as a hard drive, diskette, or optical media storage device. The mass storage device 120 may comprise one or more hard disk drive, optical drive, networked drive, or some combination of various digital storage systems. The computing device 105 also comprises a central processing unit (CPU) 150 for computation. Typically, the modules of the computing device 105 are in data communication via one or more standards-based bus system. In different embodiments of the present invention, the standards based bus system could be Peripheral Component Interconnect (PCI), Microchannel, SCSI, Industrial Standard Architecture (ISA) and Extended ISA (EISA) architectures, for example.


The computing device 105 is generally controlled and coordinated by operating system software, such as the Windows 95, 98, NT, 2000, XP, Vista, or other compatible operating systems. In Macintosh systems, the operating system may be any available operating system, such as Mac OS X. In other embodiments, the computing device 105 may be controlled by a proprietary operating system. Conventional operating systems control and schedule computer processes for execution, perform memory management, provide file system, networking, and I/O services, and provide a user interface, such as a graphical user interface (“GUI”), among other things.


The exemplary computing device 105A includes one or more of commonly available input/output (I/O) devices and interfaces 110, such as a keyboard, mouse, touchpad, and printer. In one embodiment, the I/O devices and interfaces 110 include one or more display devices, such as a monitor, that allows the visual presentation of data to a user. More particularly, display devices provide for the presentation of GUIs, application software data, and multimedia presentations, for example. According to the systems and methods described below, medical images may be stored on the computing device 105A and automatically transmitted to one or more EMR systems manipulated by the smart placement module 145 based on one or more placement rules established by a user of the computing device 105A. The computing device 105 may also include one or more multimedia devices 140, such as speakers, video cards, graphics accelerators, and microphones, for example.


In the embodiment of FIG. 1A, the I/O devices and interfaces 110 provide a communication interface to various external devices. In the embodiment of FIG. 1A, the computing device 105A is in data communication with a network 160, such as a LAN, WAN, or the Internet, for example, via a communication link 115. The network 160 may be coupled to various computing devices and/or other electronic devices. In the exemplary embodiment of FIG. 1A, the network 160 is in data communication with an imaging device 170, an Electronic Medical Record (EMR) system 180, a mass storage device 185, and a medical facility 190. Depending on the embodiment, the EMR system 180 may comprise proprietary medical record management software and/or one or more of various available third-party EMR systems. In addition to the devices that are illustrated in FIG. 1A, the network 160 may facilitate communications with other computing, imaging, and storage devices.


The imaging device 170 may be any type of device that is capable of acquiring medical images, such as MRI, x-ray, mammography, or CT scan systems. In one embodiment, the imaging device 170 is configured to store images and data associated with images. In one embodiment, the imaging device 170 communicates with the computing device 105 via the network 160, or one or more other wired and/or wireless networks, such as a secure LAN, for example. In one embodiment, the image data is stored in Digital Imaging and Communications in Medicine (“DICOM”) format. The complete DICOM specifications, which may be found on the National Electrical Manufactures Association Website at <medical.nema.org>. Also, NEMA PS 3—Digital Imaging and Communications in Medicine, 2004 ed., Global Engineering Documents, Englewood Colo., 2004, is hereby incorporated by reference in its entirety.


The exemplary EMR system 180 is configured to store digital medical data so that doctors, medical staff, patients, and/or other authorized personnel can effectively view and share the medical data. The EMR system 180 may provide medical data from multiple sources to the computing device 105 via the network 160. Likewise, medical data from the computing device 105 may be provided to other medical facilities, such as the medical facility 190 of FIG. 1A, via the EMR system 180. Depending on the embodiment, the medical facility 190 may include one or more hospitals, clinics, doctor's offices, or any other facility that generates and/or processes medical data. The medical facility 190 may include one or more imaging devices, such as imaging devices that generate the image types described above in the definition of medical data. In one embodiment, multiple computing devices, such as the computing device 105, may be housed at the medical facility 190.


In the embodiment of FIG. 1A, the smart placement module 145 is configured to forward medical data received by the computing device 105A, such as from the imaging device 170 or the medical facility 190, to one or more EMR systems according to placement rules established by a user of the computing device 105. In one embodiment, medical data is received at the computing device 105 in response to matching of one or more auto-pull rules with particular medical data and/or components of the medical data. For example, in an auto-pull system, either the computing device 105 or a remote server may be configured to periodically select, based upon a user-defined schedule, medical data satisfying the user-specific rules. The user may be authenticated with the remote server in order to determine the user's rights to receive medical data and the selected medical data may then be transmitted to the computing device 105A so that it is locally available for the viewing physician, technician, or other authorized viewer. U.S. Pub. No. 2006/0095423, published on May 4, 2006 to Reicher et al. titled “Systems and Methods for Retrieval of Medical Data,” which is hereby incorporated by reference in its entirety, describes various systems and methods for establishing auto-pull rules for selectively transferring medical data to a computing device.


In one embodiment, the smart placement module 145 determines components of received medical data to forward to one or more secondary storage locations, such as the EMR system 180 or a specific directory of a local storage device, based on smart placement rules that are established by an authorized user of the computing device 105. Although the description below refers primarily to an EMR system 180 as the secondary storage device, the systems and methods described herein are operable with any suitable secondary storage device, whether local or remote to the computing device 105.


Through the automatic application of smart placement rules by the smart placement module 145, the need for a user of the computing device 105 to manually select and transfer components of medical data to one or more secondary locations, such as the EMR system 180, is reduced or removed. Accordingly, the smart placement module 145 allows a user of the computing device 105, and other authorized computer users that are in communication with the EMR system 180, to locate data regarding a patient in the EMR system 180. In one embodiment, the smart placement module 145 provides an interface for an authorized user to establish smart placement rules that indicate what components of medical data should be forwarded to one or more secondary storage locations. In one embodiment, smart placement rules may also indicate storage locations for respective components of medical data, such as a directory on a local storage device, a directory on a shared storage device, or a folder in an EMR system, for example. Depending on the embodiment, the smart placement module 145 may be configured to copy the selected components of medical data (e.g., leaving a copy on the computing device 105) or to move the selected components of medical data (e.g., not leaving a copy on the computing device 105) to the selected secondary storage location. In one embodiment, the mass storage device 120 stores the user-specific rules. A further description of the smart placement module 145 and its processes will be discussed below.



FIG. 1B is a block diagram illustrating one embodiment of a computing system 100B comprising a computing device 105B in communication with the imaging device 170 via the network 160. In the embodiment of FIG. 1B, the computing device 105B comprises a local version of the EMR system 180. In this embodiment, the EMR system 180 may be used exclusively by the computing device 105B, may be used by other devices coupled to the computing device 105B, such as via a secured local area network, and/or may be accessed by any authorized devices that are in communication with the network 160.


In the embodiment of FIG. 1B, an exemplary temporal flow of data is indicated by the circled numerals 1-3 and is described in further detail below. Depending on the embodiment, certain steps may be removed and additional steps may be added.


In step one of FIG. 1B, the imaging device 170 transmits medical data to the network 160, and the medical data, such as medical images, reports, and/or other medical information, is received and stored by the computing device 105B. In one embodiment, medical data is selected for transmission to the computing device 105B as a result of matching one or more auto-pull rules that are established by a user of the computing device 105B.


In step two, the smart placement module 145 of the computing device 105B applies smart placement rules to the received medical data. In one embodiment, the smart placement rules indicate that certain components of medical data is to be copied and/or moved to a secondary storage location either on the computing device 105B, such as in a folder of the EMR system 180, or to another device across the network 160. For example, smart placement rules may indicate that received medical data is to be transferred to a selected EMR system and associated with respective patient data on the EMR system.


In one embodiment, the smart placement rules indicate one or more components of medical data that are to be transmitted to a selected one or more destinations. For example, a user can establish placement rules indicating that only textual reports are to be transmitted to a selected EMR system, or the user can establish placement rules indicating that all components of received medical data should be transmitted to the selected EMR.


In step three of FIG. 1B, the indicated components of the received medical data are transmitted to the EMR system 180. In one embodiment, the transmitted components are associated with other medical data of the respective patient(s) at the EMR system 180. In such an embodiment, an authorized user of the EMR system 180 may access the transmitted components via the respective patient's inbox in the EMR system 180. Thus, in one embodiment the smart placement module 145 advantageously automates a process of selecting medical data for transmission to the EMR system 180 so that the medical data may be associated with other medical data associated with the patient at the EMR system 180. Additionally, the smart placement module 145 may be configured to automatically apply smart placement rules when medical data is received at the computing device 105 so that components of the medical data are quickly availably to authorized users of the EMR system, without any intervention by the user.


In one embodiment, the smart placement module 145 generates a token comprising information indicating one or more software applications associated with components of medical data that are transmitted to the EMR system 180. In one embodiment, the smart placement module 145 determines the appropriate text, graphic, audio, etc., viewer(s) that may be used to present respective data items that are transmitted to the EMR system 180. For example, if the retrieved medical data includes image files, then the token sent by the smart placement module 145 to the EMR system 180 may indicate a specific third-party software viewing application that the viewing system should launch in order to view the image files. In one embodiment, the tokens may designate a class of software application so that the user's default application of a given type of application may be selected when indicated by a token.


In one embodiment, the smart placement module 145 generates a patient ID file that is transmitted with the indicated components to the EMR system 180. The patient ID file comprises an indication of a patient name, examination date, medical record number, and/or social security number, for example, of a patient associated with the transmitted medical data components. Thus, the patient ID file is usable by the EMR system 180 to place the medical data components in locations associated with the appropriate patient, such as folders, directories, or inboxes associated with respective patients. In other embodiments, the patient ID file may comprise additional information regarding a patient.



FIG. 2 is a flowchart 200 illustrating one embodiment of a method of automatically forwarding received medical data to one or more predetermined locations based on smart placement rules. The method of FIG. 2A may be initiated in response to receiving new medical data at the computing device 105, such that the medical data is forwarded based on the smart placement rules substantially immediately after being received at the computing device 105. In other embodiments, the method of FIG. 2A is user initiated and may operate on medical data that has been stored on the computing devices or a networked device for an extended period of time. Depending on the embodiment, the flowchart of FIG. 2 may comprise fewer or more blocks and the blocks may be performed in a different order than illustrated.


Beginning in block 210, smart placement rules are established for movement or copying of medical data components to one or more secondary storage locations. In one embodiment, the smart placement rules comprise default system rules and/or user-specific rules for each user or group of users. Depending on the embodiment, the smart placement rules may include component criteria that must be matched by received medical data in order to trigger an associated smart placement action. For example, a smart placement rule may specify that only an image and report component of medical data is to be transmitted to a particular EMR system. Thus, when new medical data is received, only the image and report components are transmitted to the EMR system. In one embodiment, the smart placement rules indicated separate storage locations for respective medical data components, such as a first location for medical images and a second location for reports. Additionally, in some embodiments, the smart placement rules indicate a format that medical data components should be in prior to transferring to the EMR system, such as HL-7 text format, or PDF format, for example.


In one embodiment, the smart placement rules may also include criteria associated with header data of certain medical data components, such as time of day and/or date that a component is received by the computing device 105, a referring physician's name, a radiologist name, an exam type, an exam modality, and various other attributes of a components. In one embodiment, default system rules are applied to received medical data if user-specific rules have not been established. FIG. 3, which is described in further detail below, illustrates an exemplary user interfaces for establishing smart placement rules.


Moving to block 215, medical data is received at the computing device 105. As noted above, the medical data may be received from any suitable computing device that is in communication with the computing device 105, such as via the network 160. As defined above, the medical data may comprise one or more of multiple files of various formats and may include various information regarding a patient. In one embodiment, the medical data is stored in the mass storage system 120 of the computing device 105.


Next, in decision block 220 the computing device 105 applies the smart placement rules to the received medical data in order to determine which components of the medical data, if any, should be copied and/or moved to one or more local or remote secondary storage locations. If a smart placement rule matches one or more components of the medical data, the method continues to block 230. If no smart placement rules match with the medical data, the method returns to block 210 where medical data from another exam, another imaging source, and/or associated with another patient is received.


At block 230, the components of the medical data indicated by the placement rules are selected for transmission to the location indicated in the matching smart placement rule. As noted above, all components may be transmitted to a single location, e.g., a folder on a local or networked storage device or a local or networked EMR system, or the smart placement rules may indicate separate storage locations for respective components of the medical data.


Moving to block 240, the computing device 105 transmits the selected components to the location or locations associated with the matched smart placement rules. As noted above, in one embodiment a patient ID file indicating one or more attributes of the patient associated with the medical data components is also transmitted to the indicated secondary location. The patient ID file may be used, for example, by the EMR system in associating the transmitted medical data components with other medical data of respective patients. In this embodiment, the medical data of the patient is quickly made available to authorized users of the EMR system by accessing the patient's records stored by the EMR system.


In one embodiment, the smart placement module 145 generates one or more tokens that are associated with specific components of the transmitted medical data. The tokens comprise information regarding compatible and/or preferred software applications that may be launched in order to view and/or hear an associated medical data component. For example, if the selected medical data comprises a series of CT scan images, a token may be generated to indicate one or more software applications in which the CT images may be viewed. Likewise, a token indicating one or more software application in which a textual report may be viewed may be associated with a textual report component. In one embodiment, the EMR system 180 may display a link and/or icon associated with a token that may be selected by a user of the EMR system 180 in order to access the corresponding medical data in an appropriate software application. Certain tokens may comprise executable software code that launches a desired software application and opens selected medical data components in the software application. For example, an authorized user of the EMR system 180, such as a user of the computing device 105 or another computing device in communication with the network, may select a link associated with a token in order to invoke execution of the token, and subsequent launching of an indicated software application and opening of the corresponding medical data.


In one embodiment, the EMR system comprises separate patient inboxes wherein some or all of the patient's medical records are stored. In general, a patient's inbox is a location and/or index of locations where the patient's medical data is stored. This method may increase privacy of the medical data for specific patients by only allowing the patient, the patient's doctor, and/or other authorized users to access the patient's medical data.



FIG. 3 is one embodiment of a graphical user interface 300 that may be used to establish smart placement rules. Depending on the embodiment, the layout of the graphical user interface, the types of input fields, buttons, and checkboxes may be modified. The exemplary graphical user interface 300 comprises a component selection pane 302 that allows a user of the computing device 105, for example, to indicate which components of received medical data should be forwarded to one or more indicated secondary storage locations. In the embodiment of FIG. 3, check boxes for component types images, montages, voice clips, notes, and reports are provided, where a particular component is selected for transferring to an indicated secondary location if the corresponding checkbox is selected. In other embodiments, other controls may be used in order to allow a user to select one or more components. In other embodiments, fewer or additional components may be available for selection.


The exemplary user interface of FIG. 3 also comprises smart placement pane 305 that allow a user to select secondary storage locations for report and/or montage components of medical data. In the embodiment of FIG. 3, the smart placement pane 305 comprises a report copy button 310 that may be selected to indicate that received medical reports should be automatically transmitted to an EMR system, or other storage location, identified in field 315. Similarly, a montage copy button 320 may be selected in order to indicate that received montages should be automatically transmitted to an EMR system, or other storage location, identified in field 325.


In one embodiment, the smart placement module detects an EMR system that is used by the computing device and automatically populates fields 315, 325 with an indication of the detected EMR system(s). Where multiple EMR systems are detected, the text display fields 315, 325 may comprise drop-down fields that allow the user to select one or more of the EMR systems to which the medical data should be transmitted. In one embodiment, the user is provided with a directory structure that may be navigated in order to locate and select an EMR system or another storage location. In one embodiment, after establishing the smart placement rules, such as using the interface of FIG. 3, when medical data is received by the computing device 105, the components of the medical data indicated in the component selection pane 302 are automatically forward to the locations indicated in the smart placement pane 305.


The exemplary smart placement pane 305 further comprises buttons 332, 334, and 336 that allow the user to select a desired format for the medical data that is transmitted to the indicated EMR system. In the embodiment of FIG. 3A, HL-7 text format may be selected by selecting button 332 and PDF format may be selected by selecting button 334. In one embodiment, when button 332 is selected, medical data is converted into the Health Level 7 standard format, which is a widely known standard and format for medical records, before transmitting to the selected EMR system. Similarly, when button 334 is selected, medical data is converted into one or more Adobe PDFs before transmitting to the selected EMR system. The smart placement pane 305 further comprises another button 336 that allows the user to select other formats for the medical data. In one embodiment, when the button 336 is selected, another user interface comprising additional data formats, such as DOC or RTF, for example, is presented to the user.


The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. For example, the above-described auto-retrieve may be performed on other types of images, in addition to medical images. For example, images of circuit boards, airplane wings, and satellite imagery may be analyzed using the described systems. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.

Claims
  • 1. A method of distributing images over a network to a remote computing device, the method comprising: storing, at an image server comprising a microprocessor and a memory, user preferences of a user, wherein the user preferences include indications of an exam modality, an exam status, an image format, a software application, a transmission schedule, a first storage location, and a second storage location;receiving, at the image server and from an imaging device over a network, an imaging exam comprising a plurality of images;receiving, at the image server, a report;associating, by the microprocessor of image server, the report with the imaging exam;determining, by the microprocessor of the image server, that a modality of the imaging exam matches the exam modality indicated by the user preferences;determining, by the microprocessor of the image server, that a status of the imaging exam matches the exam status indicated by the user preferences;generating, by the microprocessor of the image server, an electronic token comprising executable software code, wherein the electronic token includes an indication of the software application indicated by the user preferences;associating, by the microprocessor of the image server, the electronic token with the imaging exam;in response to determining that a format of at least one image of the plurality of images of the imaging exam is not in the image format indicated by the user preferences, formatting, by the microprocessor of the image server, the at least one image to match the image format indicated by the user preferences;transmitting, by the image server, the report associated with the imaging exam from the image server to a first remote computing device based on the transmission schedule indicated by the user preferences;transmitting, by the image server, at least some of the plurality of images of the imaging exam and the electronic token from the image server to a second remote computing device when the second remote computing device is connected to the image server and based on the transmission schedule indicated by the user preferences;automatically generating and transmitting, by the image server and over the network, a notification to the user when the at least some of the plurality of images of the imaging exam are fully transmitted to the second remote computing device; andautomatically activating, on the second remote computing device, the software application indicated by the electronic token when the at least some of the plurality of images are fully transmitted to the second remote computing device.
  • 2. The method of claim 1 further comprising: associating, by the microprocessor of the image server, at least one of the following with the imaging exam: audio or notes.
  • 3. The method of claim 2, wherein at least one of the audio or the notes is transmitted to the first remote computing device based on a user preference of the user.
  • 4. The method of claim 3, wherein the first remote computing device is associated with a patient indicated in the imaging exam.
  • 5. The method of claim 1, wherein the first remote computing device comprises a medical data storage system.
  • 6. The method of claim 5, wherein the medical data storage system comprises at least one of: an electronic medical records system, a storage device local to the user, or a storage device that is shared with multiple users.
  • 7. The method of claim 1, wherein the electronic token is further indicative of a class of software applications.
  • 8. The method of claim 7, wherein the electronic token is generated automatically based on a determination that the software application is compatible with the at least some of the plurality of images.
  • 9. The method of claim 1, wherein the network comprises the Internet.
  • 10. The method of claim 9, wherein the imaging device comprises at least one of: an MRI device, an x-ray device, a mammography device, or a CT scan device.
  • 11. The method of claim 10, wherein the image format indicated by the user preferences includes at least one of: Health Level 7, Portable Document Format, DOC, RTF, XML, HTML, JPEG, GIF, PNG, XLS, PPT, MP3, or WAV.
  • 12. The method of claim 1, wherein the software application is indicated by the executable software code of the electronic token.
  • 13. An image server system comprising: one or more microprocessors and a memory configured to store software instructions, wherein, when executed by the one or more microprocessors, the software instructions configure the one or more microprocessors to: store, at the image server system, user preferences of a user, wherein the user preferences include indications of an exam modality, an exam status, an image format, a software application, a transmission schedule, a first storage location, and a second storage location;receive, from an imaging device over a network, an imaging exam comprising a plurality of images;receive a report;associate the report with the imaging exam;determine that a modality of the imaging exam matches the exam modality indicated by the user preferences;determine that a status of the imaging exam matches the exam status indicated by the user preferences;generate an electronic token comprising executable software code, wherein the electronic token includes an indication of the software application indicated by the user preferences;associate the electronic token with the imaging exam;in response to determining that a format of at least one image of the plurality of images of the imaging exam is not in the image format indicated by the user preferences, format, by the microprocessor of the image server, the at least one image to match the image format indicated by the user preferences;transmit the report associated with the imaging exam from the image server to a first remote computing device based on the transmission schedule indicated by the user preferences;transmit at least some of the plurality of images of the imaging exam and the token from the image server to a second remote computing device when the second remote computing device is connected to the image server and based on the transmission schedule indicated by the user preferences;automatically generate and transmit, over the network, a notification to the user when the at least some of the plurality of images of the imaging exam are fully transmitted to the second remote computing device; andautomatically activate, on the second remote computing device, the software application indicated by the electronic token when the at least some of the plurality of images are fully transmitted to the second remote computing device.
  • 14. The image server system of claim 13, wherein the network comprises the Internet.
  • 15. The image server system of claim 14, wherein the imaging device comprises at least one of: an MRI device, an x-ray device, a mammography device, or a CT scan device.
  • 16. The image server system of claim 15, wherein the image format indicated by the user preferences includes at least one of: Health Level 7, Portable Document Format, DOC, RTF, XML, HTML, JPEG, GIF, PNG, XLS, PPT, MP3, or WAV.
  • 17. The image server system of claim 13, wherein the first remote computing device is associated with a patient indicated in the imaging exam.
  • 18. The image server system of claim 13, wherein the first remote computing device comprises a medical data storage system.
  • 19. The image server system of claim 18, wherein the medical data storage system comprises at least one of: an electronic medical records system, a storage device local to the user, or a storage device that is shared with multiple users.
  • 20. The image server system of claim 13, wherein the electronic token is further indicative of a class of software applications.
  • 21. The image server system of claim 20, wherein the electronic token is generated automatically based on a determination that the software application is compatible with the at least some of the plurality of images.
  • 22. The method of claim 13, wherein the software application is indicated by the executable software code of the electronic token.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/907,128, filed May 31, 2013, titled “SMART PLACEMENT RULES,” which is a continuation of U.S. application Ser. No. 13/118,085, filed May 27, 2011, titled “SMART PLACEMENT RULES,” now U.S. Pat. No. 8,457,990, which is a continuation of U.S. application Ser. No. 11/942,674, filed Nov. 19, 2007, titled “SMART PLACEMENT RULES,” now U.S. Pat. No. 7,953,614, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/867,071, filed Nov. 22, 2006. All of the above-identified applications are hereby incorporated by reference herein in their entireties.

US Referenced Citations (403)
Number Name Date Kind
4672683 Matsueda Jun 1987 A
5123056 Wilson Jun 1992 A
5172419 Manian Dec 1992 A
5179651 Taaffe et al. Jan 1993 A
5431161 Ryals et al. Jul 1995 A
5452416 Hilton et al. Sep 1995 A
5515375 DeClerck May 1996 A
5542003 Wofford Jul 1996 A
5734915 Roewer Mar 1998 A
5740267 Echerer et al. Apr 1998 A
5779634 Ema et al. Jul 1998 A
5807256 Taguchi Sep 1998 A
5835030 Tsutsui et al. Nov 1998 A
5852646 Klotz et al. Dec 1998 A
5857030 Gaborski Jan 1999 A
5926568 Chaney et al. Jul 1999 A
5954650 Saito et al. Sep 1999 A
5976088 Urbano et al. Nov 1999 A
5986662 Argiro et al. Nov 1999 A
5987345 Engelmann et al. Nov 1999 A
5995644 Lai et al. Nov 1999 A
6008813 Lauer et al. Dec 1999 A
6115486 Cantoni Sep 2000 A
6128002 Leiper Oct 2000 A
6130671 Argiro Oct 2000 A
6151581 Kraftson et al. Nov 2000 A
6175643 Lai et al. Jan 2001 B1
6177937 Stockham et al. Jan 2001 B1
6185320 Bick et al. Feb 2001 B1
6211884 Knittel et al. Apr 2001 B1
6219059 Argiro Apr 2001 B1
6219061 Lauer et al. Apr 2001 B1
6243095 Shile et al. Jun 2001 B1
6243098 Lauer et al. Jun 2001 B1
6262740 Lauer et al. Jul 2001 B1
6266733 Knittel et al. Jul 2001 B1
6269379 Hiyama et al. Jul 2001 B1
6297799 Knittel et al. Oct 2001 B1
6304667 Reitano Oct 2001 B1
6310620 Lauer et al. Oct 2001 B1
6313841 Ogata et al. Nov 2001 B1
6342885 Knittel et al. Jan 2002 B1
6347329 Evans Feb 2002 B1
6351547 Johnson et al. Feb 2002 B1
6356265 Knittel et al. Mar 2002 B1
6369816 Knittel et al. Apr 2002 B1
6383135 Chikovani et al. May 2002 B1
6388687 Brackett et al. May 2002 B1
6404429 Knittel Jun 2002 B1
6407737 Zhao et al. Jun 2002 B1
6411296 Knittel et al. Jun 2002 B1
6421057 Lauer et al. Jul 2002 B1
6424346 Correll et al. Jul 2002 B1
6424996 Killcommons et al. Jul 2002 B1
6426749 Knittel et al. Jul 2002 B1
6427022 Craine et al. Jul 2002 B1
6438533 Spackman et al. Aug 2002 B1
6463169 Ino et al. Oct 2002 B1
6476810 Simha et al. Nov 2002 B1
6512517 Knittel et al. Jan 2003 B1
6532299 Sachdeva et al. Mar 2003 B1
6532311 Pritt Mar 2003 B1
6556695 Packer et al. Apr 2003 B1
6556724 Chang et al. Apr 2003 B1
6563950 Wiskott et al. May 2003 B1
6574629 Cooke et al. Jun 2003 B1
6577753 Ogawa Jun 2003 B2
6603494 Banks et al. Aug 2003 B1
6606171 Renk et al. Aug 2003 B1
6614447 Bhatia et al. Sep 2003 B1
6618060 Brackett Sep 2003 B1
6621918 Hu et al. Sep 2003 B1
6630937 Kallergi et al. Oct 2003 B2
6650766 Rogers Nov 2003 B1
6654012 Lauer et al. Nov 2003 B1
6678764 Parvelescu et al. Jan 2004 B2
6680735 Seiler et al. Jan 2004 B1
6683933 Saito et al. Jan 2004 B2
6697067 Callahan et al. Feb 2004 B1
6697506 Oian et al. Feb 2004 B1
6734880 Chang et al. May 2004 B2
6760755 Brackett Jul 2004 B1
6775402 Bacus et al. Aug 2004 B2
6778689 Aksit et al. Aug 2004 B1
6820093 de la Huerga Nov 2004 B2
6820100 Funahashi Nov 2004 B2
6826297 Saito et al. Nov 2004 B2
6829377 Milioto Dec 2004 B2
6864794 Betz Mar 2005 B2
6886133 Bailey et al. Apr 2005 B2
6891920 Minyard et al. May 2005 B1
6894707 Nemoto May 2005 B2
6909436 Pianykh et al. Jun 2005 B1
6909795 Tecotzky et al. Jun 2005 B2
6917696 Soenksen Jul 2005 B2
6988075 Hacker Jan 2006 B1
6996205 Capolunghi et al. Feb 2006 B2
7016952 Mullen et al. Mar 2006 B2
7022073 Fan et al. Apr 2006 B2
7027633 Foran et al. Apr 2006 B2
7031504 Argiro et al. Apr 2006 B1
7031846 Kaushikkar et al. Apr 2006 B2
7039723 Hu et al. May 2006 B2
7043474 Mojsilovic May 2006 B2
7050620 Heckman May 2006 B2
7054473 Roehrig et al. May 2006 B1
7058901 Hafey et al. Jun 2006 B1
7092572 Huang et al. Aug 2006 B2
7103205 Wang et al. Sep 2006 B2
7106479 Roy et al. Sep 2006 B2
7110616 Ditt et al. Sep 2006 B2
7113186 Kim et al. Sep 2006 B2
7136064 Zuiderveld Nov 2006 B2
7139416 Vuylsteke Nov 2006 B2
7149334 Dehmeshki Dec 2006 B2
7155043 Daw Dec 2006 B2
7162623 Yngvesson Jan 2007 B2
7170532 Sako Jan 2007 B2
7174054 Manber et al. Feb 2007 B2
7209149 Jogo Apr 2007 B2
7209578 Saito et al. Apr 2007 B2
7212661 Samara et May 2007 B2
7218763 Belykh et al. May 2007 B2
7224852 Lipton et al. May 2007 B2
7236558 Saito et al. Jun 2007 B2
7260249 Smith Aug 2007 B2
7263710 Hummel et al. Aug 2007 B1
7272610 Torres Sep 2007 B2
7346199 Pfaff Mar 2008 B2
7366992 Thomas, III Apr 2008 B2
7379578 Soussaline et al. May 2008 B2
7412111 Battle et al. Aug 2008 B2
7450747 Jabri et al. Nov 2008 B2
7492970 Saito et al. Feb 2009 B2
7505782 Chu Mar 2009 B2
7516417 Amador et al. Apr 2009 B2
7525554 Morita et al. Apr 2009 B2
7526114 Seul et al. Apr 2009 B2
7526132 Koenig Apr 2009 B2
7545965 Suzuki et al. Jun 2009 B2
7574029 Peterson et al. Aug 2009 B2
7583861 Hanna et al. Sep 2009 B2
7590272 Brejl et al. Sep 2009 B2
7613335 McLennan et al. Nov 2009 B2
7634121 Novatzky et al. Dec 2009 B2
7636413 Toth Dec 2009 B2
7639879 Goto et al. Dec 2009 B2
7656543 Atkins Feb 2010 B2
7660481 Schaap et al. Feb 2010 B2
7660488 Reicher et al. Feb 2010 B2
7668352 Tecotzky et al. Feb 2010 B2
7683909 Takekoshi Mar 2010 B2
7698152 Reid Apr 2010 B2
7716277 Yamatake May 2010 B2
7787672 Reicher et al. Aug 2010 B2
7834891 Yarger et al. Nov 2010 B2
7835560 Vining et al. Nov 2010 B2
7885440 Fram et al. Feb 2011 B2
7885828 Glaser-Seidnitzer et al. Feb 2011 B2
7899514 Kirkland Mar 2011 B1
7920152 Fram et al. Apr 2011 B2
7953614 Reicher May 2011 B1
7970188 Mahesh et al. Jun 2011 B2
7970625 Reicher et al. Jun 2011 B2
7991210 Peterson et al. Aug 2011 B2
7992100 Lundstrom et al. Aug 2011 B2
8019138 Reicher et al. Sep 2011 B2
8046044 Stazzone et al. Oct 2011 B2
8050938 Green, Jr. et al. Nov 2011 B1
8065166 Maresh et al. Nov 2011 B2
8073225 Hagen et al. Dec 2011 B2
8094901 Reicher et al. Jan 2012 B1
8150708 Kotula et al. Apr 2012 B2
8214756 Salazar-Ferrer et al. Jul 2012 B2
8217966 Fram et al. Jul 2012 B2
8244014 Reicher et al. Aug 2012 B2
8249687 Peterson et al. Aug 2012 B2
8262572 Chono Sep 2012 B2
8292811 Relkuntwar et al. Oct 2012 B2
8370293 Iwase et al. Feb 2013 B2
8379051 Brown Feb 2013 B2
8380533 Reicher et al. Feb 2013 B2
8391643 Melbourne et al. Mar 2013 B2
8406491 Gee et al. Mar 2013 B2
8457990 Reicher et al. Jun 2013 B1
8554576 Reicher et al. Oct 2013 B1
8560050 Martin et al. Oct 2013 B2
8610746 Fram et al. Dec 2013 B2
8626527 Reicher Jan 2014 B1
8693757 Gundel Apr 2014 B2
8712120 Reicher Apr 2014 B1
8731259 Reicher et al. May 2014 B2
8751268 Reicher Jun 2014 B1
8797350 Fram Aug 2014 B2
8879807 Fram et al. Nov 2014 B2
8913808 Reicher et al. Dec 2014 B2
9042617 Reicher et al. May 2015 B1
9324188 Fram et al. Apr 2016 B1
9386084 Reicher et al. Jul 2016 B1
9471210 Fram et al. Oct 2016 B1
9495604 Fram Nov 2016 B1
9501617 Reicher et al. Nov 2016 B1
9501627 Reicher et al. Nov 2016 B2
9501863 Fram et al. Nov 2016 B1
9536324 Fram Jan 2017 B1
9542082 Reicher et al. Jan 2017 B1
9672477 Reicher et al. Jun 2017 B1
9684762 Reicher et al. Jun 2017 B2
20010016822 Bessette Aug 2001 A1
20010042124 Barron Nov 2001 A1
20020016718 Rothschild et al. Feb 2002 A1
20020021828 Papier et al. Feb 2002 A1
20020039084 Yamaguchi Apr 2002 A1
20020044696 Sirohey et al. Apr 2002 A1
20020070970 Wood et al. Jun 2002 A1
20020073429 Beane et al. Jun 2002 A1
20020090118 Olschewski Jul 2002 A1
20020090119 Saito et al. Jul 2002 A1
20020090124 Soubelet et al. Jul 2002 A1
20020091659 Beaulieu et al. Jul 2002 A1
20020103673 Atwood Aug 2002 A1
20020103827 Sesek Aug 2002 A1
20020110285 Wang et al. Aug 2002 A1
20020144697 Betz Oct 2002 A1
20020172408 Saito et al. Nov 2002 A1
20020172409 Saito et al. Nov 2002 A1
20020180883 Tomizawa et al. Dec 2002 A1
20020186820 Saito et al. Dec 2002 A1
20020190984 Seiler et al. Dec 2002 A1
20030005464 Gropper et al. Jan 2003 A1
20030013951 Stefanescu Jan 2003 A1
20030016850 Kaufman et al. Jan 2003 A1
20030028402 Ulrich et al. Feb 2003 A1
20030034973 Zuiderveld Feb 2003 A1
20030037054 Dutta et al. Feb 2003 A1
20030055896 Hu et al. Mar 2003 A1
20030065613 Smith Apr 2003 A1
20030071829 Bodicker et al. Apr 2003 A1
20030101291 Mussack et al. May 2003 A1
20030115083 Masarie et al. Jun 2003 A1
20030120516 Perednia Jun 2003 A1
20030130973 Sumner, II et al. Jul 2003 A1
20030140141 Mullen et al. Jul 2003 A1
20030156745 Saito et al. Aug 2003 A1
20030160095 Segal Aug 2003 A1
20030164860 Shen et al. Sep 2003 A1
20030184778 Chiba Oct 2003 A1
20030187689 Barnes et al. Oct 2003 A1
20030190062 Noro et al. Oct 2003 A1
20030204420 Wilkes et al. Oct 2003 A1
20030215122 Tanaka Nov 2003 A1
20040015703 Madison et al. Jan 2004 A1
20040024303 Banks et al. Feb 2004 A1
20040086163 Moriyama et al. May 2004 A1
20040088192 Schmidt et al. May 2004 A1
20040105030 Yamane Jun 2004 A1
20040105574 Pfaff Jun 2004 A1
20040114714 Minyard et al. Jun 2004 A1
20040122705 Sabol et al. Jun 2004 A1
20040143582 Vu Jul 2004 A1
20040161164 Dewaele Aug 2004 A1
20040165791 Kaltanji Aug 2004 A1
20040172306 Wohl Sep 2004 A1
20040174429 Chu Sep 2004 A1
20040190780 Shiibashi et al. Sep 2004 A1
20040202387 Yngvesson Oct 2004 A1
20040243435 Williams Dec 2004 A1
20040252871 Tecotzky et al. Dec 2004 A1
20040254816 Myers Dec 2004 A1
20040255252 Rodriguez Dec 2004 A1
20050010531 Kushalnagar et al. Jan 2005 A1
20050027569 Gollogly Feb 2005 A1
20050027570 Maier et al. Feb 2005 A1
20050043970 Hsieh Feb 2005 A1
20050063575 Ma et al. Mar 2005 A1
20050065424 Shah et al. Mar 2005 A1
20050074150 Bruss Apr 2005 A1
20050074157 Thomas, III Apr 2005 A1
20050075544 Shapiro et al. Apr 2005 A1
20050088534 Shen et al. Apr 2005 A1
20050107689 Sasano May 2005 A1
20050108058 Weidner et al. May 2005 A1
20050110791 Krishnamoorthy et al. May 2005 A1
20050111733 Fors et al. May 2005 A1
20050113681 DeFreitas et al. May 2005 A1
20050114178 Krishnamurthy et al. May 2005 A1
20050114179 Brackett et al. May 2005 A1
20050114283 Pearson et al. May 2005 A1
20050143654 Zuiderveld et al. Jun 2005 A1
20050171818 McLaughlin Aug 2005 A1
20050184988 Yanof et al. Aug 2005 A1
20050197860 Joffe et al. Sep 2005 A1
20050238218 Nakamura Oct 2005 A1
20050244041 Tecotzky et al. Nov 2005 A1
20050251013 Krishnan Nov 2005 A1
20050254729 Saito et al. Nov 2005 A1
20050273009 Deischinger et al. Dec 2005 A1
20060008181 Takekoshi Jan 2006 A1
20060031097 Lipscher et al. Feb 2006 A1
20060050152 Rai et al. Mar 2006 A1
20060058603 Dave et al. Mar 2006 A1
20060061570 Cheryauka et al. Mar 2006 A1
20060095426 Takachio et al. May 2006 A1
20060111941 Blom May 2006 A1
20060122482 Mariotti et al. Jun 2006 A1
20060171574 DelMonego et al. Aug 2006 A1
20060181548 Hafey Aug 2006 A1
20060188134 Quist Aug 2006 A1
20060230072 Partovi et al. Oct 2006 A1
20060241979 Sato et al. Oct 2006 A1
20060267976 Saito et al. Nov 2006 A1
20060276708 Peterson et al. Dec 2006 A1
20060277075 Salwan Dec 2006 A1
20060282408 Wisely et al. Dec 2006 A1
20070009078 Saito et al. Jan 2007 A1
20070021977 Elsholz Jan 2007 A1
20070050701 El Emam et al. Mar 2007 A1
20070055550 Courtney et al. Mar 2007 A1
20070064984 Vassa et al. Mar 2007 A1
20070067124 Kimpe et al. Mar 2007 A1
20070073556 Lau et al. Mar 2007 A1
20070106535 Matsunaga May 2007 A1
20070106633 Reiner May 2007 A1
20070109299 Peterson May 2007 A1
20070109402 Niwa May 2007 A1
20070110294 Schaap et al. May 2007 A1
20070116345 Peterson et al. May 2007 A1
20070116346 Peterson et al. May 2007 A1
20070122016 Brejl et al. May 2007 A1
20070124541 Lang et al. May 2007 A1
20070140536 Sehnert Jun 2007 A1
20070159962 Mathavu et al. Jul 2007 A1
20070162308 Peters Jul 2007 A1
20070165917 Cao et al. Jul 2007 A1
20070174079 Kraus Jul 2007 A1
20070192138 Saito et al. Aug 2007 A1
20070192140 Gropper Aug 2007 A1
20070237380 Iwase et al. Oct 2007 A1
20070239481 DiSilvestro et al. Oct 2007 A1
20080016111 Keen Jan 2008 A1
20080021877 Saito et al. Jan 2008 A1
20080059245 Sakaida et al. Mar 2008 A1
20080100612 Dastmalchi et al. May 2008 A1
20080103828 Squilla et al. May 2008 A1
20080125846 Battle et al. May 2008 A1
20080126982 Sadikali et al. May 2008 A1
20080136838 Goede et al. Jun 2008 A1
20080275913 van Arragon et al. Nov 2008 A1
20080279439 Minyard et al. Nov 2008 A1
20080300484 Wang et al. Dec 2008 A1
20090005668 West et al. Jan 2009 A1
20090022375 Fidrich Jan 2009 A1
20090028410 Shimazaki Jan 2009 A1
20090080719 Watt Mar 2009 A1
20090091566 Turney et al. Apr 2009 A1
20090123052 Ruth et al. May 2009 A1
20090129643 Natanzon et al. May 2009 A1
20090132586 Napora et al. May 2009 A1
20090150481 Garcia et al. Jun 2009 A1
20090182577 Squilla et al. Jul 2009 A1
20090198514 Rhodes Aug 2009 A1
20090213034 Wu et al. Aug 2009 A1
20090248442 Pacheco et al. Oct 2009 A1
20090268986 Holstein et al. Oct 2009 A1
20090326373 Boese et al. Dec 2009 A1
20100053353 Hunter et al. Mar 2010 A1
20100086182 Luo et al. Apr 2010 A1
20100131887 Salazar-Ferrer et al. May 2010 A1
20100198608 Kaboff et al. Aug 2010 A1
20100211409 Kotula et al. Aug 2010 A1
20100246981 Hu et al. Sep 2010 A1
20100299157 Fram et al. Nov 2010 A1
20110016430 Fram Jan 2011 A1
20110110572 Guehring et al. May 2011 A1
20110293162 Pajeau Dec 2011 A1
20110316873 Reicher Dec 2011 A1
20120070048 Van Den Brink Mar 2012 A1
20120130729 Raizada et al. May 2012 A1
20120136794 Kushalnagar et al. May 2012 A1
20120163684 Natanzon et al. Jun 2012 A1
20120284657 Hafey et al. Nov 2012 A1
20130070998 Shibata Mar 2013 A1
20130076681 Sirpal et al. Mar 2013 A1
20130083023 Fram Apr 2013 A1
20130159019 Reicher et al. Jun 2013 A1
20130169661 Reicher Jul 2013 A1
20130297331 Zuehlsdorff et al. Nov 2013 A1
20140022194 Ito Jan 2014 A1
20140142983 Backhaus et al. May 2014 A1
20150101066 Fram Apr 2015 A1
20150160848 Gkanatsios et al. Jun 2015 A1
20160034110 Edwards Feb 2016 A1
20160335395 Wu et al. Nov 2016 A1
20170038951 Reicher Feb 2017 A1
20170039321 Reicher Feb 2017 A1
20170039322 Reicher Feb 2017 A1
20170039350 Reicher Feb 2017 A1
20170039705 Fram Feb 2017 A1
20170046014 Fram Feb 2017 A1
20170046483 Reicher Feb 2017 A1
20170046495 Fram Feb 2017 A1
20170046870 Fram Feb 2017 A1
20170053404 Reicher Feb 2017 A1
Foreign Referenced Citations (1)
Number Date Country
WO 2007131157 Nov 2007 WO
Non-Patent Literature Citations (278)
Entry
US 7,801,341, 09/2010, Fram et al. (withdrawn)
US 8,208,705, 06/2012, Reicher et al. (withdrawn)
Interview Summary dated May 31, 2011 in U.S. Appl. No. 12/702,976.
Notice of Allowance dated Jul. 20, 2011, in U.S. Appl. No. 12/702,976.
Office Action dated Dec. 1, 2011, in U.S. Appl. No. 13/228,349.
Notice of Allowance dated Feb. 6, 2012, in U.S. Appl. No. 13/228,349.
Notice of Allowance dated Jul. 20, 2012, in U.S. Appl. No. 13/228,349.
Notice of Allowance dated May 17, 2010, in U.S. Appl. No. 11/268,261.
Supplemental Notice of Allowance dated Aug. 6, 2010, in U.S. Appl. No. 11/268,261.
Office Action dated May 16, 2011, in U.S. Appl. No. 12/857,915.
Interview Summary dated Sep. 6, 2011, in U.S. Appl. No. 12/857,915.
Final Office Action dated Dec. 15, 2011, in U.S. Appl. No. 12/857,915.
Office Action dated Jun. 12, 2012, in U.S. Appl. No. 12/857,915.
Office Action dated Aug. 23, 2013, in U.S. Appl. No. 12/857,915.
Notice of Allowance dated May 26, 2011 in U.S. Appl. No. 11/265,979.
Office Action dated Jun. 8, 2012 in U.S. Appl. No. 13/171,081.
Interview Summary dated Jul. 31, 2012 in U.S. Appl. No. 13/171,081.
Final Office Action dated Oct. 12, 2012 in U.S. Appl. No. 13/171,081.
Interview Summary dated Nov. 6, 2012 in U.S. Appl. No. 13/171,081.
Notice of Allowance, dated Sep. 4, 2013, in U.S. Appl. No. 13/171,081.
Non-Final Office Action dated Jan. 11, 2012 in U.S. Appl. No. 13/079,597.
Notice of Allowance dated Apr. 25, 2012, in U.S. Appl. No. 13/079,597.
Non-Final Office Action dated Apr. 4, 2013 in U.S. Appl. No. 13/535,758.
Notice of Allowance, dated Aug. 23, 2013 in U.S. Appl. No. 13/535,758.
Non-Final Office Action dated May 5, 2011 in U.S. Appl. No. 12/870,645.
Non-Final Office Action dated May 31, 2013, in U.S. Appl. No. 13/345,606.
Interview Summary dated Aug. 15, 2013, in U.S. Appl. No. 13/345,606.
Non Final Office Action Dated Nov. 10, 2011 in U.S. Appl. No. 13/118,085.
Interview Summary, dated Feb. 17, 2012, in U.S. Appl. No. 13/118,085.
Final Office Action, dated Apr. 13, 2012, in U.S. Appl. No. 13/118,085.
Notice of Allowance, dated Feb. 6, 2013, in U.S. Appl. No. 13/118,085.
Interview Summary dated Jun. 28, 2012 in U.S. Appl. No. 11/944,027.
Final Office Action dated Oct. 22, 2012 in U.S. Appl. No. 11/944,027.
Notice of Allowance dated Jun. 5, 2013 in U.S. Appl. No. 11/944,027.
Interview Summary dated Jun. 7, 2011 in U.S. Appl. No. 11/944,000.
Appeal Brief dated Mar. 4, 2013 in U.S. Appl. No. 11/944,000.
Examiner's Answer dated Jun. 26, 2013 in U.S. Appl. No. 11/944,000.
Office Action dated Feb. 3, 2012 in U.S. Appl. No. 12/622,404.
Interview Summary dated May 8, 2012 in U.S. Appl. No. 12/622,404.
Final Office Action dated Aug. 6, 2012 in U.S. Appl. No. 12/622,404.
Notice of Allowance dated Oct. 15, 2012 in U.S. Appl. No. 12/622,404.
Office Action dated Mar. 4, 2013 in U.S. Appl. No. 12/891,543.
Interview Summary dated Apr. 5, 2013 in U.S. Appl. No. 12/891,543.
Mendelson, et al., “Informatics in Radiology—Image Exchange: IHE and the Evolution of Image Sharing,” RadioGraphics, Nov.-Dec. 2008, vol. 28, No. 7.
Interview Summary dated Mar. 14, 2014, in U.S. Appl. No. 13/477,853.
Interview Summary dated Feb. 4, 2014, in U.S. Appl. No. 12/857,915.
Notice of Allowance, dated Jan. 9, 2014 in U.S. Appl. No. 13/345,606.
Non Final Office Action dated Aug. 23, 2013 in U.S. Appl. No. 13/907,128.
Final Office Action dated Oct. 9, 2013 in U.S. Appl. No. 13/907,128.
Interview Summary dated Nov. 22, 2013 in U.S. Appl. No. 13/907,128.
Notice of Allowance dated Jan. 31, 2014 in U.S. Appl. No. 13/907,128.
Office Action, dated Mar. 13, 2014 in U.S. Appl. No. 11/942,687.
Notice of Allowance dated Nov. 14, 2013 in U.S. Appl. No. 12/891,543.
U.S. Appl. No. 12/437,522, May 7, 2009, Fram.
U.S. Appl. No. 13/572,397, Aug. 10, 2012, Reicher.
U.S. Appl. No. 13/572,547, Aug. 10, 2012, Reicher.
U.S. Appl. No. 13/572,552, Aug. 10, 2012, Reicher.
Non-Final Office Action dated Aug. 28, 2007 in U.S. Appl. No. 11/179,384.
Final Office Action dated Jun. 26, 2008 in U.S. Appl. No. 11/179,384.
Non-Final Office Action dated Dec. 29, 2008 in U.S. Appl. No. 11/179,384.
Final Office Action dated Jul. 24, 2009, in U.S. Appl. No. 11/179,384.
Notice of Allowance dated Nov. 3, 2009, in U.S. Appl. No. 11/179,384.
Non-Final Office Action dated Aug. 18, 2010 in U.S. Appl. No. 12/702,976.
Interview Summary dated Dec. 1, 2010, in U.S. Appl. No. 12/702,976.
Final Office Action dated Feb. 17, 2011 in U.S. Appl. No. 12/702,976.
Final Office Action dated Jun. 13, 2014, in U.S. Appl. No. 13/477,853.
Notice of Allowance dated Aug. 15, 2014, in U.S. Appl. No. 13/477,853.
Interview Summary dated Jan. 25, 2010, in U.S. Appl. No. 11/268,261.
Notice of Allowance dated Oct. 8, 2010, in U.S. Appl. No. 11/268,261.
Notice of Allowance dated Dec. 3, 2010, in U.S. Appl. No. 11/268,261.
Notice of Allowance dated Jan. 6, 2011, in U.S. Appl. No. 11/268,261.
Notice of Allowance dated Jul. 3, 2014, in U.S. Appl. No. 12/857,915.
“Corrected” Notice of Allowance dated Aug. 15, 2014, in U.S. Appl. No. 12/857,915.
Non-Final Office Action dated May 13, 2009, in U.S. Appl. No. 11/265,979.
Final Office Action dated Dec. 22, 2009 in U.S. Appl. No. 11/265,979.
Non-Final Office Action dated Jul. 8, 2010 in U.S. Appl. No. 11/265,979.
Interview Summary dated Mar. 4, 2010 in U.S. Appl. No. 11/265,979.
Interview Summary dated Nov. 16, 2010 in U.S. Appl. No. 11/265,979.
Final Office Action dated Dec. 23, 2010 in U.S. Appl. No. 11/265,979.
Interview Summary dated Mar. 17, 2011 in U.S. Appl. No. 11/265,979.
Office Action dated Mar. 3, 2015 in U.S. Appl. No. 14/095,123.
Non-Final Office Action dated Aug. 24, 2009 in U.S. Appl. No. 11/268,262.
Non-Final Office Action dated Apr. 16, 2010 in U.S. Appl. No. 11/268,262.
Interview Summary dated Nov. 24, 2009 in U.S. Appl. No. 11/268,262.
Interview Summary dated May 12, 2010 in U.S. Appl. No. 11/268,262.
Final Office Action dated Oct. 28, 2010 in U.S. Appl. No. 11/268,262.
Interview Summary dated Dec. 1, 2010 in U.S. Appl. No. 11/268,262.
Notice of Allowance dated Dec. 1, 2010 in U.S. Appl. No. 11/268,262.
Notice of Allowance dated Feb. 25, 2011 in U.S. Appl. No. 11/268,262.
Non-Final Office Action dated Jul. 27, 2009 in U.S. Appl. No. 11/265,978.
Notice of Allowance dated Nov. 19, 2009 in U.S. Appl. No. 11/265,978.
Notice of Allowance dated Apr. 19, 2010 in U.S. Appl. No. 11/265,978.
Supplemental Notice of Allowance dated May 3, 2010 in U.S. Appl. No. 11/265,978.
Supplemental Notice of Allowance dated Aug. 3, 2010 in U.S. Appl. No. 11/265,978.
Non-Final Office Action dated May 26, 2010 in U.S. Appl. No. 11/942,674.
Interview Summary dated Jul. 26, 2010 in U.S. Appl. No. 11/942,674.
Final Office Action dated Nov. 26, 2010 in U.S. Appl. No. 11/942,674.
Interview Summary dated Mar. 2, 2011 in U.S. Appl. No. 11/942,674.
Notice of Allowance, dated Apr. 1, 2011 in U.S. Appl. No. 11/942,674.
Non Final Office Action dated Sep. 16, 2010 in U.S. Appl. No. 11/942,687.
Interview Summary dated Dec. 3, 2010 in U.S. Appl. No. 11/942,687.
Final Office Action, dated Apr. 5, 2011 in U.S. Appl. No. 11/942,687.
Interview Summary, dated Jun. 17, 2014 in U.S. Appl. No. 11/942,687.
Office Action, dated Jul. 18, 2014 in U.S. Appl. No. 11/942,687.
Interview Summary, dated Mar. 4, 2015 in U.S. Appl. No. 11/942,687.
Non-Final Office Action dated Apr. 14, 2010 in U.S. Appl. No. 11/944,027.
Interview Summary dated May 13, 2010 in U.S. Appl. No. 11/944,027.
Final Office Action dated Dec. 23, 2010 in U.S. Appl. No. 11/944,027.
Interview Summary dated Mar. 31, 2011 in U.S. Appl. No. 11/944,027.
Office Action dated Apr. 19, 2012 in U.S. Appl. No. 11/944,027.
Final Office Action dated Apr. 1, 2015 in U.S. Appl. No. 14/043,165.
Non-Final Office Action dated Sep. 29, 2010 in U.S. Appl. No. 11/944,000.
Final Office Action dated Apr. 20, 2011 in U.S. Appl. No. 11/944,000.
Office Action dated Mar. 17, 2015 in U.S. Appl. No. 13/768,765.
Office Action dated Sep. 11, 2014 in U.S. Appl. No. 14/179,328.
Notice of Allowance dated Jan. 14, 2015 in U.S. Appl. No. 14/179,328.
Office Action dated Jun. 27, 2014 in U.S. Appl. No. 13/572,397.
Final Office Action dated Jan. 13, 2015 in U.S. Appl. No. 13/572,397.
Notice of Allowance dated Mar. 19, 2015, 2015 in U.S. Appl. No. 13/572,397.
Office Action dated Aug. 6, 2014 in U.S. Appl. No. 13/572,547.
Notice of Allowance, dated Mar. 3, 2015 in U.S. Appl. No. 13/572,547.
Corrected Notice of Allowance, dated Apr. 10, 2015 in U.S. Appl. No. 13/572,547.
Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/572,552.
Interview Summary dated Sep. 3, 2014 in U.S. Appl. No. 13/572,552.
Final Office Action dated Jan. 28, 2105 in U.S. Appl. No. 13/572,552.
AGFA HealthCare, color brochure “IMPAX 6: Digital Image and Information Management,” © 2012 Agfa HealthCare N.V. Downloaded from http://www.agfahealthcare.com/global/en/he/library/libraryopen?ID=32882925. Accessed on Feb. 9, 2015.
AGFA HealthCare, IMPAX 6.5 Datasheet (US)2012. © 2012 Agfa HealthCare N.V. Downloaded from http://www.agfahealthcare.com/global/en/he/library/libraryopen?ID=37459801. Accessed on Feb. 9, 2015.
AMD Technologies, Inc., Catella PACS 5.0 Viewer User Manual (112 pgs), © 2010, AMD Technologies, Inc. (Doc. 340-3-503 Rev. 01). Downloaded from http://www.amdtechnologies.com/lit/cat5viewer.pdf. Accessed on Feb. 9, 2015.
Aspyra's Imaging Solutions, 3 page color print out. Accessed at http://www.aspyra.com/imaging-solutions. Accessed on Feb. 9, 2015.
Avreo, interWorks—RIS/PACS package, 2 page color brochure, © 2014, Avreo, Inc. (Document MR-5032 Rev. 4). Downloaded from http://www.avreo.com/ProductBrochures/MR-5032Rev.%204interWORKS%20RISPACSPackage.pdf. Accessed on Feb. 9, 2015.
BRIT Systems, BRIT PACS View Viewer, 2 page color brochure, (BPB-BPV-0001). Downloaded from http://www.brit.com/pdfs/britpacsview.pdf. Accessed on Feb. 9, 2015.
BRIT Systems, Roentgen Works—100% Browers-based VNA (Vendor Neutral Archive/PACS), © 2010 BRIT Systems, 1 page color sheet. Accessed at http://www.roentgenworks.com/PACS. Accessed on Feb. 9, 2015.
BRIT Systems, Vision Multi-modality Viewer—with 3D, 2 page color brochure, (BPB-BVV-0001 REVC). Downloaded from http://www.brit.com/pdfs/BPB-BVV-0001REVC—BRIT—Vision—Viewer.pdf. Accessed on Feb. 9, 2015.
CANDELiS, ImageGrid™: Image Management Appliance, 6 page color brochure. (AD-012 Rev. F Nov. 2012), © 2012 Candelis, Inc. Downloaded from http://www.candelis.com/images/pdf/Candelis—ImageGrid—Appliance—20111121.pdf. Accessed on Feb. 9, 2015.
Carestream, Cardiology PACS, 8 page color brochure. (CAT 866 6075 Jun. 2012). © Carestream Health, Inc., 2012. Downloaded from http://www.carestream.com/cardioPACS—brochure—M1-877.pdf. Accessed on Feb. 9, 2015.
Carestream, Vue PACS, 8 page color brochure. (CAT 300 1035 May 2014). © Carestream Health, Inc., 2014. Downloaded from http://www.carestream.com/csPACS—brochure—M1-876.pdf. Accessed on Feb. 9, 2015.
Cerner, Radiology—Streamline image management, 2 page color brochure, (fl03—332—10—v3). Downloaded from http://www.cerner.com/uploadedFiles/Clinical—Imaging.pdf. Accessed on Feb. 9, 2015.
CoActiv, EXAM-PACS, 2 page color brochure, © 2014 CoActiv, LLC. Downloaded from http://coactiv.com/wp-content/uploads/2013/08/EXAM-PACS-BROCHURE-final-web.pdf. Accessed on Feb. 9, 2015.
Crowley, Rebecca et al., Development of Visual Diagnostic Expertise in Pathology: an Information-processing Study, Jan. 2003, Journal of the American medical Informatics Association, vol. 10, No. 1, pp. 39-51.
DR Systems, Dominator™ Guide for Reading Physicians, Release 8.2, 546 pages, (TCP-000260-A), © 1997-2009, DR Systems, Inc. Downloaded from https://resources.dominator.com/assets/004/6999.pdf. Document accessed Feb. 9, 2015.
DR Systems, DR Scheduler User Guide, Release 8.2, 410 pages, (TCP-000115-A), © 1997-2009, DR Systems, Inc. Downloaded from https://resources.dominator.com/assets/003/6850.pdf. Document accessed Feb. 9, 2015.
Erickson, et al.: “Effect of Automated Image Registration on Radiologist Interpretation,” Journal of Digital Imaging, vol. 20, No. 2 Jun. 2007; pp. 105-113.
Erickson, et al.: “Image Registration Improves Confidence and Accuracy of Image Interpretation,” Special Issue—Imaging Informatics, Cancer Informatics 2007: 1 19-24.
Fujifilm Medical Systems, SYNAPSE® Product Data, Synapse Release Version 3.2.1, Foundation Technologies, 4 page color brochure, (XBUSSY084) Aug. 2008. Downloaded from http://www.fujifilmusa.com/shared/bin/foundation.pdf. Accessed on Feb. 9, 2015.
Fujifilm Medical Systems, SYNAPSE® Product Data, Synapse Release Version 3.2.1, Server Modules and Interfaces, 4 page color brochure, (XBUSSY085) Aug. 2008. Downloaded from http://www.fujifilmusa.com/shared/bin/server-interface.pdf. Accessed on Feb. 9, 2015.
Fujifilm Medical Systems, SYNAPSE® Product Data, Synapse Release Version 3.2.1, Workstation Software, 4 page color brochure, (XBUSSY082) Aug. 2008. Downloaded from http://www.fujifilmusa.com/shared/bin/workstation.pdf. Accessed on Feb. 9, 2015.
GE Healthcare, Centricity PACS, in 8 page printout. Accessed at http://www3.gehealthcare.com/en/products/categories/healthcare—it/medical—imaging—informatics—-—ris-pacs-cvis/centricity—pacs. Accessed on Feb. 9, 2015.
Handylife.com—Overview of Handy Patients Enterprise, in 2 page printout. Accessed from http://www.handylife.com/en/software/overview.html. Accessed on Feb. 18, 2015.
Handylife.com—Features of Handy Patients Enterprise, in 4 page printout. Accessed from http://www.handylife.com/en/software/features.html. Accessed on Feb. 18, 2015.
Handylife.com—Screenshots of Handy Patients Enterprise, in 2 page printout. Accessed from http://www.handylife.com/en/software/screenshots.html. Accessed on Feb. 18, 2015.
iCRco, I See the Future, in 12 pages, color brochure, (BR080809AUS), © 2009 iCRco.ClarityPACS. Downloaded from http://www.claritypacs.com/pdfs/ISeeFuture—26—Web.pdf. Accessed on Feb. 9, 2015.
Imageanalysis, dynamika, 2 page color brochure. Downloaded from http://www.imageanalysis.org.uk/what-we-do. Accessed on Feb. 9, 2015.
Imageanalysis, MRI Software, in 5 page printout. Accessed at http://www.imageanalysis.org.uk/mri-software. Accessed on Feb. 9, 2015.
IMSI, Integrated Modular Systems, Inc., Hosted / Cloud PACS in one page printout. Accessed at http://www.imsimed.com/#!products-services/ctnu. Accessed on Feb. 9, 2015.
Infinitt, PACS, RIS, Mammo PACS, Cardiology Suite and 3D/Advanced Visualization | Infinittna, 2 page printout. Accessed at http://www.infinittna.com/products/radiology/radiology-pacs. Accessed on Feb. 9, 2015.
Intelerad, IntelePACS, 2 page color brochure, © 2014 Intelerad Medical Systems Incoprorated. Downloaded http://www.intelerad.com/wp-content/uploads/sites/2/2014/08/IntelePACS-brochure.pdf. Accessed on Feb. 9, 2015.
Intelerad, InteleViewer, 2 page color brochure, © 2014 Intelerad Medical Systems Incoprorated. Downloaded from http://www.intelerad.com/wp-content/uploads/sites/2/2014/09/InteleViewer-brochure.pdf. Accessed on Feb. 9, 2015.
Intuitive Imaging Informatics, ImageQube, 1 page in color. Downloaded from http://www.intuitiveimaging.com/2013/pdf/ImageQube%20one-sheet.pdf. Accessed on Feb. 9, 2015.
Kuhl, Helen: Comparison Chart/PACS, Customers Are Happy, But Looking for More, (color) Imaging Techology News, itnonline.com, May 2012, pp. 24-27. Downloaded from http://www.merge.com/MergeHealthcare/media/company/In%20The%20News/merge-pacs-comparison.pdf. Accessed on Feb. 9, 2015.
Lumedx CardioPACS 5.0 Web Viewer, Cardiopacs Module, 2 page color brochure, (506-10011 Rev A). Downloaded from http://cdn.medicexchange.com/images/whitepaper/cardiopacs—web—viewer.pdf?1295436926. Accessed on Feb. 9, 2015.
Lumedx Cardiovascular Information System, CardioPACS, one page in color printout. Accessed at http://www.lumedx..com/pacs.aspx. Accessed on Feb. 9, 2015.
McKesson Enterprise Medical Imagining and PACS | McKesson, 1 page (color) printout. Accessed at http://www.mckesson.com/providers/health-systems/diagnostic-imaging/enterprise-medical-imaging. Accessed on Feb. 9, 2015.
Medweb Radiology Workflow Solutions, Radiology Workflow Solutions, Complete Workflow & Flexible Turnkey Solutions, Web RIS/PACS with Advanced Viewer, 3 page color brochure, © 2006-2014 Medweb. Downloaded from http://www.medweb.com/docs/rispacs—brochure—2014.pdf. Accessed on Feb. 9, 2015.
Merge Radiology Solutions, Merge PACS, A real-time picture archiving communication system, (PAX-21990 rev 2.0), 2 page color brochure. Downloaded from http://www.merge.com/MergeHealthcare/media/documents/brochures/Merge—PACS—web.pdf. Accessed on Feb. 9, 2015.
Novarad Enterprise Imaging Solutions, NOVAPACS, 2 page (color) printout. Accessed at http://ww1.novarad.net/novapacs. Accessed on Feb. 9, 2015.
PACSPLUS, PACSPLUS Server, 1 page (color) printout. Accessed at http://www.pacsplus.com/01—products/products—01.html. Accessed on Feb. 9, 2015.
PACSPLUS, PACSPLUS Workstation, 3 page (color) printout. Accessed at http://www.pacsplus.com/01—products/products—01.html. Accessed on Feb. 9, 2015.
Philips IntelliSpace PACS, in 2 color page printout. Accessed at https://www.healthcare.philips.com/main/products/healthcare—informatics/products/enterprise—imaging—informatics/isite—pacs. Accessed on Feb. 9, 2015.
RamSoft, RIS PACS Teleradiology, PowerServer PACS, Lite PACS, XU PACS Compare RamSoft PACS Products, 2 color page printout. Accessed at http://www.ramsoft.com/products/powerserver-pacs-overview. Accessed on Feb. 9, 2015.
Sage Intergy PACS | Product Summary. Enhancing Your Workflow by Delivering Web-based Diagnostic Images When and Where You Need Them, in 2 color pages. (IRV-SS-INTPACS-PSS-031309). © 2009 Sage Software Healcare, Inc. Downloaded from http://www.greenwayhealth.com/solutions/intergy/. Accessed on Feb. 9, 2015.
Schellingerhout, Dawid, MD, et al.: “Coregistration of Head CT Comparison Studies: Assessment of Clinical Utility,” Aced Radiol 2003; 10:242-248.
ScImage, Cardiology PACS, in 8 color page printout. Accessed at http://www.scimage.com/solutions/clinical-solutions/cardiology. Accessed on Feb. 9 2015.
Sectra RIS PACS, in 2 color page printout. Accessed at https://www.sectra.com/medical/diagnostic—imaging/solutions/ris-pacs/. Accessed on Feb. 9, 2015.
Siemens syngo.plaza, Features and Benefits, in 2 color page printout. Accessed at http://www.healthcare.siemens.com/medical-imaging-it/imaging-it-radiology-image-management-pacs/syngoplaza/features. Accessed on Feb. 9, 2015.
Simms | RIS and PACS Medical Imaging Software, in 2 color page printout. http://www.mysimms.com/ris-pacs.php. Accessed on Feb. 9, 2015.
Stryker, Imaging—OfficePACS Power Digital Imaging, in one color page printout. Accessed from http://www.stryker.com/emea/Solutions/Imaging/OfficePACSPowerDigitalImaging/index.htm. Accessed on Feb. 9, 2015.
Stryker, OfficePACS Power—Digital Imaging, 8 page color brochure, (MPP-022 Rev 4 BC/MP 300 1/07). © 2007 Stryker. Downloaded from http://www.stryker.com/emea/Solutions/Imaging/OfficePACSPowerDigitalImaging/ssLINK/emea/1557/022268. Accessed on Feb. 9, 2015.
UltraRAD—ultra Vision, 1 page (color). Downloaded from http://www.ultraradcorp.com/pdf/UltraVISION.pdf. Accessed on Feb. 9, 2015.
VioStream for VitreaView, 2 color pages printout. Accessed at http://www.vitalimages.com/solutions/universal-viewing/viostream-for-vitreaview. Accessed on Feb. 9, 2015.
Visage Imaging Visage 7, 3 color page printout. Accessed at http://www.visageimaging.com/visage-7. Accessed on Feb. 9, 2015.
Viztek Radiology PACS Software Vixtek Opal-RAD, 4 color page printout. Accessed at http://viztek.net/products/opal-rad. Accessed on Feb. 9, 2015.
Voyager Imaging—Voyager PACS Radiologist Workstation, 2 page color brochure. Downloaded from http://www.intellirad.com.au/assets/Uploads/Voyager-PacsWorkstations.pdf?. Accessed on Feb. 9, 2015.
Voyager Imaging—Voyager PACS, 3 page color brochure. Downloaded from http://www.intellirad.com.au/index.php/assets/Uploads/Voyager-Pacs3.pdf. Accessed on Feb. 9, 2015.
Ivetic, D., and Dragan, D., Medical Image on the Go!, 2009, J Med Syst, vol. 35, pp. 499-516.
Tahmoush, D. and Samet, H., A New Database for Medical Images and Information, 2007, Medical Imaging 2007; PACS and Imaging Informatics, vol. 6516. pp. 1-9.
U.S. Appl. No. 13/768,765, Systems and Method of Providing Dynamic and Customizable Medical Examination Forms, filed Feb. 15, 2013.
U.S. Appl. No. 14/540,830, filed Nov. 13, 2014 including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, Reicher et al.
U.S. Appl. No. 14/502,055, filed Sep. 30, 2014 including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, Fram et al.
U.S. Appl. No. 14/095,123, filed Dec. 3, 2013 including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, Reicher et al.
U.S. Appl. No. 14/081,225, filed Nov. 15, 2013 including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, Fram et al.
U.S. Appl. No. 14/244,431, filed Apr. 3, 2014 including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, Reicher et al.
U.S. Appl. No. 11/942687, filed Nov. 19, 2007 including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, Reicher, et al.
U.S. Appl. No. 14/043,165, filed Oct. 1, 2013 including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, Reicher, et al.
U.S. Appl. No. 11/944,000, filed Nov. 21, 2007 including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, Reicher, et al.
U.S. Appl. No. 13/768,765, filed Feb. 15, 2013 including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, Reicher et al.
U.S. Appl. No. 14/687,853, filed Apr. 15, 2015 including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, Reicher et al.
U.S. Appl. No. 14/792,210, filed Jul. 6, 2015 including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other Potentially relevant documents, Reicher.
Office Action dated Dec. 11, 2013, in U.S. Appl. No. 13/477,853.
Non-Final Office Action dated Oct. 1, 2009, in U.S. Appl. No. 11/268,261.
Notice of Allowance dated Feb. 2, 2010, in U.S. Appl. No. 11/268,261.
Interview Summary dated May 1, 2015 in U.S. Appl. No. 14/095,123.
Final Office Action dated Jul. 23, 2015 in U.S. Appl. No. 14/095,123.
Interview Summary dated Aug. 27, 2015 in U.S. Appl. No. 14/095,123.
Office Action dated Oct. 14, 2014 in U.S. Appl. No. 14/043,165.
Office Action dated Oct. 2, 2015 in U.S. Appl. No. 14/043,165.
Interview Summary dated Jun. 11, 2015 in U.S. Appl. No. 13/768,765.
Notice of Allowance dated Aug. 28, 2015 in U.S. Appl. No. 13/768,765.
Corrected Notice of Allowance, dated May 21, 2015 in U.S. Appl. No. 13/572,547.
Interview Summary dated Apr. 23, 2015 in U.S. Appl. No. 13/572,552.
Notice of Allowance, dated May 8, 2015 in U.S. Appl. No. 13/572,552.
Philips, IntelliSpace: Multi-modality tumor tracking application versus manual PACS methods, A time study for Response Evaluation Criteria in Solid Tumors (RECIST). 2012, Koninklijke Philips Electronics N.V., in four pages.
Non-Final Office Action dated Jan. 20, 2016, in U.S. Appl. No. 14/502,055.
Interview Summary dated Apr. 14, 2016, in U.S. Appl. No. 14/502,055.
Office Action dated Feb. 23, 2016 in U.S. Appl. No. 14/095,123.
Office Action dated Mar. 10, 2016 in U.S. Appl. No. 14/081,225.
Non-Final Office Action dated Mar. 18, 2016 in U.S. Appl. No. 14/244,431.
Final Office Action, dated Jan. 5, 2015 in U.S. Appl. No. 11/942,687.
Notice of Appeal and Interview Summary, dated May 5, 2015 in U.S. Appl. No. 11/942,687.
PTAB Examiner's Answer, dated Feb. 25, 2016 in U.S. Appl. No. 11/942,687.
Interview Summary dated Dec. 21, 2015 in U.S. Appl. No. 14/043,165.
Final Office Action dated Feb. 17, 2016 in U.S. Appl. No. 14/043,165.
Board Decision dated Mar. 23, 2016 in U.S. Appl. No. 11/944,000.
Notice of Allowability dated Nov. 20, 2015 in U.S. Appl. No. 13/768,765.
Office Action dated Aug. 13, 2015 in U.S. Appl. No. 14/687,853.
Notice of Allowance dated Feb. 25, 2016 in U.S. Appl. No. 14/687,853.
Rosset et al.: “OsiriX: An Open-Source Software for Navigating in Multidimensional DICOM Images,” Journal of digital Imaging, Sep. 2004, pp. 205-216.
U.S. Appl. No. 14/540,830, Systems and Methods for Viewing Medical Images, filed Nov. 13, 2014.
U.S. Appl. No. 14/502,055, Systems and Methods for Interleaving Series of Medical Images, filed Sep. 30, 2014.
U.S. Appl. No. 14/095,123, Systems and Methods for Retrieval of Medical Data, filed Dec. 3, 2013.
U.S. Appl. No. 14/081,225, Systems and Methods for Viewing Medical 3D Imaging Volumes, filed Nov. 15, 2013.
U.S. Appl. No. 14/244,431, Systems and Methods for Matching, Naming, and Displaying Medical Images, filed Apr. 3, 2014.
U.S. Appl. No. 11/942,687, Smart Forms, filed Nov. 19, 2007.
U.S. Appl. No. 14/043,165, Automated Document Filing, filed Oct. 1, 2013.
U.S. Appl. No. 11/944,000, Exam Scheduling With Customer Configured Notifications, filed Nov. 21, 2007.
U.S. Appl. No. 13/768,765, System and Method of Providing Dynamic and Customizable Medical Examination Forms, filed Feb. 15, 2013.
U.S. Appl. No. 14/687,853, Rules-Based Approach to Rendering Medical Imaging Data, filed Apr. 15, 2015.
U.S. Appl. No. 14/792,210, Dynamic Montage Reconstruction, filed Jul. 6, 2015.
Final Office Action dated May 15, 2017 in U.S. Appl. No. 14/540,830.
Notice of Allowance, dated Apr. 11, 2017 in U.S. Appl. No. 15/292,023.
Office Action dated Jun. 27, 2017 in U.S. Appl. No. 15/469,342.
Office Action dated Jun. 26, 2017 in U.S. Appl. No. 15/469,281.
Office Action dated Jun. 27, 2017 in U.S. Appl. No. 15/469,296.
U.S. Appl. No. 15/631,291, filed Jun. 23, 2017, Reicher et al.
U.S. Appl. No. 15/631,313, filed Jun. 23, 2017, Fram et al.
Office Action dated Jan. 17, 2017 in U.S. Appl. No. 14/540,830.
Interview Summary dated Mar. 24, 2017 in U.S. Appl. No. 14/540,830.
Notice of Allowance dated Jun. 2, 2016 in U.S. Appl. No. 14/502,055.
Notice of Corrected Allowability dated Jul. 14 2016, in U.S. Appl. No. 14/502,055.
Notice of Corrected Allowability dated Sep. 19, 2016, in U.S. Appl. No. 14/502,055.
Office Action dated Dec. 12, 2016 in U.S. Appl. No. 15/254,627.
U.S. Appl. No. 15/469,281, filed Mar. 24, 2017, Reicher et al.
U.S. Appl. No. 15/469,296, filed Mar. 24, 2017, Reicher et al.
U.S. Appl. No. 15/469,342, filed Mar. 24, 2017, Reicher et al.
Notice of Allowance dated Apr. 3, 2017 in U.S. Appl. No. 15/254,627.
Final Office Action dated Jul. 20, 2016 in U.S. Appl. No. 14/095,123.
Notice of Allowance dated Mar. 30, 2017 in U.S. Appl. No. 14/095,123.
Corrected Notice of Allowance dated Jun. 27, 2016, in U.S. Appl. No. 14/502,055.
Notice of Allowance dated Sep. 2, 2016 in U.S. Appl. No. 14/081,225.
Corrected Notice of Allowance dated Oct. 21, 2016 in U.S. Appl. No. 14/081,225.
Interview Summary dated Jun. 17, 2016 in U.S. Appl. No. 14/244,431.
Notice of Allowance dated Aug. 18, 2016 in U.S. Appl. No. 14/244,431.
Corrected Notice of Allowance dated Nov. 16, 2016 in U.S. Appl. No. 14/244,431.
Appeal Brief dated Jul. 15, 2016 in U.S. Appl. No. 14/043,165.
Examiner's Answer dated Nov. 14, 2016, in U.S. Appl. No. 14/043,165.
Office Action, dated Jul. 15, 2016 in U.S. Appl. No. 11/944,000.
Notice of Allowance, dated Jan. 30, 2017, in U.S. Appl. No. 11/944,000.
Notice of Allowability dated Jul. 28, 2016 in U.S. Appl. No. 13/768,765.
Supplemental Notice of Allowance dated Jun. 2, 2016 in U.S. Appl. No. 14/687,853.
Notice of Allowance dated Aug. 11, 2016 in U.S. Appl. No. 15/163,600.
Supplemental Notice of Allowance dated Sep. 14, 2016 in U.S. Appl. No. 15/163,600.
Office Action, dated Jan. 12, 2017 in U.S. Appl. No. 15/292,023.
Restriction Requirement, dated Jul. 28, 2015 in U.S. Appl. No. 14/139,068.
Office Action, dated Mar. 11, 2016 in U.S. Appl. No. 14/139,068.
Notice of Allowance, dated Sep. 21, 2016 in U.S. Appl. No. 14/139,068.
Sandberg, et al., “Automatic detection and notification of “wrong paitent-wrong location” errors in the operating room,” Surgical Innovation, vol. 12, No. 3, Sep. 2005, pp. 253-260.
Sprawls, “Image Characteristics and Quality,” Physical Principles of Medical Imaging, http://www.sprawls.org/resources pp. 1-14.
TeraRecon iNtuition pamphlet in 20 pages, retrieved on Nov. 8, 2013, available at http://int.terarecon.com/wp-content/uploads/2013/11/brochure—english2013.pdf.
TeraRecon iNtuition — Workflow. <www.terarecon.com/wordpress/our-solutions/intuition-workflow> Last accessed Nov. 8, 2013, 2 pages.
Provisional Applications (1)
Number Date Country
60867071 Nov 2006 US
Continuations (3)
Number Date Country
Parent 13907128 May 2013 US
Child 14298806 US
Parent 13118085 May 2011 US
Child 13907128 US
Parent 11942674 Nov 2007 US
Child 13118085 US