The present invention relates to optical network, and more particularly, to the synchronization of data between network elements and the management system of the optical network.
It is important for the data in the management system table 105 to be in sync with the data in the corresponding network element tables 104. There are two conventional ways to maintain the tables in sync. A first conventional way is for each network element 102 to send a notification to the management system 103 indicating that a row in its table 104 has changed. The management system 103 uses this notification as a trigger to synchronize it's table 105 with the network element's table 104. However, notifications can be lost. Plus, this method is not sufficiently scalable because the changes, especially configuration changes, are usually caused by the management system 103. The management system 103 thus is sent the notification unnecessarily. In addition, the management system 103 can become inundated with notifications for large networks with numerous network elements.
A second conventional way is for the management system 103 to periodically poll the data from the network element tables 104 to re-fetch the rows in the network element tables. However, if the data is voluminous, or if the network has numerous network elements, synchronizing the data is time consuming and burdensome on the network resources.
Accordingly, there exists a need for an improved method and system for synchronizing data on a management system with data on network elements in an optical network.
A method and system for synchronizing data between a management system (MS) and network elements (NE) in an optical network utilizes a table counter and row counters for each row in a NE table, and a table counter and row counter for each row in a MS table. The NE table counter increments when a change in the NE table occurs. Each NE row counter increments when its row is changed. The MS table counter increments when a change in the MS table occurs. Each MS row counter is incremented when its row is changed. The MS polls the NE table counter and compares it with its MS table counter. If they are different, then the MS compares each NE row counter with the corresponding MS row counter. For any of the row counters that do not match, the rows between the MS table and the NE table are synchronized.
The present invention provides an improved method and system for synchronizing data on a management system with data on network elements in an optical network. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
To more particularly describe the features of the present invention, please refer to
The network further comprises a management system 204. The management system (MS) 204 comprises a table 208 to be synchronized with of the NE table 207 and a MS table counter 205 for the MS table 208. The MS table 208 includes a row counter 206 for each row in the MS table 208.
The MS 204 compares the NE table counter 202 with the MS table counter 205, via step 402. The MS 204 then determines if the values of the counters are different, via step 403, i.e., if the value of the NE table counter 202 is not what the MS 204 expected. If not, then the data in the NE table 207 has not changed since the last synchronization and no further action is necessary. If the values of the counters are different, then the MS 204 fetches the NE row counters 203, via step 404. The MS 204 then compares each NE row counter 203 with its corresponding MS row counter 206, via step 405. If the value of a MS row counter 206 is determined to be the same as its corresponding NE row counter 203, via step 406, then that row has not changed since the last synchronization. The process then continues with the next row.
If the value of a MS row counter 206 is determine to be different than its corresponding NE row counter 203, via step 406, i.e., the value of the NE row counter 203 is not what the MS 204 expected, then the row has changed since the last synchronization. The MS 204 next determines what type of change occurred. If the row is determined to be a new row added to the NE table 207, via step 408, then the MS 204 fetches the new row and inserts its image into the MS table 208, via step 409. If the row is determined to have been deleted from the NE table 207, via step 410, then the MS 204 deletes the row's image from the MS table 208, via step 411. In the preferred embodiment, the NE row counters 203 are indexed. By examining the index, the MS 204 can determine if a row has been added or deleted. If the MS 204 determines that the row has been modified, via step 412, then the MS 204 re-fetches the row from the NE table 207 and updates the row's image in the MS table 208, via step 413. Steps 405 through 413 are repeated until all rows counters have been compared. Steps 401 through 413 are repeated for each network element in the network that requires data synchronization with the MS 204.
In the preferred embodiment, the MS table counter 205 can be incremented in one of two ways.
The MS 204 can then perform the polling as described in
The MS 204 can then perform the polling as described in
In the preferred embodiment, the management system uses either the first method (
Optionally, the MS 204, in addition to the above, can periodically check if each NE 201 in the network is “alive”. This is to avoid the situation where the MS 204 polls the table counter 202 which has the value X. Then, the NE 201 reboots, and its table counter 202 increments back up to X before the table counter 202 is polled again. Here, the MS 204 will mistakenly believe that no changes in the NE table 207 occurred since the last synchronization. By periodically checking if each NE 201 in the network is “alive”, the MS 204 will know when a NE 201 reboots. When the NE 201 begins responding again, the MS 204 can re-fetch all the data in the NE table 207.
An improved method and system for synchronizing data on a management system with data on network elements in an optical network have been disclosed. The present invention utilizes a table counter at the network element, row counters for each row in the NE table, a table counter at the management system, and a row counter for each row in the MS table copy. The table counter at the network element increments when a change in the NE table occurs. Each row counter increments when its row is changed. The MS table counter increments when a change to the MS table occurs. They change can be initiated by a notification of a change in the NE table is received by the management system, or when the management system initiates the change. Each MS row counter is incremented when its row is changed. The management system then periodically polls the NE table counter and compares it with its table counter. If the two are different, then the management system fetches the row counters for the NE table. Each NE row counter is then compared with the corresponding MS row counter in the MS table. If any of the row counters do not match, then that row in the MS table is synchronized with the row in the NE table. In this manner, the synchronization of data between network elements and the management system is maintained without unnecessary notifications to the management system, without overburdening network resources, and provides greater scalability.
Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.