This non-provisional application claims priority under 35 U.S.C. §119(a) on Patent Application No. 04075873.2 filed in Europe on Mar. 18, 2004, which is herein incorporated by reference.
The present invention relates to a method for the post-processing of sheets processed by a sheet processing apparatus provided with a sheet punching device for punching a set of two or more spaced holes in sheets, wherein the method includes the step of punching the set of holes in all sheets of a first batch, in a first, standard, position, wherein the sheets of the first batch have substantially equal size and orientation.
The present invention also relates to a sheet processing apparatus provided with a sheet punching device for punching holes in a sheet member such as a sheet of paper (hereafter referred to as a sheet).
Sheet punching devices are typically installed in a sheet processing apparatus such as a printer, a photocopying machine, a facsimile or a sheet post processing apparatus connected with an image processing apparatus. The sheet processing apparatus may perform several post-processing operations including, for example, a stack operation for stacking sheets on an output tray, a staple operation for stapling sets of sheets, and a punching operation for punching a sheet or sheets with the sheet punch device.
Background sheet punch devices are divided into two types depending on the driving method for driving a punch to create a hole in a sheet, i.e., (1) a press punch method and (2) a rotary punch method. Both types of punch devices can be used in connection with the present invention.
U.S. Pat. No. 6,120,015 discloses a press punch-type sheet punching device for punching holes in sheets outputted by a printing system, with a common sheet entrance path, two separate but closely vertically superposed sheet paths, a gating system alternately gating the unpunched sheets into one of said two separate sheet paths having respective separate (but shared) components, sheet punching stations with common reciprocally, vertically driven sheet punches. The sheets are alternately stopped and the desired hole patterns are alternately punched, and the sheets ejected, in the two separate sheet paths, individually punched, or punched simultaneously as stacked sets.
U.S. Pat. No. 6,305,262 discloses a sheet punch device including one or more punching units having a rotatable punch that punches a hole in a sheet, a driving member that drives and rotates the punch member to punch a hole in a conveyed sheet, and in which the punch member punches holes in the conveyed sheet at plural places aligned in a sheet conveying direction. Also included is a control device that controls the driving member such that the punch member punches a predetermined number of holes in the conveyed sheet sequentially at predetermined positions aligned in the sheet conveying direction. The punch units may be displaced to adapt to different paper sizes and/or and hole configurations selected by an operator. The sheet punch device is part of a post processing apparatus of an image forming device. Via a graphical user interface an operator can select the number of holes per sheet from a number of standard configurations (i.e. two, three, four or five holes per sheet). The user interface also allows the operator to choose for the holes to be aligned along the height or along the width of the sheet. These choices are limited to a number of standardized positions.
Generally, punching holes in documents for filing purposes is governed by a number of national and international standards such as International standard ISO 838, US military standard MIL-STD-1160 (FSC 7530) and German industry standard DIN 821. Other national standards exist and are in use.
U.S. Pat. No. 6,065,383 also discloses a punching mechanism displaceable to any of a plurality of punching positions in order to correctly punch holes in the standardized positions in different paper sizes.
Sheets are punched in order to place them subsequently in a ring binder or the like. The document or documents in a ring binder are often organized by dividing or subdividing them into chapters or the like that are separated by inserting tabulation (TAB) or other separating sheets into the stack. These separating sheets are either inserted manually or automatically if the paper processing device is capable of inserting tab sheets automatically. However, inserting separating sheets into a printed set is at the cost of additional sheets and either additional labour or a more complex device control.
The present invention has determined that by a relatively small adaptation of the punching functionality, sheets can be made to stand out in a stack, thereby obviating any other separating elements.
On this background, it is an object of the present invention to provide a method of post-processing, i.e., punching, sheets processed by a sheet processing apparatus provided with a sheet punching device with an extended functionality.
This object is achieved by allowing an operator of the sheet processing apparatus to specify at least one second batch of sheets having substantially the same size and orientation as the sheets of the first batch, and shift the position in which a set of holes is to be punched in the sheets of the second batch to a second position, and punching the set of two or more spaced holes in the second position in the sheets of the second batch, thereby creating a staggered stack of sheets by stacking subsequent first and second batches of sheets with holes aligned, such as by placing them in a ring binder.
Accordingly, the processed sheets form a staggered stack or a stack with emulated TAB sheets. Different parts of a stack of sheets, the above-mentioned batches, such as different documents or different chapters can be separated in this way without the need for inserting TAB sheets, because the different parts have an offset with respect to one another. This makes it far more comfortable for a reader to go through the documents because the borders between the different parts are explicit, which is especially helpful when the different parts are not stapled. The processed sheets form an aligned stack with emulated tab sheets if the shift is applied to a single sheet at a time, e.g. the starting page of each document or chapter. The emulated tab sheets can also be formed by additional sheets that are inserted before the start of a new document or chapter. The emulated TAB sheets may be printed with TAB information on the part of the sheet that does not overlap with the stack.
In a preferred form, the first position mentioned above is the conventional standard position, such as required by the already mentioned industry standards ISO, DIN, etc., and the second, different punching position is a non-standard position.
The shift can be in the direction of the width or of the height of the (usually) rectangular sheets, or both, and preferably extends over a relatively small distance, such as a few millimeters, but generally not more than 2 cm.
According to a second aspect of the present invention there is provided a sheet processing apparatus comprising a sheet punching device for punching a set of two or more spaced holes arranged on an imaginary line in sheets processed by the apparatus, and further comprising a processor unit for controlling the apparatus, including the punching device, wherein the processor unit controls the apparatus in punching the set of holes in all sheets of a first batch, in a first, standard, position, the sheets of the first batch having substantially equal size and orientation. The processing apparatus also enables an operator to specify at least one second batch of sheets having substantially the same size and orientation as the sheets of the first batch, and also to specify a shift of the position in which said set of holes is to be punched in the sheets of the second batch, to a second position, and to control the apparatus in punching the set of two or more spaced holes in the second position in the sheets of the second batch, thereby creating a staggered stack of sheets, by stacking subsequent first and second batches of sheets with holes aligned, such as by placing them in a ring binder.
Accordingly, the sheet processing apparatus is capable of processing a set of sheets that is staggered or provided with TAB emulated sheets when it is afterwards placed in a ring binder—with the advantages as described above.
Further objects, features, advantages and properties of the methods, apparatus and system according to the present invention will become apparent from the detailed description.
In the following detailed portion of the present description, the invention will be explained in more detail with reference to the exemplary embodiments shown in the drawings, wherein:
a is a enlarged section of
In the following detailed description, a sheet processing apparatus according to the present invention in the form of a digital printer, scanner and copier will be described by the preferred embodiments.
The printing apparatus 1 shown in
A printing cycle for printing an image set fed via workstation 3 can be started by actuating a start button 7 provided on the workstation 3, via control device 8 or by actuating a start button 6 provided on the operator control panel 5 of the printing apparatus 1.
The workstation 3 creates print orders and passes them on to printer 1. A print order contains a digital document and, in addition to digital data which determine the content of the document, can also contain data which specify the appearance of the finally printed document, such as the image supports to be used, for example sheets of paper of a specific size and color, simplex or duplex printing, finishing by stapling, gluing, punching etc.
Several workstations may be coupled, via a data network, to a print server (a suitably programmed PC), which receives print orders from the workstations, pre-processes them if necessary, and passes them on to one or more printers which are also coupled (not shown).
In the printing apparatus 1 shown in
The finishing station 11 contains a sheet punching device 20 that will be described in more detail later and a sheet collecting tray 12 (not shown in detail) in which a number of printed sheets belonging to a set can be collected and stapled, whereafter discharge roller pairs 13 feed the set to a sheet depositing device 18 forming part of a sheet depositing station.
The sheet depositing device 18 shown in
The entrance rollers 21 and exit rollers 28 each include a pair of rollers, and are rotatively supported by respective shafts 22 and 29. The shafts 22,29 extend between a pair of side boards (not shown) provided on each side of the sheet conveying path 10 of the sheet post-processing apparatus 11, and oppose each other in the direction perpendicular to the sheet conveying direction indicated by an arrow X (hereinafter referred to as a sheet width direction X). The entrance rollers 21 receive a sheet and transfer the sheet in the downstream direction of the sheet conveying path 10. The exit rollers 29 are provided immediately downstream of the rotary punching units 35, 36 and 37, and transfer the sheet conveyed in the downstream direction of the sheet conveying path 10 towards the sheet collecting tray 12 (
The entrance rollers 21 and the exit rollers 29 are in a relationship wherein a rotational force is transmitted to each other via a rotational force transmission device, such as a timing belt (not shown) and a belt pulley (not shown). The entrance rollers 21 and the exit rollers 29 are driven to rotate by a sheet conveying/driving device, such as a stepping motor (not shown).
An entry sensor 32 connected to the control unit is disposed just downstream of the entry rollers 21 to detect leading and trailing edges of the sheet conveyed from the discharging rollers 21, and thus serves as a sheet edge detecting device.
Each punching unit 35,36,37 includes pairs of cooperating rollers 26,30 between which the sheets pass. The rollers 26,30 of a pair are spaced sufficiently apart for the sheets to pass in between without the rollers getting a grip on the sheets. The upper roller 26 is provided with a punch 27 and the lower roller 30 forms a die member with recess 27a. As shown in more detail in
The upper roller 26 is placed on a drive shaft 24, driven by an electric punch motor, such as a stepper motor (not shown) connected to the control unit. The lower roller 30 is placed on a drive shaft 31 that is connected to drive shaft 24 by a set of equally sized gearwheels (not shown). Rotations of the punch motor cause the upper roller 26 and the lower roller 30 to rotate in opposite directions respectively synchronizing with each other. The rotational position and speed of the rollers 26, 30 can be accurately controlled with the punch motor.
Punching unit 35 is provided with two pairs of rollers 26,30 and is configured for punching two holes simultaneously. Punching unit 36 is provided with three pairs of rollers 26,30 and is configured for punching three holes simultaneously and punching unit 37 is provided with four pairs of rollers 26,30 and is configured for punching four holes simultaneously.
The punching units can be provided with any other desirable number of sets of rollers in order to produce other numbers of holes simultaneously.
The sheet punching device can also be provided with a punching unit with a single pair of rollers (not shown), preferably the first punching unit after the entry rollers, that is, capable of punching several holes on an imaginary line aligned with the sheet conveying direction X in a sequential manner by two or more rotations of the punching unit concerned.
A container 33 below the punching units 35,36 and 37 receives the punch dust.
A moving mechanism using e.g. an electromagnet (not shown) associated with each of the punching units 35,36 and 36 moves the punching unit concerned in the sheet height direction Y, i.e., perpendicular to the sheet conveying direction X. The moving mechanism is connected to the control unit and the axial position of the punching units can be changed with a signal from the control unit to the moving mechanism of the punching unit concerned.
The sheets enter the punching device one by one through exit rollers 21 and sheets do not stop during the punching operation but move along the sheet conveying path at normal speed. When it is chosen to have two holes in the document, punching unit 35 with the two punches 27 is active. The other punching units 36 and 37 are not active, so their punch 27 is in an upper position as show in
The control unit synchronizes the activation of the punching unit 35—on the basis of the signal from the entry sensor 32—with the movement of the sheet along the sheet conveying path 10, to place the holes correctly in the X-direction. The punching position can be shifted in the X-direction by changing the synchronization, i.e. by delaying the activation of the punching unit, the punching position moves to the left, and by advancing the activation of the punching unit the punching position moves to the right.
If an offset in the Y-direction is needed the punching unit concerned is moved along its longitudinal axis by the moving mechanism with the offset distance needed. The offset can also be in both the X-and the Y-direction (not shown).
The punching device 20 has punched the holes 45 in different positions for the different parts of the stack. Parts 42 have been punched at the central standard two hole-punching position. Parts 43 have been punched with a shift from the central standard two hole-punching position in the Y-direction to the right (right as in
Obviously, the punching displacement does not necessarily have to be equal to the stacker offset, but if it is, it brings convenience to the user who wants to put the complete pack in a ring binder or the like.
The offset between the parts 42 and 43 is equal to the distance between the two punching positions. The holes in the sheets are therefore aligned for the complete stack.
The controller unit displays a control menu and information about the status of the printing unit on the display. The control menu gives access to the settings of the printing apparatus via a number of sub-menus. The punching settings sub-menu is shown in
Column 64 relates to the activation of the hole punching feature. The lowest field of the column contains an “on” setting, the field there above contains an “off” setting.
Column 65 relates to the number of holes per sheet and the associated hole size. The lowest field of the column contains a “2-holes, 5 mm” setting, the field there above contains a “3-holes, 9 mm” setting and the field there above contains a “4-holes, 5 mm” setting.
Column 66 relates to the shift in punching position. The lowest field of the column contains a “none” setting, in which the holes are punched in the central standard position. The field thereabove contains a “TAB right” setting in which selected sheets in a print job are punched with a punching position that is shifted in the X-direction relative to the other sheets in the print job concerned. The distance of the shift between the standard position and the shifted position may be a pre-programmed manufacturer setting of the printer, or may be a device default, set by a key operator, and should be in the order of a few millimeters. In order to prevent the holes from tearing, the shift should not be more than about 6 mm. The field thereabove contains a “TAB up” setting in which selected sheets in a print job are punched with a punching position that is shifted in the Y-direction relative to the other sheets in the print job concerned. Generally, the shift distance would again be a pre-programmed setting. There can also be offered several shifted positions in one and the same direction, e.g. 6 mm up relative to the standard position and 12 mm up relative to the standard position.
The highest field contains a “manual” setting. Upon activating this setting a pop up window (not shown) appears showing the X- and Y-shift distance. The X- and Y-shift distances can be adjusted by using the triangular navigation keys 62. When the desired settings have been reached the setting can be activated by pressing the round selection key 63.
Column 67 relates to the selection of the sheets to be punched in the shifted position. The lowest field of the column contains an “all sheets” setting, in which all the holes are punched in a shifted position. This feature is, e.g., useful when a document needs to be added to a conventional stack of sheets within a ring binder, because the shifted punching position will let it easily be identified as the “added” document. The field thereabove contains a “enter numbers” setting for selecting the page numbers at which a shift in punching position has to take place. Upon activating this setting a window pops up prompting the user to enter the desired sheet numbers with a numerical keypad (not shown). After completing the numeric entry the setting is activated by pressing the round selection key 63. The field there above contains a “bookmarks” setting. This setting informs the sheet punch device to shift punching position at every bookmark in the printing job. After activating this feature a pop up window displaying the page numbers of the bookmarked pages appears for providing feedback to an operator.
Column 68 relates to the insertion of extra sheets when single TAB sheets are emulated. The lowest field of the column contains a “use document” setting, in which the TAB sheets are created from sheets of the document to be printed. The field thereabove contains an “insert blanks” setting in which the TAB sheets are created from sheets that are added to the document to be printed.
Column 69 relates to the alignment of the printed images. The lowest field of the column contains a “paper” setting, in which the images are aligned with the paper, i.e. in the resulting staggered stack in a ring binder the printed images will, like the sheets, shift relative to the ring binder. The field thereabove contains a “document” setting in which the images are aligned with the document, i.e. in the resulting staggered stack in a ring binder the printed images of all pages will be aligned with the ring binder, and not shift like the sheets. This is achieved by shifting the position of printed image in the same direction and over the same distance as the shift in the punching position of the holes so that the images on all the sheets in the stack are aligned when the holes of all the sheets are aligned. A reader browsing the stack will thus not experience any jumps in image position.
The same settings as described with reference to
The “Simple hole punching” settings section 72 contains an “On/Off” check box 74 for specifying if the hole punching feature is to be activated and a “Number of holes” selection box 75.
The “Advanced hole punching settings” section 73 contains a “Sheets” selection item 77 with a numeric entry box 78 and a “Bookmark” selection item 79 with a page display area showing the operator which pages in the print job are bookmarked. Finally, the selection item 99 (“All Sheets”) allows the operator to select a punch position shift for the entire document.
The “Advanced hole punching settings” section 73 contains further a “Stagger offset” sub-section 80 and a “Sheets” subsection 87. The “Stagger offset” sub-section 80 contains a “0” item 81 for selecting the standard position, a “TAB up” item 82, a “TAB right” item 83, and a “Manual” item 84 with a “Horizontal” selection box 85 and a “Vertical” selection box 86. These items correspond in function to the items in column 66 of
When the operator has specified all the punching settings he/she can return to the printer driver by clicking on the “OK” button 93 and the punching settings are programmed into the print order. Alternatively, the operator clicks on the “Cancel” button 94 and any changes to the settings are not stored.
The invention has been disclosed with reference to a single feed sheet processing device. The invention can however equally be applied to continuous feed sheet processing devices.
The shape of holes does not need to be round, e.g., squared holes can be used. The number of holes per sheet is not limited to the numbers described in the above embodiments, e.g. 5, 17 and 23 holes per page can also be used. The holes do not need to be on one imaginary line, and the holes do not need to be placed near the edge of the sheet, e.g. a set of holes can be punched close to each side of a symmetry line of a sheet that is placed in a ring binder while folded over on the symmetry line concerned.
The present invention can also be used in a punching device that also applies plastic reinforcing rings on the sheets around the holes, to prevent tearing of the punched holes.
Although the invention has been disclosed with reference to a rotary punching device, a press punch device with a displaceable punching position could also be used. As in the rotary punching device, a punching position shift in the direction perpendicular to the sheet transport direction would be accomplished by a physical shift of the punching device in that direction, whereas a punching position shift in the direction of the sheet transport can easily be accomplished by a timing shift.
While the preferred embodiments of the devices and methods have been described with reference to the environment in which they were developed, they are merely illustrative of the principles of the invention. Thus, other embodiments and configurations may be devised without departing from the spirit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
04075873 | Mar 2004 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3883063 | Fassman et al. | May 1975 | A |
4141546 | Queener | Feb 1979 | A |
4318539 | Lamos | Mar 1982 | A |
4866487 | Ohuchi et al. | Sep 1989 | A |
4988085 | Maekawa et al. | Jan 1991 | A |
5018717 | Sadwick et al. | May 1991 | A |
5037081 | Engelhardt et al. | Aug 1991 | A |
5513839 | Green | May 1996 | A |
5704602 | Taylor et al. | Jan 1998 | A |
5762329 | Nakazato et al. | Jun 1998 | A |
5848346 | Takashiro | Dec 1998 | A |
5887502 | Yamaguchi et al. | Mar 1999 | A |
5951008 | Williams et al. | Sep 1999 | A |
6014920 | Yamauchi et al. | Jan 2000 | A |
6029026 | Natsume et al. | Feb 2000 | A |
6061150 | Yamamoto | May 2000 | A |
6065383 | Takaishi et al. | May 2000 | A |
6120015 | Albright et al. | Sep 2000 | A |
6295908 | Holzhauser et al. | Oct 2001 | B1 |
6305262 | Watanabe | Oct 2001 | B1 |
6325585 | Sasaki et al. | Dec 2001 | B1 |
6345170 | Nakazato et al. | Feb 2002 | B1 |
6361639 | Owen et al. | Mar 2002 | B1 |
6386080 | Okamoto et al. | May 2002 | B1 |
6398481 | Chen | Jun 2002 | B2 |
6533265 | Baldini | Mar 2003 | B1 |
6573974 | Ikeda et al. | Jun 2003 | B1 |
6579059 | Chen | Jun 2003 | B2 |
6698744 | Yamada et al. | Mar 2004 | B2 |
6769685 | Kakigi | Aug 2004 | B2 |
6869010 | Morson | Mar 2005 | B2 |
7073706 | Yaginuma et al. | Jul 2006 | B2 |
7097369 | Barry et al. | Aug 2006 | B2 |
7159862 | Matsutomo et al. | Jan 2007 | B2 |
20030007805 | Kawahira | Jan 2003 | A1 |
20030024361 | Kikuchi | Feb 2003 | A1 |
20030062666 | Hosoya et al. | Apr 2003 | A1 |
20030161004 | Bolanos | Aug 2003 | A1 |
20040061282 | Stemmle | Apr 2004 | A1 |
20040061891 | Philpot | Apr 2004 | A1 |
20040174551 | Kurohata et al. | Sep 2004 | A1 |
20050000336 | Hattori et al. | Jan 2005 | A1 |
20050022644 | Morson | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
199 08 698 | Aug 2000 | DE |
199 50 097 | Apr 2001 | DE |
203 15 481 | Jan 2004 | DE |
0 665 179 | Aug 1995 | EP |
1 462 862 | Sep 2004 | EP |
WO 9626047 | Aug 1996 | WO |
WO 0176833 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050204882 A1 | Sep 2005 | US |