This application is related to U.S. application Ser. No. 14/079,454, filed Nov. 11, 2013. The application is incorporated herein by reference for all purposes.
In the modern world most projects require collaboration between members of a group, and most projects are time driven with deadlines and events. Yet current collaboration tools fail in integrating time in a convenient manner while executing projects to completion. The calendar is essential in time management and is the entry point to one's day and an essential tool for team cooperation on projects. Despite the calendar's central role, and its inherent actionability as a collaborative tool, the calendar remains largely a read-only, non-actionable and non-collaborative experience. In addition, current calendar applications fail to improve user experience even though event data is inherent to the calendar application. Another short fall of current calendaring applications is that scheduling an event or meeting remains automated and tedious. Additionally, current calendaring program products fail to utilize their inherent reporting ability relative to event happenings and event participant characteristics. What is needed is an intuitive calendaring application that utilizes its inherent advantages to provide an improved user experience.
Non-limiting and non-exhaustive implementations of the present disclosure are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified. Advantages of the present disclosure will become better understood with regard to the following description and accompanying drawings where:
The present disclosure extends to methods, systems, and computer program products for facilitating collaboration between group members via a calendaring application by enhancing scheduling and reporting processes relative to events within a project.
As the disclosure proceeds, reference may be made to learning and optimizing technologies that are largely the subject matter of previously filed patent applications, all of which are hereby incorporated by this reference in their entireties, namely:
It should be noted, that in the event that embodiments within the above-referenced patent applications contradict the present disclosure, it is intended that the present disclosure dominates and supersedes such embodiments.
As used herein the terms “group” and “groups” are intended to mean a plurality of people engaged on a common project. A group may be based on other attributes such as location, industry, job title, behavior etc. A group may comprise members that may be part of multiple groups and there may be interactions across groups. There may be many sizes of groups from large to small, but all of the groups contain a plurality of members. Groups may be represented as explicit teams and implicit teams.
As used herein “explicit team” is intended to convey one type of group that may be grouped by company domain or predefined family or other user definition.
As used herein “implicit team” may be a group based on invited or suggested participants.
As used herein “shared group area” is intended to convey a group collaboration mechanism or presenting information related to projects to team members. It should be noted that a shared group area may be digital or physical.
As used herein “collaboration group” is intended to denote a plurality of individuals and entities (sub-groups) working on a common project.
As used herein “event” is intended to convey a calendarable item or happening having a plurality of participants, users or members.
The calendar may be the entry point for the day and is generally an essential tool for team/group collaboration on projects. Despite this central role, calendars are reduced at present to a scheduling platform merely letting users create events or view them in a very basic form. Events that may be scheduled within a calendaring application can typically come and go with little advantage made of the data is contained with, or may be acquired by the calendaring application.
Referring now to the figures,
At 120, identifying, using one or more processors 302 and memory 304 event preferences associated with at least a portion of the plurality of users in the collaboration group 222. As used herein an event may be an event represented within the calendaring application by characteristics for furthering a project.
At 130, receiving over a computer network 208 a request to schedule a new event. The new event may be associated with prior events or a plurality of users user 1, user 2 . . . user n in the collaboration group 222.
At 140, determining a particular time for the new event based on the identified event preferences that were identified at 120. In an implementation, the preferences may be a mix of user and group characteristics automatically gathered by the application such as, choices from previous events, contextual information regarding the project or projects, type of events, information about the participants such as their role, and may even comprise data from different event locations and availability of group members taken from different calendars that may impact a desired time for the new event.
Finally, at 150, generating an event request identifying the new event and the particular time of the new event. The method may further comprise presenting the information to the collaboration group 222. The process of presenting the new event to the collaboration group 222 may be over a computer network 208. Additionally, the new event may be presented within a shared group area 240, and may be generated on the fly as part of a current event, thereby automatically taking into account the current event preferences and needs in scheduling the new event.
In an implementation, the shared group area 240 may indicate the temporal availability of project resources such as users/group members, physical locations such as conference rooms, information objects, and the like.
In an implementation, the shared group area 240 may allow each user to share his free/busy time in a permanent or temporary basis with some specific individuals or with all. It should be understood that sharing free/busy time can be done in a number of different ways. For example, availability may be shared at a global level, selecting which calendars to share and who to share it with. The calendaring application may allow users to share with non-application users via a permalink, and/or sharing with the public via a public permalink.
An implementation may comprise the feature of sharing on a temporary or predetermined basis (e.g., share for a week) and access may be revoked for some or all at any time. The implementation may comprise a user interface having a “share my free time” button, which may let the user select which calendars to share and for which days/times/duration. In such an implementation, the application may automatically generate either a permalink that the user can share via Email, SMS, or in-app or a pre-formatted Email, SMS, in-app message.
Additionally, an implementation may facilitate content shared dynamically based on implicitly determined work schedule and/or relationship level with different users, groups and projects. It should be noted that when scheduling an event with one or more attendees who have shared their free/busy information, the calendaring application may allow the user choose to use that information as part of the scheduling flow.
In an implementation, free/busy information may be displayed as an overlay on a calendar view (e.g., day view or week view) to quickly show free spots or come as a warning when the user tries to schedule at a time when one of the attendees is busy. The system can also automatically suggest a time or a set of times when all event attendees are available. In addition to free/busy information, suggested times may also be based on event preferences and other learned preferences from the user and the invited attendees as is disclosed in the U.S. patent application titled “Electronic Assistant” noted above and is incorporated herein by reference. The implementation may also let the user/team quickly schedule follow-ups based on all participant's availability, event type, previous patterns and more.
Implementations of the present disclosure may comprise or utilize a special purpose or general-purpose computer, including computer hardware, such as, for example, one or more processors and system memory, as discussed in greater detail below Implementations within the scope of the present disclosure also include physical and other computer-readable media for carrying or storing computer-executable instructions and/or data structures. Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer system. Computer-readable media that store computer-executable instructions are computer storage media (devices). Computer-readable media that carry computer-executable instructions are transmission media. Thus, by way of example, and not limitation, implementations of the disclosure can comprise at least two distinctly different kinds of computer-readable media: computer storage media (devices) and transmission media.
Computer storage media (devices) includes RAM, ROM, EEPROM, CD-ROM, solid state drives (“SSDs”) (e.g., based on RAM), Flash memory, phase-change memory (“PCM”), other types of memory, other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer.
A “network” is defined as one or more data links that enable the transport of electronic data between computer systems and/or modules and/or other electronic devices. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a computer, the computer properly views the connection as a transmission medium. Transmission media can include a network and/or data links, which can be used to carry desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer. Combinations of the above should also be included within the scope of computer-readable media.
Further, upon reaching various computer system components, program code means in the form of computer-executable instructions or data structures can be transferred automatically from transmission media to computer storage media (devices) (or vice versa). For example, computer-executable instructions or data structures received over a network or data link can be buffered in RAM within a network interface module (e.g., a “NIC”), and then eventually transferred to computer system RAM and/or to less volatile computer storage media (devices) at a computer system. RAM can also include solid state drives (SSDs or PCIx based real time memory tiered storage, such as FusionIO). Thus, it should be understood that computer storage media (devices) can be included in computer system components that also (or even primarily) utilize transmission media.
Computer-executable instructions comprise, for example, instructions and data which, when executed at a processor, cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. The computer executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, or even source code.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the described features or acts described above. Rather, the described features and acts are disclosed as example forms of implementing the claims.
Those skilled in the art will appreciate that the disclosure may be practiced in network computing environments with many types of computer system configurations, including, personal computers, desktop computers, laptop computers, message processors, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, mobile telephones, PDAs, tablets, pagers, routers, switches, various storage devices, and the like. The disclosure may also be practiced in distributed system environments where local and remote computer systems, which are linked (either by hardwired data links, wireless data links, or by a combination of hardwired and wireless data links) through a network, both perform tasks. In a distributed system environment, program modules may be located in both local and remote memory storage devices.
Implementations of the disclosure can also be used in cloud computing environments. In this description and the following claims, “cloud computing” is defined as a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned via virtualization and released with minimal management effort or service provider interaction, and then scaled accordingly. A cloud model can be composed of various characteristics (e.g., on-demand self-service, broad network access, resource pooling, rapid elasticity, measured service, or any suitable characteristic now known to those of ordinary skill in the field, or later discovered), service models (e.g., Software as a Service (SaaS), Platform as a Service (PaaS), Infrastructure as a Service (IaaS)), and deployment models (e.g., private cloud, community cloud, public cloud, hybrid cloud, or any suitable service type model now known to those of ordinary skill in the field, or later discovered). Databases and servers described with respect to the present disclosure can be included in a cloud model.
Further, where appropriate, functions described herein can be performed in one or more of: hardware, software, firmware, digital components, or analog components. For example, one or more application specific integrated circuits (ASICs) can be programmed to carry out one or more of the systems and procedures described herein. Certain terms are used throughout the following description and Claims to refer to particular system components. As one skilled in the art will appreciate, components may be referred to by different names. This document does not intend to distinguish between components that differ in name, but not function.
A server 202b may be associated with the shared group area 240 providing event type data such as preferences as discussed herein. The server 202b may be in data communication with a database 204b. The database 204b may store information regarding various events and groups 222. In particular, information for scheduling and reporting may include a name, availability, preferences, description, categorization, event, and group 222 and document data, comments, sales, past event data, and the like. The server 202b may analyze this data as well as data retrieved from the database 204a in order to perform methods as described herein. An operator may access the server 202b by means of a workstation 206 that may be embodied as any general purpose computer, tablet computer, smart phone, or the like.
The server 202a and server 202b may communicate over a network 208 such as the Internet or some other local area network (LAN), wide area network (WAN), virtual private network (VPN), or other network. A user may access data and functionality provided by the servers 202a, 202b by means of a workstation 210 in data communication with the network 208. The workstation 210 may be embodied as a general purpose computer, tablet computer, smart phone or the like. For example, the workstation 210 may host a web browser for requesting web pages, displaying web pages, and receiving user interaction with web pages, and performing other functionality of a web browser. The workstation 210, workstation 206, servers 202a, 202b and databases 204a, 204b may have some or all of the attributes of a computing device and may operate the calendaring application 230. It should be noted that the calendar application 230 may be operated from any computing device with in the computing environment 200.
Computing device 300 includes one or more processor(s) 302, one or more memory device(s) 304, one or more interface(s) 306, one or more mass storage device(s) 308, one or more Input/Output (I/O) device(s) 310, and a display device 330 all of which are coupled to a bus 312. Processor(s) 302 include one or more processors or controllers that execute instructions stored in memory device(s) 304 and/or mass storage device(s) 308. Processor(s) 302 may also include various types of computer-readable media, such as cache memory.
Memory device(s) 304 include various computer-readable media, such as volatile memory (e.g., random access memory (RAM) 314) and/or nonvolatile memory (e.g., read-only memory (ROM) 316). Memory device(s) 304 may also include rewritable ROM, such as Flash memory.
Mass storage device(s) 308 include various computer readable media, such as magnetic tapes, magnetic disks, optical disks, solid-state memory (e.g., Flash memory), and so forth. As shown in
I/O device(s) 310 include various devices that allow data and/or other information to be input to or retrieved from computing device 300. Example I/O device(s) 310 include cursor control devices, keyboards, keypads, microphones, monitors or other display devices, speakers, printers, network interface cards, modems, lenses, CCDs or other image capture devices, and the like.
Display device 330 includes any type of device capable of displaying information to one or more users of computing device 300. Examples of display device 330 include a monitor, display terminal, video projection device, and the like.
Interface(s) 306 include various interfaces that allow computing device 300 to interact with other systems, devices, or computing environments. Example interface(s) 306 may include any number of different network interfaces 320, such as interfaces to local area networks (LANs), wide area networks (WANs), wireless networks, and the Internet. Other interface(s) include user interface 318 and peripheral device interface 322. The interface(s) 306 may also include one or more user interface elements 318. The interface(s) 306 may also include one or more peripheral interfaces such as interfaces for printers, pointing devices (mice, track pad, or any suitable user interface now known to those of ordinary skill in the field, or later discovered), keyboards, and the like.
Bus 312 allows processor(s) 302, memory device(s) 304, interface(s) 306, mass storage device(s) 308, and I/O device(s) 310 to communicate with one another, as well as other devices or components coupled to bus 312. Bus 312 represents one or more of several types of bus structures, such as a system bus, PCI bus, IEEE 1394 bus, USB bus, and so forth.
For purposes of illustration, programs and other executable program components are shown herein as discrete blocks, although it is understood that such programs and components may reside at various times in different storage components of computing device 300, and are executed by processor(s) 302. Alternatively, the systems and procedures described herein can be implemented in hardware, or a combination of hardware, software, and/or firmware. For example, one or more application specific integrated circuits (ASICs) can be programmed to carry out one or more of the systems and procedures described herein.
At 420, identifying, using one or more processors 302 and memory 304 event preferences associated with at least a portion of the plurality of users in the collaboration group. As used herein a meeting may be an event represented within the calendaring application by characteristics for furthering a project.
At 430, receiving over a computer network 208 a request to schedule a new event. The new event may be associated with prior events or a plurality of users user 1, user 2 . . . user n in the collaboration group 222.
At 440, determining a particular time for the new event based on the identified event preferences that were identified at 420. In an implementation, the preferences may be a mix of user and group characteristics automatically gathered by the application such as, choices from previous events, contextual information regarding the project or projects, and may even comprise data from different event locations, availability of group members taken from different calendars that may impact a desired time for the new event.
At 450, generating an event request identifying the new event and the particular time of the new event. The method may further comprise presenting the information to the collaboration group 222. The process of presenting the new event to the collaboration group 222 may be over a computer network 208. Additionally, the new event may be presented within a shared group area 240, and may be generated on the fly as part of a current event, thereby automatically taking into account the current event preferences and needs in scheduling the new event.
At 460, determining an agenda associated with the new event and based on the information and preferences gathered previously. The agenda may be presented with in the shared group area to all of the event attendees.
At 470, scheduling a follow-up event based on the agenda determined at 460.
At 480, presenting the event request to a plurality of users in the collaboration group. The presenting may be done through the calendar application or may be sent out through third party applications.
An implementation may comprise determining the particular time for the new event that is further based on availability information shared by each of the plurality of users. Furthermore, an implementation may comprise determining the particular time for the new event that is further based on previous or historic availability of each of the plurality of users during a previous time period.
An implementation may comprise determining the particular time for the new event that is further based on expected geographic locations of each of the plurality of users or attendees of the new event.
At 510 of method 500, identifying a group of users associated with a calendar application. In an implementation, as the method is being used, it learns about the user and other members in the group and data is collected for each individual user, and in aggregate for the group. Examples of the data being collected may include: the number and type of events, the people met and their positions/companies, location of events, Emails sent and received, documents and notes edited and shared, and any other information that may be used in generating meaningful reports.
At 520, identifying event data associated with the group of users.
At 530, the data identified and collected at 510 and 520 is analyzed to determine characteristics of the group.
At 540, generating a report of the characteristics of the group. In an implementation, a calendar application may use this data to create visualizations and helpful analytics to inform individual users and teams on how the members are performing along certain dimensions and criteria relative to a project. The data can be used at an individual level for self-measurement and improvement and in the context of a team to measure the overall performance of the group. For example, how a sales team is performing on certain opportunities or with certain clients, how many events were held and at which level of the organization, or how many new contacts were made.
In an implementation, meaningful ratios may be extracted from the data, and may be created and tracked. Examples of meaningful data include: work/life balance, average number of events per client, hours spent for expense report generation, etc.
This reporting capability may be helpful to management, providing helpful analytics in terms of team performance, direction and engagement, main focus, etc. An implementation may incorporate these ratios to provide perspective over time relative to with different groups within the organization, teams and companies of similar size in a similar industry, etc.
At 610 of method 600, identifying a group of users associated with a calendar application. In an implementation, as the method is being used it learns about the user and other members in the group and data is collected for each individual user, and in aggregate for the group. Examples of the data being collected may include: the number and type of events, the people met and their positions/companies, location of events, Emails sent and received, documents and notes edited and shared, and any other information that may be used in generating meaningful reports.
At 620, identifying event data associated with the group of users.
At 630, the data identified and collected at 610 and 620 is analyzed to determine characteristics of the group.
At 640, generating a report of the characteristics of the group. In an implementation, a calendar application may use this data to create visualizations and helpful analytics to inform individual users and teams on how the members are performing along certain dimensions and criteria relative to a project. The data can be used at an individual level for self-measurement and improvement and in the context of a team to measure the overall performance of the group.
At 650, generating group performance recommendations based on the characteristics of the group of users.
At 660, comparing the characteristics of the group of users to characteristics of other groups of users.
At 670, generating recommendations based on the comparison of the groups of users.
At 680, further comprising generating individual user performance recommendations based on the characteristics of the individual user within the group of users.
In addition to the implementations discussed above, an implementation may include event data such as: quantity of events, types of events, users involved in events, positions of users involved in events, companies of users involved in events, locations of events, messages communicated regarding the events, documents associated with the events, notes associated with the events, and note editing activities associated with the events.
An implementation may include event data that is associated with individual user activities, and wherein at least a portion of the event data is associated with group activities.
An implementation may comprise group performance recommendations that include at least one of performance with specific clients, a quantity of events conducted, quantities of events at different levels of an organization, and a quantity of new contacts generated.
An implementation may include data wherein the other groups of users are from within the same organization and the method further comprises generating individual user performance recommendations based on the characteristics of the individual user within the group of users.
The foregoing description has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. Further, it should be noted that any or all of the aforementioned alternate implementations may be used in any combination desired to form additional hybrid implementations of the disclosure.
Further, although specific implementations of the disclosure have been described and illustrated, the disclosure is not to be limited to the specific forms or arrangements of parts so described and illustrated. The scope of the disclosure is to be defined by the claims appended hereto, any future claims submitted here and in different applications, and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2454039 | Cox | Nov 1948 | A |
2484865 | Strickland, Jr. | Oct 1949 | A |
2493785 | Strickland, Jr. | Jan 1950 | A |
2598694 | Kerbenar | Jun 1952 | A |
2657301 | Kincaid | Oct 1953 | A |
2971160 | Segsworth | Mar 1954 | A |
2714647 | Good | Aug 1955 | A |
2819370 | Osborn, Jr. | Jan 1958 | A |
3051812 | Gschwender | Aug 1962 | A |
3143628 | Golden | Aug 1964 | A |
3502310 | Coffman | Mar 1970 | A |
3601571 | Curcio | Aug 1971 | A |
3775831 | Cachat | Dec 1973 | A |
4021274 | Chadwick | May 1977 | A |
4673785 | Damiani | Jun 1987 | A |
4831552 | Scully | May 1989 | A |
5438660 | Lee | Aug 1995 | A |
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5664109 | Johnson | Sep 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5774867 | Fitzpatrick | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5918159 | Formukong et al. | Jun 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
5983227 | Nazem et al. | Nov 1999 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6161149 | Achacoso et al. | Dec 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216133 | Masthoff | Apr 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6236978 | Tuzhilin | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6288717 | Dunkle | Sep 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec et al. | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp et al. | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6411949 | Schaffer | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6480830 | Ford | Nov 2002 | B1 |
6513063 | Julia | Jan 2003 | B1 |
6523061 | Halverson | Feb 2003 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604079 | Ruvolo | Aug 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec et al. | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans et al. | Apr 2004 | B1 |
6732095 | Warshaysky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6738767 | Bhatt | May 2004 | B1 |
6742021 | Halverson | May 2004 | B1 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6757718 | Halverson | Jun 2004 | B1 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6772229 | Achacoso et al. | Aug 2004 | B1 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker et al. | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
6907566 | McElfresh et al. | Jun 2005 | B1 |
7036128 | Julia | Apr 2006 | B1 |
7062502 | Kesler | Jun 2006 | B1 |
7069231 | Cinarkaya | Jun 2006 | B1 |
7069497 | Desai | Jun 2006 | B1 |
7100111 | McElfresh et al. | Aug 2006 | B2 |
7113797 | Kelley | Sep 2006 | B2 |
7139722 | Perella | Nov 2006 | B2 |
7181758 | Chan | Feb 2007 | B1 |
7269590 | Hull et al. | Sep 2007 | B2 |
7289976 | Kihneman et al. | Oct 2007 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7340484 | S | Mar 2008 | B2 |
7343365 | Farnham | Mar 2008 | B2 |
7356482 | Frankland et al. | Apr 2008 | B2 |
7370282 | Cary | May 2008 | B2 |
7373599 | McElfresh et al. | May 2008 | B2 |
7401094 | Kesler | Jul 2008 | B1 |
7406501 | Szeto et al. | Jul 2008 | B2 |
7412455 | Dillon | Aug 2008 | B2 |
7433876 | Spivak | Oct 2008 | B2 |
7454509 | Boulter et al. | Nov 2008 | B2 |
7475021 | Wilbrink | Jan 2009 | B2 |
7508789 | Chan | Mar 2009 | B2 |
7509388 | Allen | Mar 2009 | B2 |
7587501 | Stillion | Sep 2009 | B2 |
7599935 | La Rotonda et al. | Oct 2009 | B2 |
7603331 | Tuzhilin et al. | Oct 2009 | B2 |
7603483 | Psounis et al. | Oct 2009 | B2 |
7620655 | Larsson et al. | Nov 2009 | B2 |
7644122 | Weyer et al. | Jan 2010 | B2 |
7668861 | Steven | Feb 2010 | B2 |
7698160 | Beaven et al. | Apr 2010 | B2 |
7704496 | Goddard | Apr 2010 | B2 |
7730478 | Weissman | Jun 2010 | B2 |
7747648 | Kraft et al. | Jun 2010 | B1 |
7779039 | Weissman et al. | Aug 2010 | B2 |
7779475 | Jakobson et al. | Aug 2010 | B2 |
7809599 | Andrew | Oct 2010 | B2 |
7827208 | Bosworth et al. | Nov 2010 | B2 |
7840543 | Guiheneuf | Nov 2010 | B2 |
7853881 | Aly Assal et al. | Dec 2010 | B1 |
7904321 | Moore | Mar 2011 | B2 |
7945653 | Zukerberg et al. | May 2011 | B2 |
7958003 | De Vries | Jun 2011 | B2 |
7979319 | Toulotte | Jul 2011 | B2 |
7992085 | Wang-Aryattanwanich | Aug 2011 | B2 |
8005896 | Cheah | Aug 2011 | B2 |
8014943 | Jakobson | Sep 2011 | B2 |
8015495 | Achacoso et al. | Sep 2011 | B2 |
8032297 | Jakobson | Oct 2011 | B2 |
8032508 | Martinez | Oct 2011 | B2 |
8060567 | Carroll | Nov 2011 | B2 |
8073850 | Hubbard et al. | Dec 2011 | B1 |
8082301 | Ahlgren et al. | Dec 2011 | B2 |
8095413 | Beaven | Jan 2012 | B1 |
8095531 | Weissman et al. | Jan 2012 | B2 |
8095594 | Beaven et al. | Jan 2012 | B2 |
8103611 | Tuzhilin et al. | Jan 2012 | B2 |
8150913 | Cheah | Apr 2012 | B2 |
8209308 | Rueben et al. | Jun 2012 | B2 |
8209333 | Hubbard et al. | Jun 2012 | B2 |
8244821 | Carroll | Aug 2012 | B2 |
8275836 | Beaven et al. | Sep 2012 | B2 |
8280984 | Lance | Oct 2012 | B2 |
8457545 | Chan | Jun 2013 | B2 |
8484111 | Frankland et al. | Jul 2013 | B2 |
8490025 | Jakobson et al. | Jul 2013 | B2 |
8504945 | Jakobson et al. | Aug 2013 | B2 |
8510045 | Rueben et al. | Aug 2013 | B2 |
8510664 | Rueben et al. | Aug 2013 | B2 |
8548951 | Solmer | Oct 2013 | B2 |
8566301 | Rueben et al. | Oct 2013 | B2 |
8612876 | Barnett | Dec 2013 | B2 |
8646103 | Jakobson et al. | Feb 2014 | B2 |
8682736 | Flake | Mar 2014 | B2 |
8799826 | Missig | Aug 2014 | B2 |
8805833 | Nath | Aug 2014 | B2 |
8849806 | Walker | Sep 2014 | B2 |
8918431 | Mark | Dec 2014 | B2 |
8983500 | Yach | Mar 2015 | B2 |
9245010 | Donneau-Golencer | Jan 2016 | B1 |
9298818 | Donneau-Golencer | Mar 2016 | B1 |
9330381 | Anzures | May 2016 | B2 |
9443007 | Donneau-Golencer | Sep 2016 | B2 |
9471666 | Singh | Oct 2016 | B2 |
9704138 | Siegel | Jul 2017 | B2 |
9720574 | Siu | Aug 2017 | B2 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel et al. | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramaniam et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robbins | Nov 2002 | A1 |
20030004971 | Gong | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane et al. | Apr 2003 | A1 |
20030066032 | Ramachandran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker et al. | Apr 2003 | A1 |
20030101169 | Bhatt | May 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030135565 | Estrada | Jul 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec et al. | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio et al. | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040138944 | Whitacre | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050027805 | Aoki | Feb 2005 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20050114777 | Szeto | May 2005 | A1 |
20050197954 | Maitland | Sep 2005 | A1 |
20060085436 | Dettinger | Apr 2006 | A1 |
20060089945 | Paval | Apr 2006 | A1 |
20060095556 | Arnold | May 2006 | A1 |
20060190833 | Sangiovanni | Aug 2006 | A1 |
20060212330 | Savilampi | Sep 2006 | A1 |
20060245641 | Viola | Nov 2006 | A1 |
20070198648 | Allen | Aug 2007 | A1 |
20070219875 | Toulotte | Sep 2007 | A1 |
20070244976 | Carroll | Oct 2007 | A1 |
20080094205 | Thorn | Apr 2008 | A1 |
20080140498 | Setty et al. | Jun 2008 | A1 |
20080148181 | Reyes | Jun 2008 | A1 |
20080195705 | Lee | Aug 2008 | A1 |
20080249972 | Dillon | Oct 2008 | A1 |
20090063415 | Chatfield et al. | Mar 2009 | A1 |
20090070322 | Salvetti | Mar 2009 | A1 |
20090100342 | Jakobson | Apr 2009 | A1 |
20090106224 | Roulland | Apr 2009 | A1 |
20090125817 | O'Sullivan | May 2009 | A1 |
20090177744 | Marlow et al. | Jul 2009 | A1 |
20090259670 | Inmon | Oct 2009 | A1 |
20090307162 | Bui | Dec 2009 | A1 |
20100004971 | Lee | Jan 2010 | A1 |
20100030715 | Eustice | Feb 2010 | A1 |
20100069035 | Johnson | Mar 2010 | A1 |
20100122190 | Lu | May 2010 | A1 |
20100153160 | Bezemer | Jun 2010 | A1 |
20100162105 | Beebe | Jun 2010 | A1 |
20100179961 | Berry | Jul 2010 | A1 |
20100180200 | Donneau-Golencer | Jul 2010 | A1 |
20110099189 | Barraclough | Apr 2011 | A1 |
20110131202 | Cohen et al. | Jun 2011 | A1 |
20110218958 | Warshaysky | Sep 2011 | A1 |
20110239158 | Barraclough | Sep 2011 | A1 |
20110247051 | Bulumulla et al. | Oct 2011 | A1 |
20110295612 | Donneau-Golencer | Dec 2011 | A1 |
20110295852 | Wang et al. | Dec 2011 | A1 |
20120016678 | Gruber | Jan 2012 | A1 |
20120030194 | Jain | Feb 2012 | A1 |
20120042218 | Cinarkaya | Feb 2012 | A1 |
20120066393 | Tekwani | Mar 2012 | A1 |
20120124153 | Carroll | May 2012 | A1 |
20120131020 | Nitz | May 2012 | A1 |
20120150979 | Monaco | Jun 2012 | A1 |
20120158472 | Singh | Jun 2012 | A1 |
20120173464 | Tur | Jul 2012 | A1 |
20120191501 | Olliphant | Jul 2012 | A1 |
20120233137 | Jakobson et al. | Sep 2012 | A1 |
20120233531 | Ma | Sep 2012 | A1 |
20120234824 | Nakatsu | Sep 2012 | A1 |
20120290407 | Hubbard et al. | Nov 2012 | A1 |
20120290950 | Rapaport | Nov 2012 | A1 |
20120297312 | Lance | Nov 2012 | A1 |
20120297321 | Douglas | Nov 2012 | A1 |
20130024924 | Brady | Jan 2013 | A1 |
20130036117 | Fisher | Feb 2013 | A1 |
20130036369 | Mitchell | Feb 2013 | A1 |
20130066921 | Mark et al. | Mar 2013 | A1 |
20130110842 | Donneau-Golencer | May 2013 | A1 |
20130185336 | Singh | Jul 2013 | A1 |
20130212497 | Zelenko et al. | Aug 2013 | A1 |
20130218948 | Jakobson | Aug 2013 | A1 |
20130218949 | Jakobson | Aug 2013 | A1 |
20130218966 | Jakobson | Aug 2013 | A1 |
20130247216 | Cinarkaya | Sep 2013 | A1 |
20130332525 | Liu | Dec 2013 | A1 |
20140035949 | Singh | Feb 2014 | A1 |
20140046876 | Zhang | Feb 2014 | A1 |
20140136612 | Redfern | May 2014 | A1 |
20140143685 | Rekhi | May 2014 | A1 |
20140164510 | Abuelsaad | Jun 2014 | A1 |
20140225897 | Sarrazin | Aug 2014 | A1 |
20140359537 | Jakobson et al. | Dec 2014 | A1 |
20150135094 | Donneau-Golencer | May 2015 | A1 |
20160350342 | Donneau-Golencer | Dec 2016 | A1 |
20160378854 | Singh | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
502152 | Mar 1939 | GB |
Entry |
---|
“Google Plus Users”, Google+Ripples; Oct. 31, 2011; 3 pages. |
Heidorn, “Natural Language Dialogue for Managing an On-Line Calendar”, Proceedings of the 1978 Annual Conference, ACM, 1978, pp. 45-52. |
Modi, et al., “CMRadar: A Personal Assistant Agent for Calendar Management”, Department of Computer Science, Carnegie Mellon University, Springer-Verlag Berlin Heidelberg, 2005, pp. 169-181. |
Schwabe Williamson & Wyatt, PC Listing of Related Cases; Nov. 3, 2016, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20150135095 A1 | May 2015 | US |