The invention relates to a smoke generating device for a model train, and, more specifically, the invention provides a smoke generating device that can change the rate of smoke generated in response to load changes experienced by the engine of the model train.
Model train engines having smoke generating devices are well known. However, current smoke generating devices for model trains do not mimic the generation of smoke of a real train as closely as desired. Real trains generate smoke at a rate proportional to the loading of the engine of the train notwithstanding the speed at which the train is moving. This characteristic is not available in model toy trains. The heat generated by known smoke generator can cause the smoke generator to fail. The present invention solves these and other problems with the prior art.
The present invention provides an apparatus for generating smoke for a model toy train. The invention includes a smoke generator having a support member for supporting a smoke generating element. The smoke generating element can be braided fiber glass. The support member can be solid or hollow. The support member can be any formed with any desirable cross-section, including rectangular or tubular.
The invention also provides a method for generating smoke from a model train. Smoke is generated with the smoke generating element connected to the train. A blower generates an air stream to move smoke out of the train. A controller controls the blower to generate the air stream at a particular rate in response to a signal corresponding to the load on the train.
Other applications of the present invention will become apparent to those skilled in the art when the following description of the best mode contemplated for practicing the invention is read in conjunction with the accompanying drawings.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
The present invention provides a smoke generator for a model train. The smoke generator includes a smoke generating element operably associated with a support member. Generally, the smoke generating element can be wound around the support member such that the support member acts as a core to a helix defined by the smoke generating element. However, the support member can be used to support a substantially linear smoke generating element. The support member can support substantially the entire length of the smoke generating element or a portion of the smoke generating element. The smoke generating element can be a nickel chromium wire. The nickel chromium wire is held in place with fasteners engaged with ends of the wire. The support element supports the wire, enhancing wire life and performance.
Referring now to
The first sub-housing 16 is shown as generally rectangular. First sub-housing 16 can be any geometric shape, such as circular or irregularly shaped. The shape of first sub-housing 16 can be limited only to the extent that the first sub-housing 16 is preferably mounted in the interior of model train 22 and smoke generating element 12 can be extendable into first sub-housing 16.
First sub-housing 16 includes an opening 28. Opening 28 of first sub-housing 16 is aligned with an opening 30 of second sub-housing 18. Openings 28 and 30 place the first and second sub-housing 16 and 18 in fluid communication with each other. Openings 28 and 30 are shown in
Second sub-housing 18 can be shaped to correspond to the shape of fan 32. In particular, the second sub-housing 18 is circular in shape to correspond to the squirrel cage fan 32 used in the illustrated embodiment. Second sub-housing 18 can be shaped to conform to the style of the fan 32 selected for use in a particular embodiment of the present invention. On the other hand, it is not necessary that the second sub-housing 18 be shaped to correspond to the shape of fan 32. For example, second sub-housing 18 can be rectangular shaped and house a squirrel cage fan 32.
Housing 10 can be fabricated from any material having sufficient rigidity and thermal resistance. Housing 10 supports the blower 14 and the smoke generating element 12. For example, housing 10 can be fabricated from aluminum, steel, cast iron, plastic, or an appropriate alloy. Preferably the housing 10 can be fabricated from an alloy having the trade name “Zamak 3.” Zamak is a well known alloy of zinc, copper, aluminum and magnesium. In addition, in an embodiment of the invention including first and second sub-housings 16 and 18, the first and second sub-housings 16 and 18 can be fabricated or formed with different materials.
Referring now to
Referring now to
Referring now to
The second sub-housing 18 is mounted to an interior surface 20 of model train 22 and houses a fan 32 of blower 14 for directing an air stream through the housing 10. In a preferred embodiment of the invention, fan 32 is a squirrel cage fan. However, fan 32 can also be any type of fan including, but not limited to, an axial fan, a radial flow fan, a mixed flow fan or a cross-flow fan. Fan 32 is positioned internally with respect to the second sub-housing 18. A motor 34 for rotating the fan 32 is positioned externally with respect to the second sub-housing 18. However, the invention can be practiced with the fan 32 and the motor 34 positioned internally with respect to the second sub-housing 18. Rotation of fan 32 draws the air stream through an aperture 36 of model train 22. While the aperture 36 is shown positioned adjacent the second sub-housing 18, the invention can be practiced with aperture 36 positioned spaced apart from the second sub-housing 18. A conduit can be positioned between the aperture 36 and the second sub-housing 18, placing the aperture 36 and the second sub-housing 18 in fluid communication with respect to each other. The air stream is directed through openings 30 and 28 into first sub-housing 16.
Referring now to
Referring now to
Referring to
As the loading on the train increases, the controller can move the fan at a greater angular velocity, or increase the duration of puffs of smoke, or shorten the duration between puffs of smoke. For example, for a train modeled after a steam locomotive that puffs smoke, the puffs of smoke can be generated at increasing intervals as train speed increases and can be generated at decreasing intervals as the train speed decreases. Alternatively, the puffs of smoke can be generated at increasing intervals as engine load increases and can be generated at decreasing intervals as the engine load decreases. For a train modeled after a diesel engine that does not emit smoke in a puffing pattern, more smoke can be generated as the train speed increases and less smoke can be generated as the train speed decreases. Alternatively, more smoke can be generated as engine load increases and less smoke can be generated as engine load decreases. Referring now to
Referring now to
Referring now to
In
To the extent that the support member 114 contacts the smoke generating element 116, the contact occurs at portion 120 of the outer surface. As shown in
As shown in
Apparatus 112 includes a support member 114 for supporting the smoke generating element 116. It is believed that the position of the support member 114 relative to the smoke generating element 116 enhances and prolongs the operating life of the smoke generating element 116.
The support member 114 has a predetermined length and can have a rectangular cross-section. Alternatively, as shown in
The length and cross-section of the support member 114 can be varied to enhance the resistive properties of the apparatus 112. For example, a relatively longer support member 114 can support a relatively longer smoke generating element 116 having a greater resistance than a relatively shorter smoke generating element 116. A relatively thicker support member 114 can support a relatively longer smoke generating element 116 having a greater resistance than a relatively shorter smoke generating element 116. Preferably, the electrical resistance across the apparatus is 6.3 ohms, plus or minus five percent, at twenty-five (25) degrees Celsius.
The support member 114 can be fabricated from a non-conductive material capable of maintaining a rigid or semi-rigid form up to a temperature of 530° Celsius. Preferably, the support member 114 is fabricated from braided fiberglass. Preferably, in a rectangular embodiment of the support member 114, the support member is 3.2 millimeters wide and 0.25 millimeters thick. Preferably, in a tube-shaped support member 114a, as shown in
The smoke generating element 116 is supported by the support member 114 along at least part of the length of the smoke generating element 116. The smoke generating element 116 can be a nickel chromium wire. Preferably, the smoke generating element 116 is fabricated from an alloy of 61% nickel, 15% chromium and 24% iron. Preferably, the wire is 0.25 millimeters in diameter. The smoke generating element 116 is in electrical communication with an electrical power source (not shown) to heat the smoke generating element 116 and burn oil or smoke fluid to form smoke.
The smoke generating element 116 can extends along a generally helical path around the support member 114. The lead of the helix and the development of the helix can be varied as desired to modify the resistance across the apparatus 112. In particular, the number of turns the smoke generating element 116 completes around the support member 114 over a length of the support member 114 and the distance between adjacent turns 128 and 130 can be increased or decreased to change the resistance across the smoke generating element 112.
The distance between turns 128 and 130 can be constant along the length of the support member 114 are be varied. For example, as shown in FIG. 13, the apparatus 112 can be positioned in a sub-housing 216. The sub-housing 216 can be positioned in a model train 222. A model train 222 includes an aperture 224 adjacent the apparatus 112 in the sub-housing 216, the aperture for dispensing smoke fluid or oil in the sub-housing 216. The turns of the smoke generating element 116 around the support member 114 can be relatively closer at a position adjacent the aperture 224 to enhance the likelihood that smoke fluid contacts the smoke generating element 116. The turns can be spaced further apart at other positions along the length of the support member 114 where smoke fluid is unlikely to contact.
The apparatus 112 can also include at least one terminal 132 to immovably associate the support member 114 with respect to the amusement device, such as a model train 222. Preferably, the apparatus includes two terminals 132 and 134 disposed at opposite ends of the support member 114. The terminals 132 and 134 can be fabricated from brass and can include apertures 136 and 138, respectively, for receiving additional mounting means such as a screw, bolt, or pin 120 as shown in
The terminals 132 and 134 can be permanently connected to the support member 114 or releasibly associated. The terminals 132 and 134 shown in
The smoke generating element 116 can be disposed between the support member 114 and either terminal 132 or 134. In addition, the smoke generating element 116 can be disposed between the support member 114 and the individual terminal at both ends of the support member 114. Preferably, the terminals 132 and 134 are sufficiently wide to engage at least two turns of the smoke generating element 116 about the support member 114 as shown in
Referring now to
A second sub-housing 218 is mounted to an interior surface 220 of model train 222 and houses a fan 232 of a blower 214 for directing an air stream through the sub-housing 216. In a preferred embodiment of the invention, the fan 232 is a squirrel cage fan. However, the fan 232 can also be any type of fan including, but not limited to, an axial fan, a radial flow fan, a mixed flow fan or a cross-flow fan. Fan 232 is positioned internally with respect to the second sub-housing 218. A motor 234 for rotating the fan 232 is positioned externally with respect to the second sub-housing 218. However, the invention can be practiced with the fan 232 and the motor 234 positioned internally with respect to the second sub-housing 218. Rotation of fan 232 draws the air stream through an aperture 236 of model train 222. While the aperture 236 is shown positioned adjacent the second sub-housing 218, the invention can be practiced with aperture 236 positioned spaced apart from the second sub-housing 218. A conduit can be positioned between the aperture 236 and the second sub-housing 218, placing the aperture 236 and the second sub-housing 218 in fluid communication with respect to each other. The air stream is directed through openings 230 and 228 into sub-housing 216.
A controller 246 is a micro-controller operable to receive input signals and emit output signals and can be an PIC12C508 chip. The controller 246 is in communication with the engine 248 of the train. The voltage across the engine of the train is communicated to the controller 246 and, based on a program stored in memory, the controller 246 can control the operation of the motor 234 to control an airstream generated by the fan 232. The controller 246 can control a rate of the airstream. The direction of the motor 234 can be controlled by alternating the voltage across the motor 234. The velocity of the motor 234 can be changed by changing the level of voltage across the motor 234 with the controller 246.
The controller 246 can receive input corresponding to the loading on the engine model train. The loading on the model train can correspond to a voltage across an engine of the model train or a speed at which the model train is moving. The controller 246 can communicate with a sensor 247 engaged with a wheel 249 of the model train 222. The sensor 247 can sense the angular velocity of the wheel 249 and communicate the speed of the wheel 249 to the controller 246. The controller 246 can then control the speed of the fan 232 in response to the angular velocity of the wheel 249 detected by the sensor 247.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
Number | Name | Date | Kind |
---|---|---|---|
2015438 | Smith | Sep 1935 | A |
3170789 | Woodward et al. | Feb 1965 | A |
3234357 | Seuthe | Feb 1966 | A |
RE26563 | Seuthe | Apr 1969 | E |
3574612 | Maness | Apr 1971 | A |
3891826 | Seuthe et al. | Jun 1975 | A |
4668855 | Wilson et al. | May 1987 | A |
5351167 | Wai et al. | Sep 1994 | A |
5512001 | Kent et al. | Apr 1996 | A |
6280278 | Wells | Aug 2001 | B1 |
6457681 | Wolf et al. | Oct 2002 | B1 |
6619594 | Wolf et al. | Sep 2003 | B2 |
6655640 | Wolf et al. | Dec 2003 | B2 |
6676473 | Pierson et al. | Jan 2004 | B2 |
7125309 | Pierson et al. | Oct 2006 | B2 |
Number | Date | Country |
---|---|---|
1187165 | Feb 1965 | DE |
2631639 | Jan 1978 | DE |
05106827 | Apr 1993 | JP |
09225339 | Sep 1997 | JP |
WO 9830830 | Jul 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20040005836 A1 | Jan 2004 | US |