Embodiments of the present invention are directed to one or more tanks wherein each tank including one or more sensor devices that measure one or more of the volume of fluid in the tank, the rate of fluid input into the tank, and characteristics of the fluid entering the tank. The data has several uses including scheduling the draining of the tank and determining where to empty the contents drained from the tank.
As used herein, an “asset” may refer to any system, device, and/or machine, such as an engine or compressor, a conduit through which gas or liquid flows, an exhaust pipe, manifold, exhaust stack, liquid collection tank, or any device or machine suitable for one or more devices according to the invention to measure operating parameters.
For example, in the oil and gas market, gathering and delivering natural gas from field wells to another location for further processing requires natural gas compression via a compression package comprising of a reciprocating natural gas fired engine with a direct drive coupling to a reciprocating compressor. One typical system used in these applications is a 1,600 horsepower rotating internal combustion engine (e.g., a Caterpillar G3516, V-16 cylinder format) that is fueled by the actual field well gas (methane) that it is compressing. The engine is direct-coupled to a multi-cylinder reciprocating compressor (e.g., a Dresser-Rand 6 cylinder) therefore, if the engine RPM is 1,200 per minute, then the compressor RPM is also 1,200 per minute.
Natural gas wells require that the relatively low pressure gas extracted be compressed and piped to a facility for further processing and distribution to the respective markets. It is not unusual for a gas compression package to compress 5-10 psi natural gas from a well up to 6,000 psi for further distribution through transmission and distribution pipelines.
Ownership of the natural gas compression equipment is typically either by: (1) an owner/operator, wherein the equipment is owned directly by the gas producer (who is the well owner), or (2) a leasing company, which is an equipment leasing or rental company is contracted by the gas producer to perform the gas compression function. In the latter case, the lease is most typically price-based on the horsepower rating of the leased equipment. For example, a 4,000 HP gas compression package may be priced at $30,000 per month of service at the gas pad. A 1,600 HP unit might cost $18,000 per month for service. The gas compression packages are typically skid-mounted as they must be mobile so they can be moved in and out of service.
Immediately after a hydraulic fracturing (fracking) event, natural gas generally flows from the well at the highest flow rate. Over time, the gas flow transitions to a lower rate that may be steady for several years. Inevitably, the well will need to be stimulated, such as by fracking, to increase productivity again. Each well may be re-fracked several times over the well's life.
As of this writing, a new trend in the market is for gas producers to no longer pay for compression services on a time-based contract. Instead, the producers are switching to a “flow contract,” which is a performance-based method of paying for the gas compression package service. In essence, the producer is passing (sharing) risk to the equipment leasing/rental company. In return, they allow the company to share in the proceeds of the gas value on a performance basis. Under this “flow contract” business model, the leasing/rental company is paid for the amount of gas that is actually gathered, compressed and delivered to the transmission and distribution pipeline. Thus, the company receives payment from the producer for the amount of gas that passes through the compressor, but this amount is measured by the producer's flow meter, which is also called an EFM. Unless the leasing/rental company has a means to audit the owner's EFM data, it must accept the value provided by the producer. Thus, the leasing/rental company usually spends approximately $4,000-$6,000 for an EFM (hardware and installation) that is positioned upstream and in series with the owner's EFM. Hence, the data of the owner's EFM can be audited.
Consequently, the leasing/rental company must pay for the re-installation of its EFM every time the producer's equipment is relocated to a different well. Due to the inherent mobile nature of the producer's equipment, the frequency of re-installation could be up to once per year. Hence, the company must bear the expense of $2,000-$3,000 each time the producer moves its equipment, which can amount to about $50K-$75K over the life of the equipment. A system, device or method according to the invention can replace the EFM audit meters.
Machinery, such as internal combustion engines and compressors, have one or more inherent vibrational signatures and temperature signatures. When measured over a period, a specific vibration profile or temperature profile, or a combination of one or more of the vibration profiles and temperature profiles, can indicate the operational state of the machine. Among the vibrations signatures that may be measured are ignition detonation, valve action, crankshaft vibrations, and bearing noise.
Furthermore, by outfitting one or more individual cylinders of an internal combustion engine or gas compressor with a device that can detect and store vibrational and/or temperature measurements, one can deduce the revolutions per minute (RPM) of reciprocating machinery. As an example, if a 16-cylinder internal combustion engine (e.g., a Caterpillar model G3516B) exhibits a very specific vibration frequency and amplitude that frequency and amplitude can be associated with the spark detonation during engine operation, and one can calculate the RPM of the crankshaft by computing the time lapse between firings of the cylinders. Hence, by monitoring the vibration signature of one (1) or more cylinders, performing frequency domain processing and reviewing the resulting fast Fourier transform (FFT) signature of the vibration wave form, the RPM of the engine can be calculated.
In order to create a meaningful FFT vibrational signature, several seconds or more of sampling data can be collected in any suitable manner, such as by using an accelerometer, and then applying an algorithm using a processor, which could be a microprocessor that includes the accelerometer. As an example, an engine running at 1,200 RPMs makes 20 crankshaft revolutions per second. For a 16-cylinder engine, this equates to each cylinder detonating about every 0.8 seconds. By sampling the engine vibrations for 1 second, the resulting database would contain 20-23 revolutions worth of data, which is equal to 368 cylinder detonations. Further, there may be set maximum or minimum parameters for various vibration signals that if measured may lead to a response, such as a signal to stop or slow down the machine.
Both the foregoing summary and the following detailed description are exemplary and explanatory only and are not restrictive of the invention.
By outfitting one or more, and preferably all, of the valve covers of an engine with an autonomously-powered device wherein each device contains an accelerometer, the overall total vibration of the engine can be established. Further, the unique and independent vibration signature for each moving component associated with each engine cylinder and associated valve train (e.g., the valve lifters, rocker arms, springs, bearings) can be established. Using this technique, time-stamped vibration data can be compiled and used to determine the location of the vibration relative to the overall engine geometry and the amount of vibration.
Collecting vibration data from each cylinder simultaneously or at different times provides event based, time-related data that may be used for further analysis.
As an example, if a bearing on the top end valve train of cylinder number 12 (assuming the engine has at least twelve cylinders) was beginning to wear due to fatigue, loss of adequate lubrication, or for any other reason, the reaction forces of the valve assembly (which includes the rocker arms, springs, and lifters) would likely create additional vibration due to out-of-tolerance clearances resulting in excessive movement. This “new” vibrational FFT signature, when compared to a baseline FFT that was established during a prior calibration of the cylinder, would potentially be cause for further investigation. With scheduled data samplings (the timing of which can be of any suitable interval) performed by the end node sensor (such as every 5-60 seconds) for one or more components associated with each cylinder, a histogram can be generated that illustrates vibrational sample data over time. The same may be done for any other data, such as temperature, the composition of fuel and the composition of exhaust gas, and any or all of the various measured values may be combined in any manner to track and predict machine health.
By setting upper and/or lower limit values to the meaningful attribute data being monitored, e.g. frequency, amplitude, high-temperature threshold, low-temperature threshold, or another parameter, condition alarms/alerts can be generated when the data exceeds or drops below a limit. This condition might be indicative of a worsening of, for example, bearing wear which could lead to an imminent equipment failure.
The value of being able to closely monitor the state of, for example, vibration in this example enables either a user or the system to take evasive or corrective action, such as dispatching a service technician, shutting down the equipment, or lowering engine RPM, thereby averting a potential costly failure. The cost avoidance is not only associated with the cost of replacing all or part of the equipment, but also the value of the lost production during equipment downtime during repairs. Further, when the improper vibration location is identified, the service technician has a starting point from which to investigate potential part replacement and/or repair. Furthermore, if the data, such as vibrational data, is gathered at frequent intervals (for example, every 5-60 seconds), the RPM of the machine, such as an engine, can be plotted to better understand the operation performance of that particular engine as a function of time. Coupled with other engine variables, such as individual cylinder-based engine exhaust temperature, the collected data can be studied to correlate the relationship between the variables for each engine and a database can be established for hundreds or thousands of engines, which can serve as a predictive tool for measurements received from other engines. The same is true for machines or devices other than engines.
The shorter the interval between data measurements (frequent measurements), the more likely the plotted data can be used to predict behavior that may lead to impending equipment failure. By creating a histogram (charted data values over time) of the collected data, and applying data trend modeling algorithms, systems and methods of the invention can predict certain characteristics that could lead to imminent failure if left unchecked, such as bearing seizer leading to a broken or bent valve.
A device or system according to the invention has the ability to enter into a learning mode by plotting data over time in order to establish the standard operating parameters of the machine. To initiate the learning mode, the device or system is activated to capture data from the machine over a specified time period (e.g., 10 seconds-60 minutes). The captured data can then be analyzed to determine the normal operating condition of a particular machine or device.
The learning mode, which is preferably part of the normal operation of a system or method according to embodiments of the invention, can be engaged under a variety of situations such as one or more of: during startup, half-normal operating speed (e.g., 600 RPM for an engine), full-operating speed (e.g., 1,200 RPM for an engine) with no load, or operating speed with various load states. When in the learning mode the device or system records and calibrates parameters such as temperatures and vibrational signals under proper working parameters for baseline measurements. Calibration establishes upper and lower calibration settings, which form the standard operating parameter foundries. Ambient environmental factors also can be recorded as part of the data set, which can be calculated into the standard operating parameters. The standard operating parameters may be unique for each machine and for each cylinder (if the machine has cylinders).
In one embodiment, the data is collected and transmitted to an intermediary device called a coordinator, which then transmits the data to a gateway, and or another repository via wireless or wired communications.
Computational analysis can be performed by the device or system, such as by an integrated microprocessor that may be integral to the device, the device or system, such as by the coordinator, the gateway or another part of the system.
The analysis may include identifying the standard operating parameters (“SOP”) and comparing the newly measured data to the SOP to ascertain whether an intervention or escalation procedure, or preemptive or preventative maintenance should be undertaken. The learning mode is preferably re-conducted after any engine transport and/or significant mechanical work (e.g., upper valve train overhaul) is conducted on the machine in order to re-calibrate and establish the SOP.
In another embodiment, currently, in many cases, a gas flow meter is used in the downstream leg of a compressor to determine the flow of gas being delivered by the compressor. The accuracy of this meter is based upon proper calibration and upkeep of the system. Often, the entities supplying equipment to pump the natural gas are paid based upon the amount of gas pumped. Therefore, the economic value of the natural gas being gathered, compressed and delivered for distribution is dependent on the accuracy of the EFMs. Gas losses due to leaks not attributable to pumping equipment and errors in EFM calibration can lead to a loss of revenue. Devices and methods according to aspects of the invention can accurately measure the amount of gas being delivered.
In the case when the machine is a multi-cylinder, reciprocating gas compressor, which is typically used in the midstream natural gas gathering compression industry, the ability to detect the RPM of the rotating crankshaft can be used to determine the volumetric flow rate of gas through the compressor. This ability can be useful in determining the production value (i.e., the cfm/hr and $/hr) of the natural gas processed by the compressor and delivered to the distribution pipeline. As one example, given the following values: (1) the compressor RPM (calculated by a sensor in communication with an accelerometer), (2) the number of cylinders, (3) the cylinder bore diameter, (4) the piston stroke length, and (5) the inlet gas pressure; the total volumetric and mass flow rate of the gas being delivered by the compressor can be calculated. Hence, use of a system or device of the invention, outfitted with accelerometer sensor or similar apparatus, can be used to determine the volumetric throughput of a gas compressor.
Another method of determining the volumetric flow rate through a compressor is to reference a look-up table (stored in a memory, which may be on a PCB-mounted microprocessor) that contains the flow rate data from the compressor manufacturer. When a sensor according to the invention determines the compressor RPM, this measured value can be processed, such as by a microprocessor, to obtain the flow data from a library of flow-data values provided by the manufacturer. This data resides in a database that can be accessed by the microprocessor. As an example, per a manufacturer's (such as Dresser-Rand) specifications, a reciprocating compressor having a 9.0″ diameter cylinder, with a piston stroke of 7.25″, running at 1,000 RPMs, should displace 847 cubic meters per hour (m3/hr) of gas per cylinder. If the compressor was a 6 cylinder unit, the total volumetric flow rate would be 5,082 m3/hr (847×6).
In accordance with various embodiments, a volatile organic compound (VOC) sensor device can comprise a sensor located in proximity to a tank vent of a storage tank, wherein the sensor can be configured to monitor flumes from the tank vent; a controller operatively coupled to the sensor, wherein the controller can be configured to receive a measured input from the sensor, wherein the measured input can be VOC measurement data of the flumes; and a wireless communication device coupled to the controller, wherein the wireless communication device can be configured to communicate with a coordinator.
Furthermore, in various embodiments, a method of volatile organic compound (VOC) monitoring can comprise monitoring, by a sensor located in proximity to a tank vent of a storage tank, flumes from the tank vent; receiving, by a controller operatively coupled to the sensor, a measured input from the sensor, wherein the measured input can be VOC measurement data of the flumes; communicating, by a wireless communication device coupled to the controller, with a coordinator.
In accordance with various embodiments, an air monitoring array system can comprise a plurality of air quality sensor devices arranged within a selected area, which can be configured to measure air pollutant levels in the selected area. Furthermore, each of the plurality of air quality sensor devices can comprise at least one sensor operatively coupled to a controller, and a wireless communication device also coupled to the controller. In various embodiments, the controller can be configured to receive a measured input from the at least one sensor. Also, the wireless communication device can be configured to communicate with a central server.
In accordance with various embodiments, a method of air quality monitoring can comprise measuring, by a plurality of air quality sensor devices arranged within a selected area, air pollutant levels in the selected area. Each of the plurality of air quality sensor devices can comprise at least one sensor operatively coupled to a controller, wherein the controller can be configured to receive a measured input from the at least one sensor; and a wireless communication device coupled to the controller, wherein the wireless communication device can be configured to communicate with a central server.
In accordance with various embodiments, a selective holding tank draining system can comprise a sensor device configured to receive total dissolved solids (TDS) data of a stored fluid from a TDS sensor, and wherein the sensor device can be configured to receive volume data of the stored fluid from a volume sensor, and a central server configured to determine a selected TDS level for disposal of the stored fluid. In various embodiments, an average TDS level of a drained volume of the stored fluid if draining from two or more tanks can be calculated. Furthermore, the stored fluid volume to drain from each of the two or more tanks to achieve a drained mixture having less than the selected TDS level can be determined.
In various embodiments, a method of selective holding tank draining can comprise receiving, by a sensor device, TDS data of a stored fluid from a TDS sensor; receiving, by the sensor device, volume data of the stored fluid from a volume sensor; determining, by a central server, a selected TDS level for disposal of the stored fluid; calculating an average TDS level of a drained volume of the stored fluid if draining from two or more tanks; and determining a stored fluid volume to drain from each of the two or more tanks to achieve a drained mixture have less than the selected TDS level.
In accordance with various embodiments, a quality monitoring method can include receiving, by a sensor device, total dissolved solids (TDS) data of a stored fluid from a TDS sensor in real-time; transmitting, by the sensor device, the TDS data to a coordinator; and comparing the TDS data to a TDS threshold level. A quality monitoring system can comprise a sensor device configured to receive total dissolved solids (TDS) data of a stored fluid from a TDS sensor, and a coordinator configured to receive the TDS data from the sensor device.
In accordance with various embodiments, a sensor device can comprise at least one sensor operatively coupled to a controller, wherein the controller is configured to receive a measured input from the at least one sensor; and a wireless communication device coupled to the controller. Further, the wireless communication device can be configured to communicate with a coordinator. In various embodiments, the at least one sensor can include a volume sensor, a flow meter sensor, a total dissolved solids sensor, an infrared thermal monitor, an air quality sensor, or any combination thereof.
In accordance with various embodiments, a holding tank monitoring system can include a sensor device configured to receive total dissolved solids (TDS) data of a stored fluid from a TDS sensor in real-time. The TDS sensor can be located near an input of a holding tank storing the stored fluid. In addition, the TDS sensor data can be used to determine water production of a natural resource well. For example, predictive analysis can be used to determine expected remaining production of the well based in part on the water production. Moreover, a holding tank monitoring method can include receiving, by a sensor device, total dissolved solids (TDS) data of a stored fluid from a TDS sensor in real-time, determining water production of a natural resource well based on the TDS sensor data, and determining expected remaining production of the well using predictive analysis based in part on the water production.
In accordance with various embodiments, a logistics system can comprise a plurality of sensor devices providing data, a capacity module, an identification module, and a processor. Each of the plurality of sensor devices can be in communication with an individual holding tank. Further, the data can include flow rate of the individual holding tanks, and where the data identifies the individual holding tank locations. The capacity module can be configured to determine the time remaining until each of the individual holding tanks reaches capacity based on the flow rate and remaining capacity of the individual holding tanks. In addition, the identification module can be configured to identify a fleet of tanker trucks for draining the individual holding tanks Moreover, the processor can implement a mathematical model populated by the data, where the mathematical model can comprise an objective function for minimizing tanker truck driven miles and preventing the individual holding tanks from reaching capacity.
Furthermore, in various embodiments, a logistics method can comprise receiving data from a plurality of sensor devices, wherein each of the plurality of sensor devices can be in communication with an individual holding tank, and wherein the data can comprise a flow rate of the individual holding tanks, and wherein the data identifies the individual holding tank locations; determining a remaining time period until each of the individual holding tanks reaches capacity based on the flow rate and a remaining capacity of the individual holding tanks; identifying a fleet of tanker trucks for draining the individual holding tanks; and using the data to populate a mathematical model that can comprise an objective function for minimizing tanker truck driven miles and preventing the individual holding tanks from reaching capacity.
A more complete understanding of the embodiments of the present disclosure may be derived by referring to the detailed description and claims when considered in connection with the following illustrative figures.
Turning now to the Figures, where the purpose is to describe exemplary embodiments of the invention and not to limit same, an exemplary system according to various aspects of the present invention is depicted in
Sensor Device 110
The sensor device(s) 110 collect information regarding one or more assets being monitored. Embodiments of the present invention may operate in conjunction with any number and type of sensor devices. An exemplary sensor device 110 is depicted in block diagram form in
Processor 210
In the exemplary sensor device 110 depicted in
Memory 220
The exemplary sensor device 110 depicted in
Energy Harvesting Unit 230
The energy harvesting unit 230 collects energy to supply power to, or recharge, the power source 240. In some embodiments, the energy harvesting unit 230 may power the sensor device 110 directly. The energy harvesting unit 230 may include a photovoltaic cell for collecting solar energy; a thermoelectric generator (TEG); and/or a piezoelectric vibrational energy harvester (PZEH). In some exemplary embodiments, a TEG and/or PZEH is used to generate energy from the heat (or vibration, respectively) generated by an asset such as an engine or compressor being monitored. In this manner, the operation of the asset itself can provide some or all of the power necessary to monitor the asset using the sensor device 110. Embodiments of the invention may include multiple energy harvesting units 230 to provide for additional (or redundant) power generation.
Power Source 240
The power source 240 powers the various components of the sensor device 110. The exemplary sensor device 110 depicted in
Sensor Unit 250
The sensor unit 250 measures characteristics related to an asset. The sensor unit 250 may be configured to measure any number of desired characteristics, such as temperature, pressure, flow, vibration, strain, electrical parameters (such as voltage, resistance, and current), atmospheric characteristics (such as moisture and gas content), sound, a chemical, radiation, position, force, movement, and/or any other measurable characteristic.
Some engines, compressors, and other assets may include built-in sensor networks for monitoring various aspects of the operation of the asset. While embodiments of the invention need not rely on these built-in sensor networks to monitor an asset, some embodiments may be configured to receive the data from such networks. Embodiments of the invention can thus fully monitor assets without built-in sensor networks (or where the data from such networks is restricted, encoded, etc.) while utilizing data from such networks if/when such data is available.
Information provided by the sensor unit 250 may be formatted as desired. For example, analog data regarding vibrations of a monitored internal combustion engine may be converted (using an analog to digital converter, for example) to a digital format, and subsequently formatted into a data packet including a data header followed by one or more data values. Similarly, the sensor device 110 may store a series of measurements from multiple sensor units 250 in the form of a spreadsheet with headers indicating the source of the measurements. Such spreadsheets can be transmitted remotely via network 140 to server 150, or accessed locally by a technician via a mobile device 310 and a local wireless network.
Transceiver 260
The transceiver 230 communicates with one or more other systems, such as the coordinator 120, gateway 130, network 140, and/or any other suitable systems. Any suitable communications device, component, system, and method may be used in conjunction with the transceiver 260. In some exemplary embodiments, the transceiver 260 comprises a Bluetooth transceiver configured to communicate with a coordinator 120.
The sensor device 210 may include, or operate in conjunction with, any type and number of transceivers 260. In some embodiments, the sensor device 110 includes a cellular radio frequency (RF) transceiver and may be configured to communicate using any number and type of cellular protocols, such as General Packet Radio Service (GPRS), Global System for Mobile Communications (GSM), Enhanced Data rates for GSM Evolution (EDGE), Personal Communication Service (PCS), Advanced Mobile Phone System (AMPS), Code Division Multiple Access (CDMA), Wideband CDMA (W-CDMA), Time Division-Synchronous CDMA (TD-SCDMA), Universal Mobile Telecommunications System (UMTS), and/or Time Division Multiple Access (TDMA). The transceiver 260 may communicate using any other wireless protocols, such as a Zigbee protocol, a Wibree protocol, an IEEE 802.11 protocol, an IEEE 802.15 protocol, an IEEE 802.16 protocol, an Ultra-Wideband (UWB) protocol, an Infrared Data Association (IrDA) protocol, a Bluetooth protocol, and combinations thereof.
A sensor device 110 operating in conjunction with the present invention may alternatively (or additionally) communicate using any other method of wired or wireless communication. For example, in some embodiments the transceiver 260 may be configured to communicate using one or more wired connections using, without limitation: tip and sleeve (TS), tip, ring, and sleeve (TRS), and tip, ring, ring, and sleeve (TRRS) connections; serial peripheral interface bus (SPI) connections; universal serial bus (USB) connections; RS-232 serial connections, Ethernet connections, optical fiber connections, and Firewire connections. The transceiver 260 can be configured (e.g. through a software program residing in memory 220 and executed by processor 210) to detect and switch to different communication protocols and/or different wired or wireless connections, thus allowing communications with a wide variety of devices.
The sensor device 110 may be configured to detect, analyze and/or transmit data from any number of different sensor units 250 in which it is in communication. Additionally, the sensor device 110 may be configured to perform any desired analysis of the data from the sensor units 250, including those described below. In various embodiments, individual sensor units 110 may be configured to detect a potential problem associated with a monitored asset.
Coordinator 120
The coordinator 120 preferably communicates with one or more sensor devices 110. The coordinator 120 may be configured to communicate using any desired wired or wireless communication connection or protocol, including those described above. In some embodiments, the coordinator 120 is configured to communicate with a plurality of sensor devices 110 and, in turn, communicate with other coordinators 120, with gateway 130, and/or with other systems (such as server 150) via the network 140. In this manner, a single coordinator can communicate with multiple sensor devices 110 using a short-range, low-power communication protocol (e.g., Bluetooth) and communicate with other systems (such as gateway 130) using a longer-range protocol, resulting in less overall power consumption by embodiments of the invention.
Referring now to
For example, coordinator 4 may transmit data to coordinator 5 for rebroadcast to gateway 130. Likewise, coordinator 1 may transmit data to gateway 130 through coordinators 3 and 5. In some embodiments, communications can be alternately relayed through different coordinator nodes to help avoid over-burdening any one particular node. For example, coordinator 1 may first communicate with gateway 130 via coordinators 6 and 5, and next communicate with gateway via nodes 3 and 5.
As also shown in
Gateway 130
The gateway 130 communicates with coordinator 120 and with other systems (such as central server 150 and user computing device 160) via network 140. In some embodiments, such as in the exemplary system 300 depicted in
In the exemplary embodiments depicted in
While coordinator 120, gateway 130, and network 140 are shown as separate components in
Network 140
The network 140 allows the sensor devices 110, coordinator 120 and/or gateway 130 to communicate with other systems and devices, such as central server 150 and user computing device 160. The network 140 may include any combination of wired and wireless connections and protocols, such as those described above. The network 140 may comprise a local area network (LAN), wide area network (WAN), wireless mobile telephony network, General Packet Radio Service (GPRS) network, wireless Local Area Network (WLAN), Global System for Mobile Communications (GSM) network, Personal Communication Service (PCS) network, Advanced Mobile Phone System (AMPS) network, and/or a satellite communication network. In some embodiments, network 140 includes the Internet to allow the central server 150 or computing device 160 to communicate with sensor devices 110, coordinator 120 and/or gateway 130 from anywhere an Internet connection can be established. As such, embodiments of the invention provide efficient, centralized monitoring of assets even in applications (such as oil and gas production) where monitored assets are in remote locations and often spread across large areas.
Central Server 150
In the exemplary embodiment depicted in
The central server 150 may receive data from the sensor devices 110 in any desired manner. In some embodiments, the server 150 is configured to automatically request data from one or more of the sensor devices 110 via the network 140, gateway 130, and coordinator 120. Alternatively, the sensor device 110, coordinator 120, gateway 130, or any other device operating in conjunction with embodiments of the invention can be configured to automatically request and/or transmit data in any suitable manner. For example, each sensor device 110 may be configured to collect and send data measured from a monitored asset (such as an internal combustion engine or compressor) and automatically transmit such data to the coordinator 120 at periodic intervals (e.g., every 15 seconds). The coordinator 120, in turn, may immediately retransmit the data to the server 150 via network 140 and/or to gateway 130, or may store the data for analysis and/or later transmittal.
The transmission of data by a device operating in conjunction with the present invention may be subject to any suitable conditions or rules that dictate whether the data is transmitted. For example, a device may first check to verify (1) that a device designated to receive the data is within range; (2) that both devices have sufficient battery reserves to send the request and receive the data; (3) that the receiving device has sufficient space in its memory to store the data, and/or whether any other suitable condition is met.
User access to the server 150 may be controlled via an authentication process. In some embodiments, authentication is authorized using authentication tokens. In various embodiments, authentication tokens may comprise either simple or complex text strings or data values indicating an account number or other user identifier that can be matched against an internal database by the central server 150. Alternatively, authentication tokens may comprise encoded passwords or other indicia that assert that the entity for whom authentication is requested is genuine. Generation of an authentication token may be accomplished using alternative methods such as entry of a user identifier, PIN, or password by the user after being prompted to do so. Alternatively, a biometric measurement of the user could be obtained and the measurement rendered into a digital representation. Once generated, for security purposes the authorization token may be secured by encrypting the token, digesting and encrypting the digest of the token, or cryptographically hashing the token before transmission to the requesting entity. When authentication tokens are created, the originating component of the token may create a certification of validity through at least one of the following methods: (1) encrypting the token with a private key associated with the token originator; (2) encrypting the token with a public key associated with the token requester or destination; (3) generating a digest of the token (through a method such as a hashing algorithm discussed above) and optionally encrypting the hashed digest with the token originator's private key, or (4) providing an authentication code as at least part of the token (such as a cryptographically hashed password) that may be is compared to previously stored values. When a component receives the token along with any encrypted or cleartext certification data, the component may determine the access is valid by (1) attempting to decrypt an encrypted token with the alleged originator's public key; (2) attempting to decrypt an encrypted token with the alleged originator's public key; (3) attempting to decrypt an encrypted digest with the alleged originator's public key, and comparing the result to a hashed value of the token, pin, code, or password, or (4) comparing a cryptographically hashed password for the alleged originator to known pre-stored values, and if a match is found, authorization is granted.
User Computing Device 160
A user computing device 160 can communicate with any of the other components in system 100. The user computing device 160 may include a personal computer or a mobile computing device, such as a laptop computer, a mobile wireless telephone, or a personal digital assistant (PDA).
A user can use computing device 160 to view, in real-time or near-real-time, the status of any of the components of a system of the present invention, such as the components shown in the Figures. The computing device 160 may also be used to send commands to control such components or to the monitored asset, as well as to view reports showing data from the sensor devices 110, or to analyze the data to generate metrics regarding the status of the monitored asset. Data can be provided to or received from a user of the computing device 160 in a machine-readable format. The computing device 160 may be configured to send, receive, and process machine-readable data can in any standard format (such as a MS Word document, Adobe PDF file, ASCII text file, JPEG, or other standard format) as well as any proprietary format. Machine-readable data to or from the user interface may also be encrypted to protect the data from unintended recipients and/or improper use.
The server 150 or user computing device 160 may include any number and type of processors to retrieve and execute instructions stored in the memory storage device of the server to control its functionality. The server 150 may include any type of conventional computer, computer system, computer network, computer workstation, minicomputer, mainframe computer, or computer processor, such as an integrated circuit microprocessor or microcontroller in accordance with the present invention. The server 150 or computing device 160 operating in conjunction with the present invention may include any combination of different memory storage devices, such as hard drives, random access memory (RAM), read only memory (ROM), FLASH memory, or any other type of volatile and/or nonvolatile memory. The server 150 may include an operating system (e.g., Windows, OS2, UNIX, Linux, Solaris, MacOS, etc.) as well as various conventional support software and drivers typically associated with computers. Software applications stored in the memory may be entirely or partially served or executed by the processor(s) in performing methods or processes of the present invention.
The server 150 or computing device 160 may also include a user interface for receiving and providing data to one or more users. The user interface may include any number of input devices such as a keyboard, mouse, touch pad, touch screen, alphanumeric keypad, voice recognition system, or other input device to allow a user to provide instructions and information to other components in a system of the present invention. Similarly, the user interface may include any number of suitable output devices, such as a monitor, speaker, printer, or other device for providing information to one or more users.
Any of the components can be configured to communicate with each other (or with other additional systems and devices) for any desired purpose. For example, the server 150 or user computing device 160 may be used to upload software to sensor device 110 or other component, provide or update encryption keys, and to perform diagnostics on any of the components in systems 100 or 300. Any computer system may be configured (i.e., using appropriate security protocols) to communicate instructions, software upgrades, data, and other information with components via network 140. In some embodiments, data received from the sensor devices 110 is processed into a report and electronically provided (i.e., via email) to multiple users in a ubiquitous data format such as Portable Document Format (PDF). Such reports can be created at the request of a user or generated automatically at predetermined times or in response to the occurrence of an event (such as a detected problem with a monitored asset).
Any combination and/or subset of the elements of the methods depicted herein may be practiced in any suitable order and in conjunction with any system, device, and/or process. The method described herein can be implemented in any suitable manner, such as through software operating on one or more systems or devices, including the systems 100 or 300.
Collecting Data from Sensor Devices
As described above, the sensor devices 110 may include, or connect to, any type of sensor. In some embodiments, sensor devices 110 are coupled to accelerometers, which are deployed to monitor the vibration(s) of an internal combustion engine or compressor used in the production or transport of oil or gas. The sensor devices 110 and sensors may be strategically positioned to monitor different sources of vibration on an engine, such its valves, crankshaft, or bearings.
Transmit Data
Data collected from a sensor device 110 or generated by any other device operating in conjunction with the present invention may be transmitted to other systems, such as to central server 150 for analysis. The data can be transmitted in any suitable manner, including using any of the wired or wireless communication methods and protocols described previously. Any amount of data can be transmitted in any manner. For example, data from the sensor device 110 can be transmitted to another device (such as to coordinator 120) as it is measured, or data can be stored (such as in a memory storage device in the sensor device 110) for a period of time before being transmitted to another device. In some cases, for example, it may be more efficient to transmit blocks of data at once rather than initiating communication with another device each time data is available. In other cases, a device may be out of range or otherwise unavailable to receive the data. The data can also be stored for any desired length of time, and/or until a particular event occurs. For example, the device data could be stored until it is verified that the receiving device and/or the data server 150 have received the data, allowing the data to be retransmitted if necessary. Data can also be deleted when a data record exceeds a predetermined storage time, and/or the oldest data record is deleted first after a predetermined storage size limit has been reached.
Data transmitted from the sensor devices 110 may be validated to ensure it was transmitted properly and completely. The sensor device data may also be validated to ensure it was provided from a specific sensor device 110 or group of sensor devices 110 (i.e., associated with a particular asset being monitored). The data may also be validated to ensure that fields in the data correspond to predetermined values and/or are within certain thresholds or tolerances. Any number, code, value or identifier can be used in conjunction with validating the device data. For example, the data can be validated by analyzing a serial number, a device identifier, one or more parity bits, a cyclic redundancy checking code, an error correction code, and/or any other suitable feature.
In exemplary embodiments of the present invention, various components (such as coordinator 120, gateway 130, and server 150) may be configured to receive data directly or indirectly from a sensor device 150, format a message based on the data, and transmit the formatted message to another system or device. This functionality may be implemented through software operating on any suitable mobile computing device and with any computer operating system.
Receipt of data from the sensor devices 110 may be restricted only to authenticated devices operating as part of the present invention. Authentication can also prevent sensitive data from being broadcast and viewed by unintended recipients. Any device may be authenticated to verify the device is able to receive, process, and/or transmit data. During authentication, the authenticated device or devices may also be remotely commanded, and such commands may include steps that configure devices to interoperate with components of the present invention. For example, but not by way of limitation, such steps may include the downloading of software applications, applets, embedded operating code, and/or data.
Devices can be authenticated in any manner. For example, devices can be authorized to receive data from one or more sensor devices 110 using an authorization code. The authorization code can be any number, code, value or identifier to allow the receiving device to be identified as a valid recipient of the data. In some embodiments, the receiving device stores an authorization code and broadcasts the authorization code in response to a request for authorization. Unless the authorization code matches a code stored by the transmitter of the data (such as the sensor device 110 itself or another transmission device), the data is not transmitted to the device.
In other exemplary embodiments of the present invention, the coordinator 120, gateway 130, or other device receiving the data from the sensor device 110 using a wireless network protocol (such as Bluetooth) is authenticated based on whether the receiving device advertises one or more services. In this context, advertised services reflect functions, utilities, and processes the receiving device is capable of performing. The receiving device broadcasts indicators of this functionality, thus “advertising” them to other systems and devices. In such embodiments, unless the receiving device advertises a service that is identifiable with the operation of the present invention (i.e., a process capable of broadcasting the sensor device 110 data to the central server 150, for example), the receiving device is not authenticated and thus the data is not transmitted to the device.
Data can be transmitted to components operating in conjunction with the present invention in any format. For example, data from the sensor device 110 can be transmitted to the coordinator 120 exactly as it is generated by the sensing unit 250 of the sensor device 110, or it can be reformatted, modified, combined with other data, or processed in any other suitable manner before being transmitted. For example, the data can be encrypted prior to transmission, and this encryption may occur at any stage in its transmission by the sensor device 110 or retransmission by another device. Some or all of the data being transmitted may be encrypted. In some embodiments, a digest of the data may be encrypted, to digitally “sign” the data contents to verify its authenticity. For example, but not by way of limitation, this digest may be produced by providing the received data to a hashing algorithm such as the MD5 or SHA-1 Secure Hashing Algorithm as specified in National Institute of Standards and Technology Federal Information Processing Standard Publication Number 180-1.
Asymmetric encryption algorithms and techniques are well known in the art. See, for example, RSA & Public Key Cryptography, by Richard A. Mollin, CRC Press, 2002, and U.S. Pat. No. 4,405,829, issued Sep. 20, 1983, the disclosures of which are incorporated herein by reference. In an illustrative example, if two parties (for example, “Alice” and “Bob”) wish to communicate securely using public key cryptography, each party begins by generating a unique key pair, where one of the keys is a private key that is kept in confidence by that party, and the other key is a public key that may be publicly distributed, published only to a message recipient, or made available through a public key infrastructure. The key generation step need be done by a party only once, provided that the party's private key does not become compromised or known by another party. If Alice wants to send a message confidentially to Bob, she may use Bob's public key to encrypt the message, and once sent, only Bob can decrypt and view the message using Bob's private key. But if Alice also wanted Bob to have assurance that the message was in fact coming from her, she could further encrypt the message with her private key before sending, then when Bob's private key and Alice's public key are used to decrypt the message, Bob knows for certain that he was the intended recipient and that Alice was the one who originated the message, and Alice knows that only Bob will be able to decrypt and read her message.
Asymmetric cryptography may be utilized to enhance security of certain implementations of the present invention. In some embodiments, data transmitted by a sensor device 110 is encrypted with a private key, or with a public key of the intended recipient system (such as the coordinator 120), or with both keys. The private and/or public keys may be delivered to a receiving device through a wired or wireless connection, allowing the receiving device to be configured for secure operation. In some embodiments, the server 150 may request that the public key of a sensor device 110 be forwarded to enable decryption of any information encoded with the user's private key. In this manner, the data may be authenticated as coming from the actual asset that is desired to be monitored. Additionally, or alternatively, encrypted or unencrypted data can be transmitted through an encrypted transmission protocol, such as the wireless encryption protocols (WEP, WPA and WPA2) associated with the IEEE 802.11 wireless protocols or a Bluetooth encryption protocol associated with IEEE 802.15. Any number of other encryption methods can be used to encrypt data in conjunction with the present invention.
In some embodiments, such as described for the system 300, a group of coordinators 120 may be configured to relay communications amongst themselves when fewer than all coordinators 120 are within communication range of a gateway 130.
Data Processing
A calculation of the RPM of a machine may be based on vibration/accelerometer readings.
A baseline “standard operating range” may be determined for individual assets (which are more accurate than manufacturer's generic operating tolerances) and detect events outside the SOP for the particular asset.
Data may be collected for multiple assets over periods of time and generate metrics (expected servicing needed, expected lifespan of parts, effects of heat/cold/other environmental factors on performance), for each asset monitored.
Commands from the Server
In addition to receiving and processing data from the sensor devices 110 and other components operating in conjunction with embodiments of the invention, the server 150 (or user computing device 160 if desired) can transmit a command to control various functions of such components, the asset being monitored, or other systems and devices. Any number of commands of any type may be transmitted by the server 150 to any suitable recipient. The command can be transmitted using the same variety of wired and wireless methods discussed previously. For example, the server 150 may issue a command to control, reconfigure, and/or update a software application operating on the gateway 130, coordinator 120, and/or sensor device 110.
The commands need not be sent directly to a device they are intended to control. For example, a command could be transmitted to a coordinator 120, which in turn retransmits it (unmodified) to the appropriate sensor device 110. Alternatively, the coordinator 120 could receive a command from the server 150, analyze the command, and then transmit an appropriately formatted command tailored to the specific sensor device 110 to be controlled. In this manner, the server 150 need not be able to generate a command for each and every specific device it wishes to control, rather, it can send a command appropriate to a class of sensor devices (e.g., those with vibration sensors) and the coordinator 120 can appropriately translate the command to control the sensor device 110. The commands from the server 150 can initiate/run diagnostic programs, download data, request encryption keys, download encryption keys, and perform any other suitable function on devices operating in conjunction with systems and methods of the present invention.
In any system where commands can be sent remotely, security is always a concern, especially when a wireless implementation may provide an entry vector for an interloper to gain access to components, observe confidential data, and control assets such as expensive oil and gas engines/pumps. Embodiments of the present invention provide for enhanced security in a remote command system while still allowing flexibility and minimal obtrusiveness.
In one embodiment, a command received by any of the components may be authenticated before the command is either acted upon by the destination component, or forwarded to another component in the system. Authentication may be directed to determining (1) whether the command came from a trusted or authorized source, and/or (2) that the recipient is actually the intended recipient of the command. In one implementation, source command authentication is achieved by determining whether the origin of the command is a trusted component or server, and one way to accomplish this determination is analyzing whether a command is properly digitally signed by the originator or some other authentication information is provided that assures the recipient component that the message or command is authentic and the recipient component is actually the intended recipient. In an alternate implementation, destination command authentication is accommodated by examining the contents of the message or an authorization code to determine the intended recipient, or alternatively decrypting the command or a portion of the command to verify the intended recipient.
When commands are created by a command originator, the originator may allow a recipient to verify the authenticity and/or validity of the command by at least one of the following methods: (1) encrypting the command with a private key of the command originator; (2) generating a digest of the command (through a method such as a hashing algorithm discussed above) and optionally encrypting the hashed digest with the command originator's private key, or (3) utilizing a symmetric encryption scheme providing an authentication code (such as a cryptographically hashed password) that is compared to previously stored values. When a system component receives the command along with any encrypted or cleartext certification data, the component may determine the command is valid by: (1) attempting to decrypt an encrypted command message with the alleged originator's public key, (2) attempting to decrypt an encrypted digest with the alleged originator's public key, and comparing the result to a hashed value of the command, or (3) comparing a cryptographically hashed password for the alleged originator to known pre-stored values, and if a match is found, authorization is granted. As an additional step, if the command were optionally encrypted using the intended provider's public key, then only the recipient is capable of decrypting the command, ensuring that only the truly intended recipient devices were being issued commands, and not an unintended third party. For example, authenticating the command may comprise decrypting at least part of the command using at least one of: a public key associated with the server 150; a private key associated with a sensor device 110; and a private key associated with the sensor device 110.
Systems and devices operating in accordance with aspects of the present invention may implement one or more security measures to protect data, restrict access, or provide any other desired security feature. For example, any device operating in conjunction with the present invention may encrypt transmitted data and/or protect data stored within the device itself. Such security measures may be implemented using hardware, software, or a combination thereof. Any method of data encryption or protection may be utilized in conjunction with the present invention, such as public/private keyed encryption systems, data scrambling methods, hardware and software firewalls, tamper-resistant or tamper-responsive memory storage devices or any other method or technique for protecting data. Similarly, passwords, biometrics, access cards or other hardware, or any other system, device, and/or method may be employed to restrict access to any device operating in conjunction with the present invention.
Exemplary Sensor Device
A method according to the invention may be implemented using any suitable system, sensor device (or simply, “device”) or a plurality of devices. A device according to the invention may be mounted on a machine whose parameters it will monitor, or may be remote to the machine. Furthermore, a device may monitor a single machine parameter, such as temperature, or multiple parameters, such as temperature, pressure, vibration and exhaust gas constituents. A device may also monitor one area of a machine, such as one cylinder and/or corresponding valve set, or the exhaust, or it may monitor several areas of a machine. The monitoring may be continuous or periodic, and if monitoring multiple parameters or areas, a device may monitor all simultaneously, or monitor one or more at one time and others at a different time.
Turning now to
Device 110 as shown measures the temperature and vibration of a single cylinder and valve set for the engine. Thus, in this embodiment, there is preferably a single device 110 mounted on the valve cover associated with each cylinder of the engine, and in one embodiment the engine has sixteen cylinders and utilizes one device 110 for each cylinder.
Device 110 is self-contained and is mounted to a valve cover by boring holes 112 into the valve cover to mount the device, and to form an opening for a heat pipe, as described below. Device 110 as shown includes a casing 1100, a printed circuit board 1000, a primary power source 1200 (shown, for example, in
Casing 1100 has a first part 1102 and a second part 1150. As shown, first part 1102 is farther from the engine than second part 1150, whereas second part 1150 is directly or indirectly mounted to the engine, and in the embodiment shown is mounted to a valve cover 1190. First part 1102 is preferably comprised of a heat conducting material, such as cast aluminum, while second part 1150 is preferably comprised of an insulating material such as plastic. When first part 1102 and second part 1150 are connected they define a cavity 1104 therebetween that houses components of device 110.
The purpose of casing 1100 is to protect the components inside the casing, and any suitable structure for the particular operating environment will suffice. In this embodiment, wherein casing 1110 is mounted on the valve cover 1190 of an engine, the heat of the engine could potentially damage the components inside the casing 1100. It is preferred that the temperature inside cavity 1104 does not exceed 85° C. because that may damage certain components. And, although components could be purchased that can withstand higher temperatures (for example, up to 125° C.), these are currently much more expensive. Therefore, second part 1150 is preferably comprised of insulating material to help prevent heat from the engine from being transferred to cavity 1104, and first part 1102 is preferably comprised of a conductive material to dissipate heat from cavity 1104.
First part 1102 has a top section 1106 and a bottom outer perimeter 1108. Top section 1106 preferably has a plurality of heat dissipating structures 1110. Structures 1110 can be designed in any fashion to dissipate heat without interfering with the function of the device 1000. As shown, structures 1110 are fins extending outward from top section 1106. Structures 1110 may alternatively be, as examples, a plurality of rods or a plurality of rods and fins, but any structure that can dissipate heat may be used.
In this embodiment it is preferred that the fins are spaced between ⅛″ and ⅜″ apart and extend between ¼″ and ⅝″ beyond the surface of top section 1106 at their highest point. The fins are preferably taller at the position of the casing 1100 where the TEG is located in order to dissipate the greater heat associated with the TEG.
Bottom outer perimeter 1108 includes fastener retainers 1112 that retain fasteners 1114 in order to attach first part 1102 to second part 1150. In this embodiment there are six fastener retainers 1112 that accept and retain six fasteners 1114, which in this case are 10-24 button head cap screws, although any suitable fastener may be used.
Second part 1150 has an inner surface 1152, an outer surface 1154 (best seen in
The purpose of mounting legs 1158 is to space device 110 from a hot surface or the otherwise undesirable surface for device 110, such as the hot valve cover 1190 in order to help prevent device 110 from being damaged, such as by becoming overheated. There are preferably two or four mounting legs 1158, although any suitable number can be used.
Preferably, each mounting leg 1158 is attached to a valve cover or other surface by a fastener 1160, which is preferably a 10-24 button head cap screw. Any suitable fastener may be used and in this embodiment each mounting leg 1158 has an opening 1162 extending therethrough and a metal screw boss in each opening 1162. Each screw boss receives a fastener 1160. Fastener 1160 is threadingly received in each screw boss and threadingly received in fastener openings 1160 and, as shown, openings 112 on valve cover 1190.
Inner surface 1152 has a channel 1163 for retaining a gasket 1165. When first part 1102 is attached to second part 1150 a lip on the bottom outer perimeter 1108 (not shown) is received in channel 1163 and compresses gasket 1165 to form a seal to help keep dust and moisture out of cavity 1104.
Inner surface 1152 includes fastener retainers 1164, which are openings that receive metal screw bosses. Fastener retainers 1164 receive fasteners 1114 in order to attach first part 1102 to second part 1150.
Opening 1156 is configured to permit a heat pipe (described below) to pass therethrough. Opening 1156 is of any suitable size. Surrounding the opening 1156 is a second channel 1166 for retaining a gasket 1168, wherein gasket 1168 creates a seal against the heat pipe to seal cavity 1114 from the outside environment. Also surrounding opening 1156 is a depression 1170 that creates a space for retaining an insulating sleeve (described below) that surrounds the heat pipe and helps to keep its heat from dissipating into cavity 1114.
A valve cover 1190 is also shown in
First part 1102 also includes an opening 1193 through which an antenna (not shown), which attaches to connector 1197, which is in turn connected to PCB 1000, so as to send and receive signals wirelessly to and from PCB 1000, can extend and a protective sheath 1195 that covers and protects the antenna. It is preferred that the cover for the antenna be made of a material that is resistant to the environmental in which device 110 is placed and that the antenna extends far enough so that it is higher than any of the heat-dissipating fins or rods so that signals emanating from or received by the antenna are not partially blocked by these structures.
There may be more than one PCB 1000 (or PCBA, meaning printed circuit board assembly), and in a preferred embodiment, the one or more PCBs include: (a) the primary power source, which is preferably a secondary battery, (b) the secondary power source, which is preferably a primary battery, (c) a radio, such as a Bluetooth 4.0 module, (d) a microcontroller, (e) a clock, (f) an energy harvesting managing circuit, (g) one or more capacitors, (h) an accelerometer, (i) an antenna connection, (j) a thermocouple amplifier, (k) a resistor SMD, and (1) an inductor. The PCB may be two sided.
There are also one or more additional openings (not shown) that may receive or include a plug 1199 or other wired connection for receiving operational data about one or more operating parameters of the engine, as described above. Plug 1199 may connect to a thermocouple through a wired connection to receive temperature data or connect to a device to receive vibrational data or any other type of data. Alternatively, the device 110 may receive operating data wirelessly.
Heat pipe 1002 has a first end 1002A, a second end 1002B, and a body portion 1002C. First end 1002A is in thermal communication with TEG 1004. TEG 1004 receives heat from first end 1002A and converts it into electricity, and has wires that transmit the generated electricity. The wires may be connected to a PCB 1000, or directly to the first power source, or to any suitable location to operate device 110. In this embodiment, for thermal energy generator 1004 to generate sufficient electricity, first end 1002A should be at least 10° C. hotter than the ambient temperature inside of cavity 1104.
To increase the heat transfer between the first end 1002A and TEG 1004, a conductive sheath 1006 is placed between the two. The sheath is primarily comprised of graphite or another conductive, soft material. Sheath 1006 is preferably 1/32″ or less in thickness and it conforms to the surface of first end 1002 and to the surface of TEG 1004, thereby effectively increasing the surface area available for transferring heat.
TEG 1004 has a first side 1004A that is adjacent first end 1002A of heat pipe 1002 and a second side 1004B adjacent an inner wall of first part 1102 of casing 1100. Heat not converted into electricity by TEG 1004 is conducted through second side 1004B to first part 1102 of casing 1100, where it is conducted out of device 110. This helps to prevent cavity 1114 of device 110 from overheating.
A second sheath 1006 is preferably positioned between second side 1004B of thermal energy generator 1004 and the inner wall of first part 1102, again in order to increase the surface area and heat transfer between the two in the manner described above.
In this embodiment, the first end 1002A of heat pipe 1002 has a larger diameter than the rest of heat pipe 1002 and includes an opening 1008. Opening 1008 is for retaining TEG 1004 and the sheath 1006 that is between heat pipe 1002 and TEG 1004. First end 1002A is preferably covered at least partially by an insulating material, which is preferably plastic sleeve 1010, to help keep heat from dissipating into cavity 1114.
An o-ring 1012 is used as a secondary seal on heat pipe 1002 to help seal cavity 1104 from the outside environment.
Heat pipe 1002 is biased towards thermal energy generator 1004 by a spring 1012 positioned around body portion 1002C. The purpose of the biasing is to press end 1002A against thermal energy generator 1004 and/or, or against sheath 1006, to enhance the heat transfer to thermal energy generator 1004. If heat pipe 1002 is biased, any suitable structure or method may be used to generate a pressure fit between the heat pipe and (directly or indirectly) the TEG 1004. In one embodiment the biasing force is about 100-200 psi, or about 170-250 psi, or about 200 psi.
Heat pipe 1002 is also held in position in cavity 1104 of casing 1100 by a locking ring 1014 positioned around body portion 1002C and under spring 1012. Locking ring 1014 fits into depression 1170 and holds heat pipe 1002 in position. The body portion 1002C adjacent opening 1156 is at least partially surrounded by an insulating material, and in this embodiment is surrounded by plastic sleeve 1016, which helps prevent heat from dissipating into cavity 1104.
Second end 1002B of heat pipe 1002 extends through opening 1156 in order to receive heat from a heat source. In this embodiment, the heat source is the engine. Second end 1002B preferably extends out of casing 1100, through opening 1194 in valve cover 1190 and is retained inside of the valve cover. The heat pipe 1002 receives sufficient heat to generate electricity through TEG 1004. Furthermore, by not contacting the engine or valve cover 1190 directly, little or no vibration is transferred through the heat pipe 1002 to device 110.
Processor 1020 is preferably a PCB chip 1000 with circuitry that preferably performs the following functions (some of which were noted above). First, it converts power from the TEG assembly 1300 into electricity suitable for charging the power source of device 110, or for operating device 110 directly. Second, it includes an accelerometer capable of measuring vibration. Third, it may also be capable of receiving and analyzing (in whole or in part) operational data other than vibrational data, such as temperature, chemical analysis of materials such as a liquid, solid or gas, pressure, or exhaust gas data, and potentially convert any data it measures or receives into digital form so that it can be stored, analyzed and/or transmitted.
Processor 1020 is in direct or indirect communication with the power source, the thermal energy generator, one or more data inputs, and a transmitter to transmit data.
A primary power source 1022 is preferably a solid state, thin film LiPON battery attached to processor 1020. A secondary power source 1024 is preferably a lithium thynol chloride wafer cell and operates only if power source 1022 fails.
Valve cover 6000 can house a larger version of a device according to the invention and can power many other monitoring devices, or other equipment, through the accessible ambient heat energy. The electricity generated would be transmitted from valve cover 6000 to other devices or equipment through wires. Further, valve cover 6000 could also include its own internal and/or external structures as previously described for device 110.
Another embodiment of an aspect of the invention is a drilling pipe with a vibrational measuring and recording device. The pipe is preferably of a type used for drilling oil or natural gas wells and is known in the art. The pipe is comprised of sections, usually 42 feet in length, that are threaded together. Over time the pipe wears and can break, either at the threaded portion or elsewhere. If the pipe breaks during usage, it could create delay and expense because if, for example, the pipe is several thousand feet underground it may be difficult or impossible to retrieve and another hole must be bored. The wear on a pipe is a function of at least, (1) the number of times the pipe has been used, which can be determined by the total number of turns the pipe has made, and (2) the type of earth in which the pipe has been used, for example, if the pipe is used in soft soil the wear on the pipe is less than if the pipe is used to drill through rock.
The wear on a pipe can be measured by the vibration to which it has been exposed, which can measure (or approximate) the number of turns and the stress due to the type of earth in which it has been used. Turning now to
Using this device, users can determine when a pipe section has reached the end of its useful life for their purposes and either discard or sell the pipe section. A predetermined vibrational life span of the pipe has been exposed and can be compared to this known vibrational life.
Communications
In accordance with various embodiments and with reference to
The sensor device 1510 receives data collected from one or more connected sensors, and can be configured to transmit the collected data to the coordinator 1520. Furthermore, in various embodiments, sensor device can be configured to transmit the collected data to coordinator 1520 in real-time or batch format. As used herein, “real-time” is defined to mean intervals measured in minutes. For example, the sensor data may be transmitted every 5 minutes, 10 minutes, 30 minutes, or the like. Furthermore, the coordinator 1520 can be configured to transmit data to the central server 1550 via the gateway 1530 and/or the network 1540. Within the remote sensing system 1500, data can be communicated using a variety of communication methods. For example, data may be communicated via a wireless connection or a wired connection. In various embodiments, a wireless communication device can be configured to transmit using at least one of a satellite communication network, a local area network (LAN), a wide area network (WAN), a wireless mobile telephone network, a General Packet Radio Service (GPRS) network, a wireless local area network (WLAN), a Global System for Mobile Communications (GSM) network, a Personal Communication Service (PCS) network, and an Advanced Mobile Phone System (AMPS) network. Moreover, data can be directly downloaded from the sensor device or aggregating computer using a cable connection to a computing device.
The components of the remote sensing system 1500, namely the sensor device 1510, coordinator 1520, gateway 1530, and central server 1550, may include, or operate in conjunction with, any type and number of transceivers. In various embodiments, the components includes a cellular radio frequency (RF) transceiver and may be configured to communicate using any number and type of cellular protocols, such as General Packet Radio Service (GPRS), Global System for Mobile Communications (GSM), Enhanced Data rates for GSM Evolution (EDGE), Personal Communication Service (PCS), Advanced Mobile Phone System (AMPS), Code Division Multiple Access (CDMA), Wideband CDMA (W-CDMA), Time Division-Synchronous CDMA (TD-SCDMA), Universal Mobile Telecommunications System (UMTS), and/or Time Division Multiple Access (TDMA). The transceiver may communicate using any other wireless protocols, such as a Zigbee protocol, a Wibree protocol, an IEEE 802.11 protocol, an IEEE 802.15 protocol, an IEEE 802.16 protocol, an Ultra-Wideband (UWB) protocol, an Infrared Data Association (IrDA) protocol, a Bluetooth protocol, and combinations thereof.
Furthermore, the components of the remote sensing system 100 can be configured, alternatively (or additionally), to communicate using any other method of wired or wireless communication. For example, in various embodiments the transceiver may be configured to communicate using one or more wired connections using, without limitation: tip and sleeve (TS), tip, ring, and sleeve (TRS), and tip, ring, ring, and sleeve (TRRS) connections; serial peripheral interface bus (SPI) connections; universal serial bus (USB) connections; RS-232 serial connections, Ethernet connections, optical fiber connections, and Firewire connections. The transceiver can be configured (e.g. through a software program residing in memory and executed by processor) to detect and switch to different communication protocols and/or different wired or wireless connections, thus allowing communications with a wide variety of devices.
The coordinator 1520, according to various embodiments, can be a local computer machine located near one or more sensor devices 1510, such that the coordinator 1520 and sensor devices 1510 can communicate using RF signals. Moreover, the coordinator 1520 can be configured to communicate using any desired wired or wireless communication connection or protocol, including those described above. In various embodiments, the coordinator 1520 can be configured to communicate with a plurality of sensor devices 1510 and, in turn, communicate with other coordinators 1520, or the central server 1550. In this manner, a single coordinator 1520 can communicate with multiple sensor devices 1510 using a short-range, low-power communication protocol (e.g., Bluetooth®) and communicate with other systems (such as the central server 1550) using a longer-range protocol, resulting in less overall power consumption by embodiments disclosed herein.
The data communicated in the remote sensing system 1500 may be of two different types, referred to as “smart data” and “dumb data.” The dumb data can be all the data collected by the sensor device 1510. The dumb data can be unfiltered and may be voluminous, as the sensor device 1510 collects a large quantity of sensor data. In contrast, the smart data can be a filtered, summarized, condensed, or reduced subset of the dumb data, or an analysis output. For example, the sensor device may record temperature at a predetermined first time interval. The dumb data would include every temperature recording, whereas the smart data could be the average temperature over a predetermined second time interval, where the second time interval can be greater than the first time interval. Transmitting the average temperature smart data can be more efficient than transmitting the temperature recording dumb data due to the decrease in data transmitted. However, for most purposes there is little to no drop in analysis quality of the data since the smart data provides sufficient information for analysis.
The sensor device 1510 may be configured to detect and transmit data from any number of different sensor units in which it is in communication. Additionally, the sensor device 110 may be configured to perform any desired analysis of the data from the sensor units, including those described below.
In one embodiment, coordinator 1520 has a large amount of memory capable of storing all data transmitted by the one or more sensor devices 1510. For example, the coordinator 1520 may have over a terabyte of storage. In various embodiments, the coordinator 1520 can receive all the “dumb” data from the sensor device 1510. The coordinator 1520 then processes the dumb data into relevant smart data to be transmitted to the central server 1550. Furthermore, the coordinator 1520 can store the dumb data for later retrieval. The dumb data can be manually downloaded later for additional analysis.
The smart data can include an identifier corresponding to the data source, thereby identifying which sensor device 1510 gathered the particular smart data. In various embodiments, the coordinator 1520 can be in communication with multiple sensor devices 1510. Each sensor device 1510 can communicate with the coordinator 1520 using a different frequency. For example, the sensor devices 1510 may transmit within the frequency range of about 868 MHz to about 915 MHz. The coordinator 1520 can use the communication frequency to associate the data with a specific sensor device 1510.
In various embodiments, the coordinator 1520 can communicate to the central server 1550 either via satellite or cellular towers. Furthermore, the coordinator 1520 can be configured to transmit batch data to the central server 1550 at selected times. For example, the batch data transmissions may occur during off-peak times in order to be more cost effective. In other embodiments, the coordinator 1520 can store all the dumb data to be manually downloaded at some point in time.
In accordance with various embodiments, the data processing can be managed in multiple ways. For example, in a first embodiment, the sensor device 1510 can be configured to process, or at least partially process, the data. In a second embodiment, the coordinator 1520 can be configured to process, or at least partially process, the data. In a third embodiment, the central server 1550 can be configured to process, or at least partially process, the data. In a fourth embodiment, the data processing can be managed by any combination of the first, second, or third embodiments of data processing. For example, the sensor device 1510 can be configured to preprocess data for simple tasks, such as determining a change in temperature. The coordinator 1520 can configured to perform more complex data processing, or any processing not handled by the sensor device 1510.
Referring now to
For example, coordinator 4 may transmit data to coordinator 5 for rebroadcast to gateway 1530. Likewise, coordinator 1 may transmit data to gateway 1530 through coordinators 3 and 5. In various embodiments, communications can be alternately relayed through different coordinator nodes to help avoid over-burdening any one particular node. For example, coordinator 1 may first communicate with gateway 1530 via coordinators 6 and 5, and next communicate with gateway via nodes 3 and 5.
As also shown in
Gateway 1530
The gateway 1530 communicates with coordinator 1520 and with other systems (such as central server 1550 and user computing device 1560) via network 1540. In various embodiments, such as in the exemplary system 1600 depicted in
In the exemplary embodiments depicted in
While coordinator 1520, gateway 1530, and network 1540 are shown as separate components in
Network 1540
The network 1540 allows the sensor devices 1510, coordinator 1520 and/or gateway 1530 to communicate with other systems and devices, such as central server 1550 and user computing device 1560. The network 1540 may include any combination of wired and wireless connections and protocols, such as those described above. The network 1540 may comprise a local area network (LAN), wide area network (WAN), wireless mobile telephony network, General Packet Radio Service (GPRS) network, wireless Local Area Network (WLAN), Global System for Mobile Communications (GSM) network, Personal Communication Service (PCS) network, Advanced Mobile Phone System (AMPS) network, and/or a satellite communication network. In various embodiments, network 1540 includes the Internet to allow the central server 1550 or computing device 1560 to communicate with sensor devices 1510, coordinator 1520 and/or gateway 1530 from anywhere an internet connection can be established. As such, embodiments of the invention provide efficient, centralized monitoring of assets even in applications (such as oil and gas production) where monitored assets are in remote locations and often spread across large areas.
Central Server 1550
In the exemplary embodiment depicted in
The transmission of data by a device operating in conjunction with the present embodiments may be subject to any suitable conditions or rules that determine whether the data can be transmitted. For example, a device may first check to verify (1) that a device designated to receive the data is within range; (2) that both devices have sufficient power to send the request and receive the data; (3) that the receiving device has sufficient space in its memory to store the data, and/or whether any other suitable condition is met.
User access to the server 1550 may be controlled via an authentication process. In various embodiments, authentication can be authorized using authentication tokens. In various embodiments, authentication tokens may comprise either simple or complex text strings or data values indicating an account number or other user identifier that can be matched against an internal database by the central server 1550. Alternatively, authentication tokens may comprise encoded passwords or other indicia that assert that the entity for which authentication is requested is genuine. Generation of an authentication token may be accomplished using alternative methods such as entry of a user identifier, PIN, or password by the user after being prompted to do so. Alternatively, a biometric measurement of the user could be obtained and the measurement rendered into a digital representation. Once generated, for security purposes the authorization token may be secured by encrypting the token, digesting and encrypting the digest of the token, or cryptographically hashing the token before transmission to the requesting entity. When authentication tokens are created, the originating component of the token may create a certification of validity through at least one of the following methods: (1) encrypting the token with a private key associated with the token originator; (2) encrypting the token with a public key associated with the token requester or destination; (3) generating a digest of the token (through a method such as a hashing algorithm discussed above) and optionally encrypting the hashed digest with the token originator's private key, or (4) providing an authentication code as at least part of the token (such as a cryptographically hashed password) that may be compared to previously stored values. When a component receives the token along with any encrypted or cleartext certification data, the component may determine the access is valid by (1) attempting to decrypt an encrypted token with the alleged originator's public key; (2) attempting to decrypt an encrypted token with the alleged originator's public key; (3) attempting to decrypt an encrypted digest with the alleged originator's public key, and comparing the result to a hashed value of the token, pin, code, or password, or (4) comparing a cryptographically hashed password for the alleged originator to known pre-stored values, and if a match is found, authorization is granted.
User Computing Device 1560
In
A user can use computing device 1560 to view, in real-time or near-real-time, the status of any of the components of a system, such as the components shown in
The server 1550 or user computing device 1560 may include any number and type of processors to retrieve and execute instructions stored in the memory storage device of the server to control its functionality. The server 1550 may include any type of conventional computer, computer system, computer network, computer workstation, minicomputer, mainframe computer, or computer processor, such as an integrated circuit microprocessor or microcontroller in accordance with the present invention. The server 1550 or computing device 1560 operating in conjunction with the present invention may include any combination of different memory storage devices, such as hard drives, random access memory (RAM), read only memory (ROM), FLASH memory, or any other type of volatile and/or nonvolatile memory. The server 1550 may include an operating system (e.g., Windows, OS2, UNIX, Linux, Solaris, MacOS, etc.) as well as various conventional support software and drivers typically associated with computers. Software applications stored in the memory may be entirely or partially served or executed by the processor(s) in performing methods or processes of the present invention.
The server 1550 or computing device 1560 may also include a user interface for receiving and providing data to one or more users. The user interface may include any number of input devices such as a keyboard, mouse, touch pad, touch screen, alphanumeric keypad, voice recognition system, or other input device to allow a user to provide instructions and information to other components in a system of the present invention. Similarly, the user interface may include any number of suitable output devices, such as a monitor, speaker, printer, or other device for providing information to one or more users.
Any of the components in
Any combination and/or subset of the elements of the methods depicted herein may be practiced in any suitable order and in conjunction with any system, device, and/or process. The method described herein can be implemented in any suitable manner, such as through software operating on one or more systems or devices, including the systems described in
As previously mentioned, the sensor device can be configured to have one or more sensors connected. In accordance with various embodiments, the types of sensors that could be connected to the sensor device include, but are not limited to, a vibration sensor such as an accelerometer, a pressure transducer such as piezoelectric transducer, a total dissolved solid (TDS) sensor such as an electrical conductivity meter, a hydrocarbon sensor such as an e-nose sensor, a temperature sensor such as a thermocouple, thermistor, or infrared thermometer, and a wind speed sensor such as an anemometer.
In accordance with various embodiments, a sensor device can comprise at least one sensor operatively coupled to a controller and a wireless communication device coupled to the controller. The controller can be configured to receive a measured input from the at least one sensor. The wireless communication device can be configured to communicate with a central server. Furthermore, the wireless communication device can transmit data to the central server at regular intervals. In various embodiments, the wireless communication device further transmits data to the central server in response to the measured input exceeding a predetermined threshold. Moreover, in various embodiments, the sensor device further comprises a power source, such as solar power, thermal power, battery power, and/or wind power.
The sensor device can be used in a variety of applications, such as the oil and gas wells as mentioned above. For example, the sensor device can be coupled to a fluid holding tank. The at least one sensor can be a volume sensor configured to determine the fluid volume in the fluid holding tank. More specifically, the volume sensor can be a pressure transducer located near the bottom of the fluid holding tank. The data obtained from the volume sensor can be used to determine a fill rate of the fluid holding tank based on a rate of volume change.
Furthermore, in one embodiment, the sensor can be a flow meter sensor configured to determine the flow rate into in the fluid holding tank. In another embodiment, the sensor can be a total dissolved solids (TDS) sensor configured to monitor fluid composition in the fluid holding tank. In yet another embodiment, the sensor can be an infrared thermal monitor configured to monitor flumes from a tank vent of the fluid holding tank, wherein the infrared thermal monitor can be configured for sensing volatile organic compounds. In another embodiment, the sensor can be an air quality sensor configured to measure air pollutants surrounding the fluid holding tank. In addition, in various embodiments the sensor device can be one of a plurality of sensor devices in a remote sensing system. Each of each of the plurality of sensor devices can be configured to communicate with at least one other sensor devices.
Predictive Analysis Using Vibration Data:
In accordance with various embodiments, a sensor device can be connected to a vibration sensor, such as an accelerometer. The sensor can be attached to various parts of an engine or machine and measure the ongoing vibrations. By way of example, the engine or machinery parts that vibrate include valves, bearings, crank shaft, camshaft, rocker arm, radiator fan, fly wheel, hydraulic pump, alternator, turbo, and fuel pump. Using an engine mount as an example, in various embodiments, the sensor device can obtain a baseline of vibration data when the engine is operating. This baseline can be measured manually prior to installation of the sensor devices, and/or obtained after the installation of the sensor devices. Furthermore, a software program can be executed to analyze the vibration patterns in comparison to the baseline vibration patterns. The software program may be installed on the sensor device, the coordinator, or the central server. Furthermore, the software program can search for vibration patterns with known timing, either from the baseline or from a library of specific component vibration patterns in order to determine potential sources of vibration patterns. In various embodiments, the software program analyzes the vibration data looking for changes in pattern for predictive analysis.
If multiple sensor devices are used on an engine, the vibration data from the multiple sensor devices can be used to triangulate the source of the change in the vibration pattern. The magnitude of change in vibration pattern can be used to triangulate the source of the disruption. This can provide an indication of which component of the engine may be failing and allow repair prior to a major failure. Moreover, an oil and gas company most likely implements the same type of machinery in multiple locations. Since the machinery is the same, the data from one location can be helpful in the diagnostics of the machinery in another location. In various embodiments, the sensing system can store the vibration data from multiple engines, and compare the change in vibration data to similar changes that occurred on other engines. This type of learning by the sensing system can provide additional information for diagnostics, such as an expected failure timeframe for the specific component. For example, if the change in vibration data indicates that a bearing may be beginning to fail, the system can provide an expected timeframe for the bearing's failure based on the data gathered from a similar bearing's failure.
Flow Rate:
In accordance with various embodiments, a flow rate into a fluid holding tank can be determined by a pressure sensor. The pressure sensor can be located at or near the bottom of the fluid holding tank, and can sense whether the pressure of the fluid is increasing, decreasing, or remaining constant. A change in the pressure data can be used to determine the flow rate of fluid into, or out of, the fluid holding tank. The flow rate data can be useful for different things. For example, a negative flow rate indicates that the fluid in a holding tank is being drained. In various embodiments, if the tank draining doesn't match a scheduled removal, this can trigger an alert that the fluid holding tank has a leak or that someone may be stealing the fluid.
Similarly, a positive flow rate can be correlated to production of the producing well. Simply that a high flow rate indicates high output from the well. Furthermore, the pressure sensor can take several data points, the flow rate can be tracked and more accurately show the output of a well. Measuring a well's flow rate in approximately real-time, in terms of minutes, increases the accuracy of a well's expected output. The wells may have short spikes of output or “burps” that distort a calculated flow rate if only measuring a well's output on a monthly basis.
Furthermore, in various embodiments, the flow rate data can be used to increase the confidence levels in production decline analysis. In a typical analysis, the production volume of a well may be recorded on a monthly basis. Using a sensor device, the flow rate, and hence production volume, of a well can be recorded at intervals of minutes. More continual monitoring, and enhanced accuracy, of the flow rate results in a production decline analysis curve with a higher confidence level in comparison to the current measurement methods.
Another use of flow rate data can be determining when a tank needs to drained. In a field of tanks, this information can be used to determine an efficient tanker truck routing for draining the tanks. In various embodiments and with reference to
Accordingly, and with reference to
In various embodiments, each of the plurality of sensor devices can comprise at least one sensor operatively coupled to a controller, wherein the controller can be configured to receive a measured input from the at least one sensor, and a wireless communication device coupled to the controller, wherein the wireless communication device can be configured to communicate with a central control system. The at least one sensor can be at least one of a flow meter and a pressure transducer.
In various embodiments, a logistics system can comprise a plurality of sensor devices providing data, wherein each of the plurality of sensor devices can be in communication with an individual holding tank. The data can comprise flow rates of the individual holding tanks, and can identify the individual holding tank locations. The logistics system can also include a capacity module configured to determine the time remaining until each of the individual holding tanks reaches capacity based on the flow rate and remaining capacity of the individual holding tanks. Furthermore, the logistics system can also include an identification module configured to identify a fleet of tanker trucks for draining the individual holding tanks, along with a processor implementing a mathematical model populated by the data. The mathematical model can comprise an objective function for minimizing tanker truck driven miles and preventing the individual holding tanks from reaching capacity. The order of draining the tanks in the system can be determined in part by whether a first individual holding tank is closer to overflowing than a second holding tank.
Total Dissolved Solids Monitoring
In accordance with various embodiments, an electrical conductivity meter can be used to measure the conductivity of the fluid in a holding tank, thereby providing the concentration level of solids in the fluid and acting as a total dissolved solids (TDS) sensor. The electrical conductivity meter can be configured to measure a salt solution percentage of the stored fluid. In various embodiments, the electrical conductivity meter can be located near, or at, the input valve of the holding tank in order to measure the levels of the incoming fluid. In addition, in various embodiments, the sensor device can comprise a controller operatively coupled to the total dissolved solids (TDS) sensor and configured to receive the TDS data from the TDS sensor; and a wireless communication device coupled to the controller and configured to communicate with the central server. In various embodiments, the sensor device can be one of a plurality of sensor devices in a monitoring system. The TDS data can be transmitted from the sensor device to the central control system in real-time or in batch format. In addition, TDS level monitoring data can be correlated to multiple concepts, such a quality monitoring, well lifespan predictive analysis, and efficient by-product disposal.
With respect to quality monitoring, a quality monitoring system can comprise a sensor device configured to receive TDS data of a stored fluid from a TDS sensor in real-time; and a central server configured to receive the TDS data from the sensor device. In various embodiments and with reference to
The sensor device and TDS readings can be used in a variety of environments. For example, the stored fluid can be water by-product produced by a fracking well, which will undergo filtration, disposal, or reuse depending on the TDS level. The sensor device and readings can also be part of a water treatment facility, in which TDS levels are used determine the treatment process and/or the effectiveness of the treatment. Further, the TDS sensor and sensor device can be implemented in any factory or production facility that produces a fluid product or handles fluid by-products.
In another embodiment, the TDS sensor and sensor device can be implemented for water run-off monitoring, especially in remote areas. This can be useful for agriculture environments or industrial environments. For example, multiple sensor devices can be placed along a river bank and be solar powered. Each sensor device can take measurements for specific chemicals or pollutants. The sensor data can be transmitted and analyzed as described herein, and notice given if threshold levels are exceeded. The sensor data can also be used to determine whether an increase in chemical levels occurs at a specific section of the river, thereby assisting in narrowly the likely source of an increase.
With respect to oil and natural gas wells, the composition of the output varies over the lifespan of the well. Oil wells will typically product fluid with a higher concentration of TDS towards the end of the well's lifespan. In accordance with various embodiments, TDS levels can be correlated to the lifespan of an oil or natural gas well. The TDS levels, specifically the change and value of the TDS levels, can be compared to historical data to predict the expected remaining lifespan of the oil or natural gas well. Accordingly, a holding tank monitoring system can comprise a sensor device configured to receive TDS data of a stored fluid from a TDS sensor in real-time. In various embodiments, the TDS sensor can be located at a top of a holding tank storing the stored fluid and/or near an input the holding tank. Further, the TDS sensor data can be used to determine a water percentage of the production of a natural resource well, and predictive analysis can be used to determine expected remaining production of the well. The stored fluid can be water by-product produced by a fracking well. Similarly, in various embodiments and with reference to
In addition to the uses mentioned above, water by-product disposal can also be improved using similar data. For example, the disposal of fracking fluid can be regulated based on the contaminant level of the fluid. Fluids with higher contaminant levels require more treatment, and are therefore more expensive when disposing. In addition, the processing or disposal areas may be different depending on the type of processing, which impacts where a driver should take the tanker truck when hauling the fluid. In various embodiments, the TDS level data can be used to inform a driver of the TDS level of a tank that is being drained and where to transport the tank for proper disposal. Moreover, in various embodiments, the tank fluid can be proportionally drained from multiple tanks into a single tanker truck, using the TDS level data, and resulting in a predetermined TDS level of the combined fluid. More specifically and with reference to
Volatile Organic Compound Monitoring
Volatile organic compounds (VOC) are naturally present as fugitive gases in and around oil or natural gas wells. Some VOCs are toxic and may be dangerous above certain concentrations. In accordance with various embodiments, a VOC sensor device can be used to monitor the VOC levels from a well or tank. The VOC measurement data can measure levels of benzene, toluene, ethylbenzene, and xylenes. In various embodiments, the VOC sensor device can comprise a sensor located in proximity to a vent or junction of a well. The VOC measurement data can be used to calculate fugitive losses from the tank or well. In current practice, the amount of fugitive gases escaping from a vent is unknown. However, VOC monitoring the flume from a vent enables the determination of the amount of VOCs escaping in the flume. For example, 5% of the flume may be VOCs, which equates to a certain amount per minute. The VOC sensor device can monitor for various VOC concentration thresholds or changes in the VOC concentration. Furthermore, the resulting VOC data on the fugitive gases facilitates deciding the appropriate method of capturing the fugitive gases, namely by providing the amount and rate of fugitive gases escaping.
Furthermore, in various embodiments and with reference to
Further, in various embodiments, the VOC sensor device can also comprise a controller operatively coupled to the sensor, wherein the controller can be configured to receive VOC measurement data from the sensor, and a wireless communication device coupled to the controller, wherein the wireless communication device can be configured to communicate with a central control system. The central control system can be configured to analyze the VOC measurement data to determine if regulations are satisfied. The regulations can be set by a government agency. Moreover, the sensor device can be one of a plurality of sensor devices in a monitoring system.
Moreover, in various embodiments, the VOC sensor device can also comprise an infrared thermal monitor for monitoring temperature.
Air Quality Monitoring
Typically, natural gas wells are scattered throughout an area and at any given time one or more of the natural gas wells may have a leak. In the aggregate, small to moderate leaks from multiple wells combine to form fugitive gas levels that may exceed a government threshold. In the prior art, a sensor would measure for ozone, and if the ozone reading is above a threshold level, the system would assume a natural gas leak in the area. However, usually there is only a single sensor for a wide coverage area, and therefore the single sensor cannot determine the source of the leak, resulting in the entire coverage area being shut down until the gas levels dissipate or other corrections made.
In accordance with various embodiments and with reference to
In various embodiments, the air quality sensor device can include sensor types in addition to the hydrocarbon sensor, such as a temperature sensor for determining the ambient temperature at the hydrocarbon sensor. The ambient temperature can be an important factor in determining an acceptable threshold of fugitive gases. For example, higher temperatures may result in lower the threshold of fugitive gases, depending on the regulations. Furthermore, in various embodiments, the air quality sensor device can include an ultraviolet sensor for measuring ultraviolet levels. The air quality sensor device can also include an anemometer for measuring wind speed.
In various embodiments, any combination of the various sensors mentioned above can be connected to an air quality sensor device. The sensor device can be powered using a solar panel, a battery, or a combination of both. In various embodiments, the air quality sensors can be located on a pole so that it can be positioned about the ground, for example about 15 feet. Furthermore, the system can include an antenna, such as a Yagi antenna, for communicating the sensor data to a central system.
With reference to
An air monitoring array system can comprise a plurality of sensor devices arranged within a selected area, wherein the plurality of sensor devices can be configured to measure air pollutant levels in the selected area. In various embodiments, each sensor device can comprise at least one sensor operatively coupled to a controller, wherein the controller can be configured to receive a measured input from the at least one sensor; and a wireless communication device coupled to the controller, wherein the wireless communication device can be configured to communicate with a central control system. The central control system can be configured to determine if one or more portions of the selected area have air pollutant levels exceeding a predetermined threshold. The predetermined threshold may be set by a government agency. The at least one sensor can be a hydrocarbon sniffer, such as an e-nose sensor circuit as developed by NASA.
Valve Cover Power Unit
In accordance with various embodiments, a large thermoelectric generator (TEG) can be integrated into a valve cover of an engine. This can be accomplished by either removing a section of an already present valve cover and installing the TEG, or the TEG can be built into a valve cover and then used to replace an already present valve cover. In addition to valve covers, it is contemplated that the TEG can be integrated as part of any heat producing source. In addition to the TEG, a battery can also be included as an alternative energy source if the TEG is not sufficiently producing power (e.g., an engine is used as a heat source but is not currently operating). In various embodiments, the thermal electric core can be an array of multiple smaller thermal electric cores, or can be one large thermal electric core. The energy produced by a TEG can be linearly correlated to the surface area of the thermal electric cores in the TEG, so the different variations of the thermal electric core should produce approximately the same power.
In various embodiments, the valve cover can have a thermal barrier coating on the inside, outside, or both sides. The thermal barrier coating reflects heat, so that the inside of the valve cover is hotter than the outside of the valve cover. In one embodiment, the thermal barrier coating can be applied by spraying the material onto the valve cover. The increase in the temperature different between the inside and outside of the valve cover increases the amount of power generated by the TEG. This thermal barrier embodiment can be most beneficial in hot environments, such as the Middle East or other areas where the temperature on the outside of the valve cover can be high.
Furthermore, in various embodiments, the sensor device can vary its mode based on the power source. For example, if receiving power from the TEG device, then sensor device can have full functionality. However, if operating on battery power, most likely due to an issue with the TEG device, the sensor device can be configured to operate on partial functionality in order to draw less operating power. Additionally, in various embodiments, the sensor device can be provided an update to override the default partial functionality setting. An operator may choose to override and continue operating the sensor device at full functionality if the sensor device can be scheduled to be, or can be, serviced in the near future.
Data Transmission
Data collected from a sensor device 1510 or generated by any other device, such as the coordinator 1520, operating in conjunction may be transmitted to other systems, such as to central server 1550 for analysis. The data can be transmitted in any suitable manner, including using any of the wired or wireless communication methods and protocols described previously. Any amount of data can be transmitted in any manner. For example, data from the sensor device 1510 can be transmitted to another device (such as to coordinator 1520) as it is measured, or data can be stored (such as in a memory storage device in the sensor device 1510) for a period of time before being transmitted to another device. In some cases, for example, it may be more efficient to transmit blocks of data at once rather than initiating communication with another device each time data is available. Furthermore, the data can be transmitted at off-peak times when there are fewer transmissions occurring on a cellular or satellite network. In other cases, a device may be out of range or otherwise unavailable to receive the data. The data can also be stored for any desired length of time, and/or until a particular event occurs. For example, the device data could be stored until it can be verified that the receiving device and/or the data server 1550 have received the data, allowing the data to be retransmitted if necessary. Data can also be deleted when a data record exceeds a predetermined storage time, and/or the oldest data record can be deleted first after a predetermined storage size limit has been reached.
Data transmitted from the sensor devices 1510 may be validated to ensure it was transmitted properly and completely. The sensor device data may also be validated to ensure it was provided from a specific sensor device 1510 or group of sensor devices 1510 (i.e., associated with a particular asset being monitored). The data may also be validated to ensure that fields in the data correspond to predetermined values and/or are within certain thresholds or tolerances. Any number, code, value or identifier can be used in conjunction with validating the device data. For example, the data can be validated by analyzing a serial number, a device identifier, one or more parity bits, a cyclic redundancy checking code, an error correction code, and/or any other suitable feature.
In exemplary embodiments, various components (such as coordinator 1520, gateway 1530, and server 1550) may be configured to receive data directly or indirectly from a sensor device 1510, format a message based on the data, and transmit the formatted message to another system or device. This functionality may be implemented through software operating on any suitable mobile computing device and with any computer operating system.
Receipt of data from the sensor devices 1510 may be restricted only to authenticated devices operating as part of the system. Authentication can also prevent sensitive data from being broadcast and viewed by unintended recipients. Any device may be authenticated to verify the device can be able to receive, process, and/or transmit data. During authentication, the authenticated device or devices may also be remotely commanded, and such commands may include steps that configure devices to interoperate with components of the present invention. For example, but not by way of limitation, such steps may include the downloading of software applications, applets, embedded operating code, and/or data.
Devices can be authenticated in any manner. For example, devices can be authorized to receive data from one or more sensor devices 1510 using an authorization code. The authorization code can be any number, code, value or identifier to allow the receiving device to be identified as a valid recipient of the data. In various embodiments, the receiving device stores an authorization code and broadcasts the authorization code in response to a request for authorization. Unless the authorization code matches a code stored by the transmitter of the data (such as the sensor device 1510 itself or another transmission device), the data is not transmitted to the device.
In other exemplary embodiments, the coordinator 1520, gateway 1530, or other device receiving the data from the sensor device 1510 using a wireless network protocol (such as Bluetooth®) can be authenticated based on whether the receiving device advertises one or more services. In this context, advertised services reflect functions, utilities, and processes the receiving device can be capable of performing. The receiving device broadcasts indicators of this functionality, thus “advertising” them to other systems and devices. In such embodiments, unless the receiving device advertises a service that can be identifiable with the operation of the present invention (i.e., a process capable of broadcasting the sensor device 1510 data to the central server 1550, for example), the receiving device is not authenticated and thus the data is not transmitted to the device.
Data can be transmitted to components operating in conjunction with the present invention in any format. For example, data from the sensor device 1510 can be transmitted to the coordinator 1520 exactly as it is generated by the sensor unit 1650 of the sensor device 1510, or it can be reformatted, modified, combined with other data, or processed in any other suitable manner before being transmitted. For example, the data can be encrypted prior to transmission, and this encryption may occur at any stage in its transmission by the sensor device 1510 or retransmission by another device. Some or all of the data being transmitted may be encrypted. In some embodiments, a digest of the data may be encrypted, to digitally “sign” the data contents to verify its authenticity. For example, but not by way of limitation, this digest may be produced by providing the received data to a hashing algorithm such as the MD5 or SHA-1 Secure Hashing Algorithm as specified in National Institute of Standards and Technology Federal Information Processing Standard Publication Number 180-1.
In some embodiments, such as described for the system 1600 depicted in
Commands from the Server
In addition to receiving and processing data from the sensor devices 1510 and other components operating in conjunction with embodiments of the disclosure, the server 1550 (or user computing device 1560 if desired) can transmit a command to control various functions of such components, the asset being monitored, or other systems and devices. Any number of commands of any type may be transmitted by the server 1550 to any suitable recipient. The command can be transmitted using the same variety of wired and wireless methods discussed previously. For example, the server 1550 may issue a command to control, reconfigure, and/or update a software application operating on the gateway 1530, coordinator 1520, and/or sensor device 1510.
The commands need not be sent directly to a device they are intended to control. For example, a command could be transmitted to a coordinator 1520, which in turn retransmits it (unmodified) to the appropriate sensor device 1510. Alternatively, the coordinator 1520 could receive a command from the server 1550, analyze the command, and then transmit an appropriately formatted command tailored to the specific sensor device 1510 to be controlled. In this manner, the server 1550 need not be able to generate a command for each and every specific device it wishes to control, rather, it can send a command appropriate to a class of sensor devices (i.e. those with vibration sensors) and the coordinator 1520 can appropriately translate the command to control the sensor device 1510. The commands from the server 1550 can initiate/run diagnostic programs, download data, request encryption keys, download encryption keys, and perform any other suitable function on devices operating in conjunction with systems and methods of the present invention.
In any system where commands can be sent remotely, security is always a concern, especially when a wireless implementation may provide an entry vector for an interloper to gain access to components, observe confidential data, and control assets such as expensive oil and gas engines/pumps. Embodiments of the present invention provide for enhanced security in a remote command system while still allowing flexibility and minimal obtrusiveness.
In one embodiment, a command received by any of the components in
When commands are created by a command originator, the originator may allow a recipient to verify the authenticity and/or validity of the command by at least one of the following methods: (1) encrypting the command with a private key of the command originator; (2) generating a digest of the command (through a method such as a hashing algorithm discussed above) and optionally encrypting the hashed digest with the command originator's private key, or (3) utilizing a symmetric encryption scheme providing an authentication code (such as a cryptographically hashed password) that can be compared to previously stored values. When a system component receives the command along with any encrypted or cleartext certification data, the component may determine the command is valid by: (1) attempting to decrypt an encrypted command message with the alleged originator's public key, (2) attempting to decrypt an encrypted digest with the alleged originator's public key, and comparing the result to a hashed value of the command, or (3) comparing a cryptographically hashed password for the alleged originator to known pre-stored values, and if a match is found, authorization can be granted. As an additional step, if the command were optionally encrypted using the intended provider's public key, then only the recipient is capable of decrypting the command, ensuring that only the truly intended recipient devices were being issued commands, and not an unintended third party. For example, authenticating the command may comprise decrypting at least part of the command using at least one of: a public key associated with the server 1550; a private key associated with a sensor device 1510; and a private key associated with the sensor device 1510.
Systems and devices operating in accordance with aspects of the present invention may implement one or more security measures to protect data, restrict access, or provide any other desired security feature. For example, any device operating in conjunction with the present invention may encrypt transmitted data and/or protect data stored within the device itself. Such security measures may be implemented using hardware, software, or a combination thereof. Any method of data encryption or protection may be utilized in conjunction with the present invention, such as public/private keyed encryption systems, data scrambling methods, hardware and software firewalls, tamper-resistant or tamper-responsive memory storage devices or any other method or technique for protecting data. Similarly, passwords, biometrics, access cards or other hardware, or any other system, device, and/or method may be employed to restrict access to any device operating in conjunction with the present invention.
Some exemplary embodiments of the invention are as follows.
1) A system comprising:
(a) a sensor device, the sensor device comprising:
1. A method for monitoring the functioning of a machine, the method comprising:
1. A method comprising:
1. A valve cover for use on an engine, the valve cover for retaining a device that generates power for a system that monitors one or more of temperature, vibration, flow and chemical composition.
2. The valve cover of example 1 that is attached to the engine.
3. The valve cover of example 1 that replaces an original valve cover of the engine.
4. The valve cover of any of examples 1-3 wherein the device generates electricity by absorbing heat from the engine and transferring the heat to a thermal energy generator, which creates electricity.
5. The valve cover of any of examples 1-4 wherein the device includes a structure to dissipate heat.
6. The valve cover of example 5 wherein the structure to dissipate heat comprises one or more of: a plurality of metal rods and upwardly-extending metal fins.
7. The valve cover of example 3 wherein electricity is transferred to a second device via a wired connection.
8. The valve cover of any of examples 1-8 that is bolted onto the engine.
9. The valve cover of example 1 that powers a plurality of devices other than the one retained on the valve cover.
10. The valve cover of any of examples 1-10 wherein the device is mounted on a side of the valve cover.
11. The valve cover of any of examples 1-11 that is comprised of one or more of the group consisting of: plastic and metal.
12. The valve cover of any of examples 1-12 wherein the device has a heat pipe with a first end that extends into the valve cover, the first end for transferring heat to a thermal energy generator to generate electricity.
1. A system for recharging a battery, the system comprising:
1. A sensor device comprising:
at least one sensor operatively coupled to a controller, wherein the controller is configured to receive a measured input from the at least one sensor; and
a wireless communication device coupled to the controller, wherein the wireless communication device is configured to communicate with a coordinator.
2. The sensor device of example 1, wherein the sensor device further comprises:
a processor in communication with the at least one sensor and the wireless communication device; and
a memory in communication with the processor and storing instructions executable by the processor for:
1. A device comprising:
a sensor;
a transceiver;
a processor in communication with the sensor and the transceiver; and
a memory in communication with the processor and storing instructions executable by the processor for:
gathering data related to the operation of an engine from a first sensor;
gathering environmental data regarding the engine from a second sensor; and
determining a nominal operating characteristic for the engine based on the data from the first sensor and the data from the second sensor.
15. The device of example 14, wherein the first sensor is configured to detect one or more of cylinder temperature, valve vibration, main bearing vibration, and combinations thereof.
16. The device of examples 14-15, wherein the second sensor is configured to detect one or more of geographical location and meteorological information.
17. The device of examples 14-16, wherein the memory further stores instructions to detect a variation from the nominal operating characteristic and transmit an alert via the transceiver, the alert indicating the variation.
1. A device for monitoring the function of an engine, the device comprising:
1. A holding tank monitoring system comprising:
a sensor device configured to receive total dissolved solids (TDS) data of a stored fluid from a TDS sensor in real-time, wherein the TDS sensor is located near an input of a holding tank storing the stored fluid;
wherein the TDS sensor data is used to determine water production of a natural resource well; and
wherein predictive analysis is used to determine expected remaining production of the well based in part on the water production.
2. The holding tank monitoring system of example 1, wherein the TDS sensor is an electrical conductivity meter.
3. The holding tank monitoring system of example 2, wherein the electrical conductivity meter is configured to measure a salt solution percentage of the stored fluid.
4. The holding tank monitoring system of examples 1-3, wherein the stored fluid is water by-product produced by a fracking well.
5. The holding tank monitoring system of examples 1-4, further comprising a central server configured to receive the TDS data from the sensor device.
6. The holding tank monitoring system of example 5, wherein the TDS data is transmitted to the central server in real-time.
7. The holding tank monitoring system of example 5, wherein the TDS data is transmitted to the central server in batch format.
8. The holding tank monitoring system of examples 1-4, wherein the sensor device is configured to filter the TDS data into a reduced subset of TDS data.
9. The holding tank monitoring system of example 8, wherein the sensor device is configured to transmit the reduced subset of TDS data to at least one of the coordinator or the central server.
10. The holding tank monitoring system of example 9, wherein the reduced subset of TDS data is transmitted to the at least one of the coordinator or the central server in real-time.
11. The holding tank monitoring system of examples 1-4, wherein the sensor device is configured to transmit the TDS data to a coordinator, wherein the coordinator is in communication with the central server.
12. The holding tank monitoring system of example 11, wherein the coordinator is configured to filter the TDS data into a reduced subset of TDS data.
13. The holding tank monitoring system of example 12, wherein the coordinator is configured to transmit the reduced subset of TDS data to the central server.
14. The holding tank monitoring system of example 13, wherein the reduced subset of TDS data is transmitted to the central server in real-time.
15. The holding tank monitoring system of example 13, wherein the reduced subset of TDS data is transmitted to the central server in batch format.
16. The holding tank monitoring system of examples 1-15, wherein the sensor device comprises:
a controller operatively coupled to the TDS sensor, wherein the controller is configured to receive the TDS data from the TDS sensor; and
a wireless communication device coupled to the controller, wherein the wireless communication device is configured to communicate with the central server.
17. The holding tank monitoring system of example 16, wherein the sensor device further comprises:
a processor in communication with the TDS sensor and the wireless communication device; and
a memory in communication with the processor and storing instructions executable by the processor for:
receiving, by a sensor device, total dissolved solids (TDS) data of a stored fluid from a TDS sensor in real-time, wherein the TDS sensor is located near an input of a holding tank storing the stored fluid;
determining water production of a natural resource well based on the TDS sensor data, and
determining expected remaining production of the well using predictive analysis based in part on the water production.
26. The holding tank monitoring method of example 25, wherein the TDS data is transmitted to a central server in real-time.
27. The holding tank monitoring method of example 25, wherein the TDS data is transmitted to a central server in batch format.
28. The holding tank monitoring method of examples 25-27, wherein the natural resource well is a fracking well, and wherein the stored fluid is water by-product produced by the fracking well.
29. The holding tank monitoring method of examples 25-28, wherein the TDS sensor is an electrical conductivity meter.
30. The holding tank monitoring method of example 29, wherein the electrical conductivity meter is configured to measure a salt solution percentage of the stored fluid.
31. The holding tank monitoring method of examples 27-30, wherein the sensor device comprises:
a controller operatively coupled to the TDS sensor, wherein the controller is configured to receive the TDS data from the TDS sensor; and
a wireless communication device coupled to the controller, wherein the wireless communication device is configured to communicate with the central server.
32. The holding tank monitoring method of examples 25-33, wherein the predictive analysis is additionally based on past water production data from the natural resource well.
1. A logistics method comprising:
receiving data from a plurality of sensor devices, wherein each of the plurality of sensor devices is in communication with an individual holding tank, and wherein the data comprises a flow rate of the individual holding tanks, and wherein the data identifies the individual holding tank locations;
determining a remaining time period until each of the individual holding tanks reaches capacity based on the flow rate and a remaining capacity of the individual holding tanks;
identifying a fleet of tanker trucks for draining the individual holding tanks; and
using the data to populate a mathematical model that comprises an objective function for minimizing tanker truck driven miles and preventing the individual holding tanks from reaching capacity.
2. The logistics method of example 1, wherein the data is provided to a sensor device by a flow meter coupled to the individual holding tank.
3. The logistics method of examples 1-2, wherein the data is provided to a sensor device by a pressure transducer coupled to the individual holding tank.
4. The logistics method of examples 1-3, further comprising determining a prioritized order of draining the tanks in the system based in part on the remaining time period of the individual holding tank.
5. The logistics method of examples 1-4, wherein each of the plurality of sensor devices comprises:
at least one sensor operatively coupled to a controller, wherein the controller is configured to receive a measured input from the at least one sensor; and
a wireless communication device coupled to the controller, wherein the wireless communication device is configured to communicate with a central server.
6. The logistics method of example 5, wherein the wireless communication device is configured to transmit using at least one of a satellite communication network, a local area network (LAN), a wide area network (WAN), a wireless mobile telephone network, a General Packet Radio Service (GPRS) network, a wireless local area network (WLAN), a Global System for Mobile Communications (GSM) network, a Personal Communication Service (PCS) network, and an Advanced Mobile Phone System (AMPS) network.
7. The logistics method of examples 5-6, wherein the at least one sensor is at least one of a flow meter and a pressure transducer.
8. A logistics system comprising:
a plurality of sensor devices providing data, wherein each of the plurality of sensor devices is in communication with an individual holding tank, and wherein the data comprises flow rate of the individual holding tanks, and wherein the data identifies the individual holding tank locations;
a capacity module configured to determine the time remaining until each of the individual holding tanks reaches capacity based on the flow rate and remaining capacity of the individual holding tanks;
an identification module configured to identify a fleet of tanker trucks for draining the individual holding tanks; and
a processor implementing a mathematical model populated by the data, wherein the mathematical model comprises an objective function for minimizing tanker truck driven miles and preventing the individual holding tanks from reaching capacity.
9. The logistics system of example 8, wherein the data is provided to a sensor device by a flow meter coupled to the individual holding tank.
10. The logistics system of examples 8-9, wherein the data is provided to a sensor device by a pressure transducer coupled to the individual holding tank.
11. The logistics system of examples 8-10, wherein the order of draining the tanks in the system is determined in part by whether a first individual holding tank is closer to overflowing than a second holding tank.
12. The logistics system of examples 8-11, wherein each of the plurality of sensor devices comprises:
at least one sensor operatively coupled to a controller, wherein the controller is configured to receive a measured input from the at least one sensor; and
a wireless communication device coupled to the controller, wherein the wireless communication device is configured to communicate with a central server.
13. The logistics system of example 12, wherein the sensor device further comprise:
a processor in communication with the sensor and the wireless communication device; and
a memory in communication with the processor and storing instructions executable by the processor for:
1. A volatile organic compound (VOC) sensor device comprising:
a sensor located in proximity to a tank vent of a storage tank, wherein the sensor is configured to monitor flumes from the tank vent;
a controller operatively coupled to the sensor, wherein the controller is configured to receive a measured input from the sensor, wherein the measured input is VOC measurement data of the flumes; and
a wireless communication device coupled to the controller, wherein the wireless communication device is configured to communicate with a coordinator.
2. The VOC sensor device of example 1, further comprising:
a processor in communication with the sensor and the wireless communication device; and
a memory in communication with the processor and storing instructions executable by the processor for:
communicating, by a wireless communication device coupled to the controller, with a coordinator.
24. The method of example 23, wherein the sensor is an infrared thermal monitor.
25. The method of examples 23-24, wherein the VOC measurement data measures levels of benzene, toluene, ethylbenzene, and xylenes.
26. The method of examples 23-25, further comprising calculating fugitive losses from the tank vent based on the VOC measurement data.
27. The method of example 26, wherein the coordinator is in communication with a central server.
28. The method of example 27, further comprising analyzing, by at least one of the coordinator and the central server, the VOC measurement data to determine if regulations are satisfied.
29. The method of example 28, wherein the regulations are set by a government agency.
30. The method of examples 23-29, wherein the wireless communication device is configured to transmit using at least one of a satellite communication network, a local area network (LAN), a wide area network (WAN), a wireless mobile telephone network, a General Packet Radio Service (GPRS) network, a wireless local area network (WLAN), a Global System for Mobile Communications (GSM) network, a Personal Communication Service (PCS) network, and an Advanced Mobile Phone System (AMPS) network.
31. The method of examples 23-30, wherein the sensor device is one of a plurality of sensor devices in a monitoring system.
1. A method of selective holding tank draining comprising:
receiving, by a sensor device, total dissolved solids (TDS) data of a stored fluid from a TDS sensor;
receiving, by the sensor device, volume data of the stored fluid from a volume sensor;
determining, by a central server, a selected TDS level for disposal of the stored fluid;
calculating an average TDS level of a drained volume of the stored fluid if draining from two or more tanks; and
determining a stored fluid volume to drain from each of the two or more tanks to achieve a drained mixture have less than the selected TDS level.
2. The method of example 1, wherein the TDS sensor is coupled to the holding tank near an input of the stored fluid.
3. The method of examples 1-2, wherein the TDS sensor is an electrical conductivity meter.
4. The method of example 3, wherein the electrical conductivity meter is configured to measure a salt solution percentage of the stored fluid.
5. The method of examples 1-4, wherein the volume sensor is a pressure transducer.
6. The method of example 5, wherein the pressure transducer is located near the bottom of the holding tank.
7. The method of examples 1-6, wherein the volume of the drained mixture is less than the capacity of a tanker truck.
8. The method of examples 1-7, wherein the sensor device comprises:
a controller operatively coupled to the TDS sensor, wherein the controller is configured to receive the TDS data from the TDS sensor; and
a wireless communication device coupled to the controller, wherein the wireless communication device is configured to communicate with the central server.
9. The method of example 8, wherein the wireless communication device is configured to transmit using at least one of a satellite communication network, a local area network (LAN), a wide area network (WAN), a wireless mobile telephone network, a General Packet Radio Service (GPRS) network, a wireless local area network (WLAN), a Global System for Mobile Communications (GSM) network, a Personal Communication Service (PCS) network, and an Advanced Mobile Phone System (AMPS) network.
10. The method of examples 1-9, wherein the selected TDS level is one of a plurality of TDS levels, wherein the disposal requirements of the drained mixture is determined by regulations corresponding to the plurality of TDS levels.
11. The method of example 10, wherein the regulations are set by a government agency.
12. The method of examples 1-11, wherein the TDS data and the volume data are transmitted to the central server in real-time.
13. The method of examples 1-11, wherein the TDS data and the volume data are transmitted to the central server in batch-format.
14. The method of examples 1-13, further comprising transmitting, by the sensor device, the TDS data and the volume data to a coordinator, wherein the coordinator is in communication with the central server.
15. The method of example 14, further comprising filtering, by the coordinator, the TDS data and volume data into a reduced subset of TDS and volume data.
16. The method of example 15, further comprising transmitting, by the coordinator, the reduced subset of TDS and volume data to the central server.
17. The method of example 16, wherein the reduced subset of TDS and volume data is transmitted to the central server in real-time.
18. The method of example 16, wherein the reduced subset of TDS and volume data is transmitted to the central server in batch format.
19. The method of examples 16-18, wherein the reduced subset of TDS and volume data is transmitted to the central server during off-peak times.
20. The method of examples 1-22, wherein the selected TDS level is one of a plurality of TDS levels, wherein the disposal requirements of the drained mixture is determined by regulations corresponding to the plurality of TDS levels.
21. The method of example 20, wherein the regulations are set by a government agency.
22. A selective holding tank draining system comprising:
a sensor device configured to receive total dissolved solids (TDS) data of a stored fluid from a TDS sensor, and wherein the sensor device is configured to receive volume data of the stored fluid from a volume sensor;
a central server configured to determine a selected TDS level for disposal of the stored fluid;
wherein an average TDS level of a drained volume of the stored fluid if draining from two or more tanks is calculated; and
wherein a stored fluid volume to drain from each of the two or more tanks to achieve a drained mixture have less than the selected TDS level is determined.
23. The selective holding tank draining system of example 22, wherein the TDS sensor is an electrical conductivity meter.
24. The selective holding tank draining system of example 23, wherein the electrical conductivity meter is configured to measure a salt solution percentage of the stored fluid.
25. The selective holding tank draining system of examples 22-24, wherein the volume sensor is a pressure transducer.
26. The selective holding tank draining system of examples 22-25, wherein the volume of the drained mixture is less than the capacity of a tanker truck.
27. The selective holding tank draining system of examples 22-26, wherein the sensor device comprises:
a controller operatively coupled to the TDS sensor and the volume sensor, wherein the controller is configured to receive the TDS data from the TDS sensor and receive the volume data from the volume sensor; and
a wireless communication device coupled to the controller, wherein the wireless communication device is configured to communicate with the central server.
28. The selective holding tank draining system of example 27, wherein the sensor device further comprises:
a processor in communication with the TDS sensor, the volume sensor and the wireless communication device; and
a memory in communication with the processor and storing instructions executable by the processor for:
(a) measuring the volume of fluid in the storage tank;
(b) measuring the flow rate of liquid into the tank; and
(c) scheduling a truck to drain the storage tank based on its predetermined volume, the volume of liquid inside the tank, and the rate upon which fluid is entering it.
64. The method of example 63 wherein a truck is scheduled to empty the tank based on the chemical composition of the fluid inside the tank.
65. A method for scheduling the drainage of a storage tank having a predetermined volume, the scheduling time for drainage based upon one or more of the following parameters:
1. An air monitoring array system comprising:
a plurality of air quality sensor devices arranged within a selected area, wherein the plurality of air quality sensor devices is configured to measure air pollutant levels in the selected area;
wherein each of the plurality of air quality sensor devices comprise:
a processor in communication with the at least one sensor and the wireless communication device; and
a memory in communication with the processor and storing instructions executable by the processor for:
measuring, by a plurality of air quality sensor devices arranged within a selected area, air pollutant levels in the selected area;
wherein each of the plurality of air quality sensor devices comprise:
1. A quality monitoring method comprising:
receiving, by a sensor device, total dissolved solids (TDS) data of a stored fluid from a TDS sensor in real-time;
transmitting, by the sensor device, the TDS data to a coordinator; and
comparing the TDS data to a TDS threshold level.
2. The quality monitoring method of example 1, wherein the TDS data is transmitted to the coordinator in real-time.
3. The quality monitoring method of examples 1-2, further comprising transmitting, by the coordinator, the TDS data to a central server.
4. The quality monitoring method of example 3, wherein the TDS data is transmitted to the central server in real-time.
5. The quality monitoring method of example 3, wherein the TDS data is transmitted to the central server in batch format.
6. The quality monitoring method of examples 1-2, further comprising filtering, by the coordinator, the TDS data into reduced TDS data.
7. The quality monitoring method of example 6, further comprising transmitting, by the coordinator, the reduced TDS data to a central server.
8. The quality monitoring method of example 7, wherein the reduced TDS data is transmitted to the central server in real-time.
9. The quality monitoring method of example 7, wherein the reduced TDS data is transmitted to the central server in batch format.
10. The quality monitoring method of examples 1-2, further comprising filtering, by the sensor device, the TDS data into reduced TDS data.
11. The quality monitoring method system of example 10, further comprising transmitting, by the coordinator, the reduced TDS data to at least one of the coordinator or the central server.
12. The quality monitoring method of example 11, wherein the reduced TDS data is transmitted to the at least one of the coordinator or the central server in real-time.
13. The quality monitoring method of examples 10-12, wherein the sensor device is configured to transmit the reduced TDS data to a coordinator, wherein the coordinator is in communication with the central server.
14. The quality monitoring method of examples 1-13, wherein the stored fluid is water by-product produced by a fracking well.
15. The quality monitoring method of examples 1-14, further comprising notifying, by the sensor device, a central server in response to the TDS data exceeding the TDS threshold level.
16. The quality monitoring method of examples 1-15, wherein the TDS sensor is an electrical conductivity meter.
17. The quality monitoring method of example 16, wherein the electrical conductivity meter is configured to measure a salt solution percentage of the stored fluid.
18. A quality monitoring system comprising:
a sensor device configured to receive total dissolved solids (TDS) data of a stored fluid from a TDS sensor in real-time; and
a coordinator configured to receive the TDS data from the sensor device;
wherein the TDS data is compared to a TDS threshold level.
19. The quality monitoring system of example 18, wherein the TDS data is transmitted to the coordinator in real-time.
20. The quality monitoring system of examples 18-19, wherein the coordinator transmits the TDS data to a central server.
21. The quality monitoring system of example 20, wherein the TDS data is transmitted to the central server in real-time.
22. The quality monitoring system of example 20, wherein the TDS data is transmitted to the central server in batch format.
23. The quality monitoring system of examples 18-19, wherein the coordinator is configured to filter the TDS data into reduced TDS data.
24. The quality monitoring system of example 23, wherein the coordinator transmits the reduced TDS data to a central server.
25. The quality monitoring system of example 24, wherein the reduced TDS data is transmitted to the central server in real-time.
26. The quality monitoring system of example 24, wherein the reduced TDS data is transmitted to the central server in batch format.
27. The quality monitoring system of example 18, wherein the sensor device is configured to filter the data into reduced TDS data.
28. The quality monitoring system of example 27, wherein the sensor device is configured to transmit the reduced TDS data to at least one of the coordinator or the central server.
29. The quality monitoring system of example 28, wherein the reduced TDS data is transmitted to the at least one of the coordinator or the central server in real-time.
30. The quality monitoring system of examples 27-29, wherein the sensor device is configured to transmit the reduced TDS data to a coordinator, wherein the coordinator is in communication with the central server.
31. The quality monitoring system of examples 18-30, wherein the stored fluid is water by-product produced by a fracking well.
32. The quality monitoring system of examples 18-31, wherein the sensor device notifies the central server in response to the TDS data exceeding the TDS threshold level.
33. The quality monitoring system of examples 18-32, wherein the TDS sensor is an electrical conductivity meter.
34. The quality monitoring system of example 33, wherein the electrical conductivity meter is configured to measure a salt solution percentage of the stored fluid.
35. The quality monitoring system of examples 18-34, wherein the sensor device comprises:
a controller operatively coupled to the TDS sensor, wherein the controller is configured to receive the TDS data from the TDS sensor; and
a wireless communication device coupled to the controller, wherein the wireless communication device is configured to communicate with the central server.
36. The quality monitoring system of example 35, wherein the sensor device further comprises:
a processor in communication with the TDS sensor and the wireless communication device; and
a memory in communication with the processor and storing instructions executable by the processor for:
1. A device for transferring heat from a heat source to a thermal energy generator, the device including:
Having thus described exemplary embodiments of the invention, other variations and embodiments that do not depart from the spirit of the invention will become apparent to those skilled in the art. The scope of the present invention is thus not limited to any particular embodiment, but is instead set forth in the appended claims and legal equivalents thereof. Unless expressly stated in the written description or the claims, the steps of any method recited in the claims can be performed in any order capable of yielding the desired result.
1. A pipe used for drilling, the pipe including a device mounted thereon, the device for measuring the vibration to which the pipe has been exposed.
2. The pipe of example 1 that includes a recess and the device is positioned in the recess.
3. The pipe of example 1 or example 2 wherein the device includes an accelerometer to measure vibration and a power source for powering the accelerometer.
4. The pipe of example 3 wherein the power source is a piezo chip.
5. The pipe of any of examples 1-4 that includes a memory for storing the vibrational data.
6. The pipe of any of examples 1-5 wherein the pipe has a first end with a first cross-sectional area and a second end having a second cross-sectional area, the second cross-sectional area being smaller than the first cross-sectional area.
7. The pipe of example 6 wherein the device is positioned on the second cross-sectional area.
8. The pipe of example 7 that includes a recess wherein the device is in the recess.
9. The pipe of example 8 wherein the recess is in the second end.
10. The pipe of example 8 or example 9 wherein the recess is between ⅛″ and 5/16″ deep.
11. The pipe of any of examples 1-10 wherein the device records the number of rotations of the pipe.
12. The pipe of any of examples 1-11 wherein the device records the vibration due to the material through the pipe is drilled.
13. The pipe of any of examples 1-12 wherein the device has a predetermined vibration quantity equal to the operational life of the pipe.
14. The pipe of example 13 wherein the measured vibration can be compared to the operational life to calculate the remaining life of the pipe.
15. The pipe of any of examples 1-14 wherein information from the device can be wirelessly extracted via a radio frequency signal.
16. A method of determining the operational life of a pipe, the method comprising the steps of:
This application claims priority to the following applications: U.S. Provisional Patent Application No. 61/644,093 filed May 8, 2012 and entitled “SYSTEMS AND METHODS FOR REMOTE ASSET MONITORING”; U.S. Provisional Patent Application No. 61/785,430 filed Mar. 14, 2013 and entitled “SYSTEMS AND METHODS FOR REMOTE ASSET MONITORING”; U.S. Provisional Patent Application No. 61/785,802 filed Mar. 14, 2013 and entitled “VALVE COVER FOR POWERING ENGINE MONITORING SYSTEM”; U.S. Provisional Patent Application No. 61/785,877 filed Mar. 14, 2013 and entitled “SYSTEM AND METHOD FOR LOGISTICALLY SETTING TANKER TRUCK ROUTES”; U.S. Provisional Patent Application No. 61/785,910 filed Mar. 14, 2013 and entitled “REMOTE VOLATILE ORGANIC COMPOUND MONITORING SYSTEM”; U.S. Provisional Patent Application No. 61/785,931 filed Mar. 14, 2013 and entitled “METHOD OF EFFICIENT BY-PRODUCT DISPOSAL BASED ON BY-PRODUCT QUALITY”; U.S. Provisional Patent Application No. 61/785,959 filed Mar. 14, 2013 and entitled “REMOTE AIR MONITORING ARRAY SYSTEM”; U.S. Provisional Patent Application No. 61/786,005 filed Mar. 14, 2013 and entitled “REMOTE MONITORING UNIT WITH VARIOUS SENSORS”; U.S. Provisional Patent Application No. 61/786,043 filed Mar. 14, 2013 and entitled “SYSTEM AND METHOD FOR REMOTELY MONITORING TOTAL DISSOLVED SOLID LEVELS”; U.S. Provisional Patent Application No. 61/786,057 filed Mar. 14, 2013 and entitled “SYSTEM AND METHOD FOR PREDICTING A NATURAL RESOURCE WELL LIFESPAN,” the respective disclosures of each of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61644093 | May 2012 | US | |
61785430 | Mar 2013 | US | |
61785802 | Mar 2013 | US | |
61785877 | Mar 2013 | US | |
61785910 | Mar 2013 | US | |
61785931 | Mar 2013 | US | |
61785959 | Mar 2013 | US | |
61785005 | Mar 2013 | US | |
61786043 | Mar 2013 | US | |
61786057 | Mar 2013 | US |