(1) Field of the Invention
The present invention relates generally to container security and, more particularly, to a smart switch that may be integrated into various types of security devices in order to intelligently protect the devices from unwanted manipulation.
(2) Background Art
Containerized shipping is a critical component of domestic and international trade. The fourth element of the 2002 Container Security Initiative (CSI) calls for smarter, tamper evident shipping containers. Cargo container monitoring and security devices are incorporated into new cargo container models and/or retrofitted into existing models. These devices have been designed to warn of intrusion, transmit location information, and deter unwarranted breaches of security.
A high degree of security is necessary during many stages of container transportation. However, when containers are located inside a safe zone or near authorized personnel, it is desirable to turn off the security functions, shut down the monitoring or security devices, or re-initialize the security devices. Without a security threat, it would be a simple matter for an operator to power down the container security system in some situations.
However, it is necessary that only authorized personnel in special situations are able to turn the security or monitoring devices off. Such protection is often implemented by using a physical key or some other equivalent tools. With containers frequently transported worldwide, authorized operators cannot always be relied upon to have the right keys or codes in a timely manner. This logistical issue hinders the wide acceptance of more sophisticated security measures, and slows down the shipping process due to human errors.
The object of the present invention is to overcome the shortcomings disclosed in the prior art. In a preferred embodiment, the smart switch of the present invention may be automatically enabled or disabled according to a geo-zone identified by a GPS receiver. More specifically, inside a safe zone, the smart switch is preferably enabled to allow the operators controlling the security devices to turn on/off the monitoring functions, initialize the device, or configure the alarm settings. When outside the safety zone, the smart switch may preferably be disabled to prevent unwanted manipulation by unauthorized individuals. According to another preferred embodiment, the smart switch may be enabled using a near field communication authorization process. In yet another preferred embodiment, the smart switch may be automatically disabled according to a time setting.
For the purposes of promoting an understanding of the principles of the present invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the present invention is hereby intended and such alterations and further modifications in the illustrated devices are contemplated as would normally occur to one skilled in the art.
The terms “program,” “computer program,” “software application,” and the like as used herein, are defined as a sequence of instructions designed for execution on a computer system. A program, computer program, or software application may include a subroutine, a function, a procedure, an object implementation, an executable application, an applet, a servlet, a source code, an object code, a shared library, a dynamic load library and/or other sequence of instructions designed for execution on a computer system. A data storage means, as defined herein, includes many different types of computer readable media that allow a computer to read data therefrom and that maintain the data stored for the computer to be able to read the data again. Such data storage means can include, for example, non-volatile memory, such as ROM, Flash memory, battery backed-up RAM, Disk drive memory, CD-ROM, DVD, and other permanent storage media. However, even volatile storage such a RAM, buffers, cache memory, and network circuits are contemplated to serve as such data storage means according to different embodiments of the present invention.
The present invention discloses a smart switch that may be integrated into various types of security devices, such as a door lock, an electronic door seal, or a container monitoring unit. According to one embodiment, the smart switch when enabled may be used to change the operational status of the device. For instance, the smart switch of the present invention may automatically determine whether it is safe to enable the switch function according to a set of environmental factors. When it is determined to be out of the predefined safe condition, the smart switch may be disabled. For illustration purposes, a physical switch is described in the following embodiments. However, the smart switch concept may be applied to any user operable element on a security device, such as a button, a lever, a key pad, and other types of user input components. In more advanced cases, the user operable element may be a user oriented near field wireless device. According to this aspect of the present invention, the smart switch function may disable some or all user oriented near field wireless communication outside of pre-defined safe conditions.
The various embodiments of the present invention are especially beneficial for container security applications. For example, when a shipping container is being loaded in a secure parking lot, the smart switch may automatically enable the user operation of a container security device, so that the operator does not have to use a key to turn on/off or configure of the security device. Once the shipping container has been loaded and moved out of the secure parking lot, the smart switch may disable the access device or change the security function of the device. The present invention may also apply to other mobile security applications at fixed locations.
With reference now to
In one preferred embodiment, the smart switch of the present invention may be coupled with a GPS receiver and thus capable of determining its current location. Based on the determined location, the smart switch of the present invention may compare the current location to the safe zones defined in a local or remote database. Preferably, a safe zone may be defined as a location with pre-defined boundaries or a geographic location. In operation, when the current location of a container is inside a pre-defined safe zone, the smart switch may preferably be enabled and the door lock in this mode may be allowed to operate in a normal fashion. Alternatively, when the current location of a container is outside of a pre-defined safe zone, the smart switch may be disabled, and the door lock may be kept in a locked status preventing the container from being accessed outside of the safe zones.
In another preferred embodiment, the smart switch 160 may be enabled using a near field communication authorization process. This particular embodiment may be implemented alone or in combination with the above geo-zone based smart switch function. One preferred example of the near field communication authorization process may be implemented using RFID technology. According to this aspect of the present invention, when the smart switch on the door lock is disabled, an operator may use a RFID reader or a RFID enabled cell phone to communicate with the smart switch to gain authorization for access (using an access code or the like). If the authorization procedure succeeds, the smart switch will be enabled to allow the normal operation of the door lock.
According to a further in another preferred embodiment, the smart switch 160 may be enabled then to be automatically disabled after a pre-determined period or at a pre-determined time. This particular embodiment may be implemented with other smart switch enablement conditions, for example, in combination with the above geo-zone based smart switch functions or identification based smart switch functions. In one particular example, an authorized operator may enable the switch for a short period of time to allow a worker to load or unload the container, and after a pre-determined period or at a pre-determined time, the smart switch door lock may be disabled to prevent future access to the container.
As detailed above, the physical configuration of the door lock and the smart switch is provided for illustration purposes only. The illustrated physical switch is merely one example of a user operable element to control the door lock. Flexible configuration options of the door lock and the switch are contemplated as would normally occur to one skilled in the art.
Further, a smart switch may be integrated into an electronic door seal, container monitoring unit, or other security devices for container or non-container applications. In a preferred example of a smart switch electronic door seal, a physical switch component may be implemented on the electronic door seal to turn on/off the door seal. In a preferred example, a GPS location based smart switch electronic door seal may automatically disable risky user operations after the door seal leaves the safe zone. Preferably, the GPS smart switch door seal may automatically enable the switch function when the seal is inside of a safe zone, and automatically disable the switch function when the seal is outside of safe zones.
With reference now to
In one preferred embodiment, the smart switch may be connected to a GPS receiver in order to receive location data. In operation, the smart switch may compare the current location to the safe zones defined in a local or remote database. According to one preferred mode of operation, the smart switch will remain enabled only when the current location is inside a pre-defined safe zone.
With reference now to
Using an example of a GPS enabled smart switch monitoring unit 300 as shown in
In an alternative preferred embodiment, the determination step in the smart switch module may be executed in a remote monitoring station 390. According to this embodiment, the remote monitoring station 390 will receive the location information from the monitoring unit 300 and the remote monitoring station may compare the unit location to determined safe zones. Thereafter, the decision to enable or disable the smart switch will be transmitted to the smart switch monitoring unit for execution. Furthermore, the decision of enabling/disabling the smart switch function may be made according to a comprehensive set of information available locally and remotely.
According to various embodiments, many different environmental factors may be used to determine whether certain changes to the operational status of the protected device are warranted. Further, a smart switch function having several sets of safe conditions associated with two, three, or more safety levels may be implemented on a single security device. In an exemplary embodiment, a smart switch security device may store and be aware of a first set of pre-defined safe zones where the on/off button will be enabled. In addition, the smart switch security device may also have a second set of pre-defined safe zones where a user, for instance, may be required to use an alternative format to access the device such as an RFID access code to read data only. According to the present invention, a flexible combination of multiple user operable elements and multiple safety levels on a single smart switch security device are contemplated.
Further in accordance with the present invention, the settings for the smart switch function may be configured by the manufacturer, or by authorized locally or remotely. In a further preferred embodiment, the remote monitoring station 390 may update the settings for the smart switch function on the fly if necessary. Additionally, the smart switch monitoring unit 300 may regard any attempt to use or manipulate the smart switch when it is disabled as an alarming event, which may trigger audible/visible alarms, and reporting of the alarming event to a remote monitoring station.
With reference now to
Communication System
In accordance with a preferred embodiment of the present invention, the communication between a smart switch security device and a remote monitoring station may be made via a wireless connection to a satellite mode to communicate with a satellite system such as Globalstar or Orbcomm. Such a satellite device may be a device such as the Axxon, AutoTracker, or the like, or a customized Orbcomm VHF satellite GPS tracking communications device that may be adapted with ZigBee interface antenna devices to incorporate them into the overall LAN architecture of the security system.
In accordance with an alternative preferred embodiment of the present invention, the remote communications may also be made using a wireless system independent from the satellite system. One example of such a wireless system is the GSM cellular system. According to this embodiment, wireless signals may be transmitted to a wireless relay, base station or the like for routing and transmission to a chosen centralized location independent from or in combination with the transmissions made from the satellite system. In accordance with this alternative embodiment, signals may also be received by the communications manager and wireless interface from such external wireless networks as well.
According to a preferred embodiment of the present invention, it is preferred that the wireless communications used within the present invention will be based on the ZigBee (IEEE 802.15.4) standard. This standard transmits RF signals in the 2.4 GHz ISM band and operates with low power consumption due to its relatively slower data transmission rate (128 Kpps-250 Kbps). This approach enables additional capacity and flexibility of design through an up to 255 node pico-network. Communications are simplex or duplex in design, meaning that data can be assessed in either a push or pull process.
As referred to above, all communications of the present invention may be designed to be duplex or simplex in nature. Further, as needs require, the processes for transmitting data to and from the present invention may be designed to be push or pull in nature. Still further, each feature of the present invention may be made to be remotely activated and accessed from distant monitoring stations. Accordingly, data may preferably be uploaded to and downloaded from present invention as needed. For example, as detailed above, each system and subsystem of the present invention may be designed to send, receive, report and request information via the wireless and/or satellite systems so as to continually maintain and update the container systems.
Additional communications with the communications manager are preferably enabled via industry standard wired interfaces, with communications protocols implemented in firmware for future upgrade. These interfaces preferably will include at least two RS-322 compatible serial ports. These alternate serial ports may assist the communications manager to interface with additional remote sensors as well as other local reader/controllers such as an RFID reader or other devices.
While the above descriptions regarding the present invention contain much specificity, these should not be construed as limitations on the scope, but rather as examples. Many other variations are possible. Accordingly, the scope should be determined not by the embodiments illustrated, but by the appended claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5836510 | Kirchner | Nov 1998 | A |
20030060212 | Thomas | Mar 2003 | A1 |
20050033991 | Crane | Feb 2005 | A1 |
20080047329 | Breed | Feb 2008 | A1 |
20110187496 | Denison et al. | Aug 2011 | A1 |
20110276609 | Denison | Nov 2011 | A1 |
20130033381 | Breed | Feb 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
61647578 | May 2012 | US |