A system supporting USB charge functionality typically requires an associated battery charger identification chip and current limit switch to always or continuously be powered on, which contribute to system power consumption and reduced system battery life.
Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.
The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.
A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims, and the invention encompasses numerous alternatives, modifications, and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example, and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.
USB (Universal Serial Bus) ports have become ubiquitous in modern computing systems for interfacing with various external devices. Moreover, USB ports are now prevalently used as charging ports. Techniques for smart USB plug detection are disclosed herein that result in reduced system power consumption and consequent extended system battery life which are especially useful when accommodating charging of an external USB device while a system is in a (deep) sleep mode.
In some embodiments, CLS 106 is powered off during a sleep mode of the system to conserve power and only powered on when external USB device 100 is connected. In some such cases, BCID chip 102 is configured to detect plug-in of external USB device 100 and facilitate powering-on of CLS 106 so that requisite current can be delivered to external USB device 100 when it is connected to the system and likewise facilitate powering-off of CLS 106 when external USB device 100 is disconnected. Specifically, a dedicated pin (SUPD) of BCID chip 102 is employed to monitor Vbus 108 current/voltage. Perturbations in Vbus 108 current/voltage are detected and used to determine when an external USB device is plugged into or out of the system. BCID chip 102 outputs one or more control signals, which may be employed by PWM IC 104, to power-on and power-off CLS 106 as applicable. Shutting down CLS 106 when no external USB device is connected is useful for conserving system power and extending system battery life especially during deep sleep modes, such as when the system is in an S5 sleep state. Further power savings may be achieved by operating BCID chip 102 in a low power, standby mode. For example, BCID chip 102 or at least one or more components thereof may be pulse powered on to periodically (instead of continuously) check whether an external USB device is plugged into a USB port of the system.
The disclosed BCID chip supports existing USB port architectures and is compatible with USB Battery Charging Specification standards. In various embodiments, the BCID chip supports CDP (Charging Downstream Port) mode and/or low/full speed mouse/keyboard wake-up from S3 mode. In some embodiments, the BCID chip comprises an integrated circuit having, for example, a TDFN (Thin Dual Flat No Leads) package.
Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.
This application claims priority to U.S. Provisional Patent Application No. 61/696,057 entitled SMART USB PLUG DETECTION filed Aug. 31, 2012 which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
20050110428 | Crandall | May 2005 | A1 |
20070260905 | Marsden | Nov 2007 | A1 |
20080259514 | Cagno | Oct 2008 | A1 |
20090271644 | Fiebrich | Oct 2009 | A1 |
20100280676 | Pabon | Nov 2010 | A1 |
20110087805 | Liu | Apr 2011 | A1 |
20110264942 | Tsukamoto | Oct 2011 | A1 |
20120117280 | Ballot | May 2012 | A1 |
20120190193 | Shau | Jul 2012 | A1 |
20130127402 | Pulijala | May 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
61696057 | Aug 2012 | US |